bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446942; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Visualization of SARS-CoV-2 infection dynamic
2	Chengjin Ye ^{1*} , Kevin Chiem ¹ , Jun-Gyu Park ¹ , Jesus A. Silvas ¹ , Desarey
3	Morales Vasquez ¹ , Jordi B. Torrelles ¹ , James J. Kobie ² , Mark R. Walter ³ , Juan
4	Carlos de la Torre ⁴ and Luis Martinez-Sobrido ^{1,5*}
5	
6	¹ Host-Pathogen Interactions and Population Health Programs, Texas
7	Biomedical Research Institute, San Antonio, Texas 78227, USA
8	² Department of Medicine, Division of Infectious Diseases, University of
9	Alabama at Birmingham, Birmingham, Alabama 35294, USA
10	³ Department of Microbiology, University of Alabama at Birmingham,
11	Birmingham, Alabama 35294, USA
12	⁴ Department of Immunology and Microbiology, The Scripps Research Institute,
13	La Jolla, California 92037, USA
14	⁵ Lead Contact
15	*Correspondence: cye@txbiomed.org , lmartinez@txbiomed.org
16	Lead contact email: Imartinez@txbiomed.org
17	
18	
19	
20	
21	
22	

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446942; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

23 SUMMARY

24	Replication-competent recombinant viruses expressing reporter genes
25	provide valuable tools to investigate viral infection. Low levels of reporter gene
26	expressed from previous reporter-expressing rSARS-CoV-2 have jeopardized
27	their use to monitor the dynamics of SARS-CoV-2 infection in vitro or in vivo.
28	Here, we report an alternative strategy where reporter genes were placed
29	upstream of the viral nucleocapsid gene followed by a 2A cleavage peptide.
30	The higher levels of reporter expression using this strategy resulted in efficient
31	visualization of rSARS-CoV-2 in infected cultured cells and K18 hACE2
32	transgenic mice. Importantly, real-time viral infection was readily tracked using
33	a non-invasive in vivo imaging system and allowed us to rapidly identify
34	antibodies which are able to neutralize SARS-CoV-2 infection in vivo. Notably,
35	these reporter-expressing rSARS-CoV-2 retained wild-type virus like
36	pathogenicity in vivo, supporting their use to investigate viral infection,
37	dissemination, pathogenesis and therapeutic interventions for the treatment of
38	SARS-CoV-2 in vivo.
39	
40	
41	
42	KEYWORDS: coronavirus; SARS-CoV-2; COVID-19; reporter gene; 2A
43	cleavage site; fluorescence; Venus; Nano luciferase; replication dynamics; in
44	<i>vivo</i> imaging

45 INTRODUCTION

46	Coronaviruses (CoVs) are enveloped, single-stranded, positive-sense RNA
47	viruses that belong to the Coronaviridae family that can cause mild to severe
48	respiratory infections in humans (Hu et al., 2020). Two CoVs have been
49	associated with severe respiratory syndrome in the past two decades: Severe
50	Acute Respiratory Syndrome CoV (SARS-CoV) in 2002-2003 and Middle East
51	Respiratory Syndrome CoV (MERS-CoV) in 2012-present (De Wit et al., 2016).
52	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in
53	the Chinese city of Wuhan in December 2019 and is the causative agent of the
54	coronavirus disease 2019 (COVID-19) pandemic (Lu et al., 2020; Wu et al.,
55	2020). As of June 2021, SARS-CoV-2 has been reported to be responsible for
56	over 150 million human infection cases and more than 3 million deaths around
57	the World (<u>https://covid19.who.int/</u>).
58	Like SARS-CoV and MERS-CoV, SARS-CoV-2 mainly replicates in the
59	upper (nasal turbinate) and lower (lungs) respiratory tract, resulting, in some
60	cases, in fatal respiratory illness (Li et al., 2020; Xu et al., 2020). However, the
61	intra-host dissemination and pathogenesis of SARS-CoV-2 are not well
62	understood. Several animal models of SARS-CoV-2 infection have been
63	established and have already provided very valuable information to
64	understand the mechanism of tissue and cell tropism, replication and
65	pathogenesis (Imai et al., 2020; Kim et al., 2020; Oladunni et al., 2020; Singh
66	et al., 2021; Sun et al., 2020). However, assessing the presence of

67	SARS-CoV-2 in infected animals, organs or tissues has required collection and
68	processing of samples upon euthanasia, which complicates studies examining
69	the longitudinal dynamic of a viral infection within an infected host.
70	Recombinant (r)SARS-CoV-2 expressing reporter genes could overcome this
71	problem and allow tracking viral infection in vivo and in real time by monitoring
72	the expression of the reporter gene. We and others have documented the
73	feasibility of generating reporter-expressing rSARS-CoV-2 using reverse
74	genetic system (Chiem et al., 2021; Xie et al., 2020a). These rSARS-CoV-2
75	have been genetically engineered to express the reporter gene by substituting
76	the viral open reading frame (ORF) 7a protein with the reporter gene of interest,
77	an experimental approach first employed to generate reporter-expressing
78	rSARS-CoV (Sims et al., 2005). Despite these reporter-expressing
79	rSARS-CoV-2 were showing comparable plaque phenotype, replication and
80	growth kinetics as those of wild-type virus (rSARS-CoV-2/WT) in vitro (Chiem
81	et al., 2021; Xie et al., 2020a; Xie et al., 2020b), it is unclear if the
82	reporter-expressing rSARS-CoV-2 lacking ORF7a recapitulate viral
83	pathogenicity in vivo and whether reporter gene expression levels could be
84	efficiently tracked ex vivo using tissues or organs from infected animals, or in a
85	whole organism <i>in vivo</i> .
86	In this study, we cloned fluorescent (Venus) and luciferase (Nano luciferase,
87	Nluc) reporter genes upstream of the SARS-CoV-2 nucleocapsid (N) gene
88	separated by the porcine tescherovirus (PTV-1) 2A proteolytic cleavage site to

89	generate new reporter-expressing rSARS-CoV-2 without the deletion of the
90	ORF7a protein. In vitro, rSARS-CoV-2 expressing reporter genes from the viral
91	N locus replicated and made viral plaques similar to those of rSARS-CoV-2/WT.
92	Notably, reporter-expressing rSARS-CoV-2 generated using this 2A strategy
93	expressed higher levels of reporter gene expression compared to those
94	rSARS-CoV-2 generated by substituting the viral ORF7a protein with the
95	reporter gene of interest. Importantly, rSARS-CoV-2/Venus-2A and
96	rSARS-CoV-2/Nluc-2A showed rSARS-CoV-2/WT-like pathogenicity in vivo.
97	Notably, the higher level of Venus expression from rSARS-CoV-2/Venus-2A
98	allowed us to detect viral infection in the lungs of infected K18 human
99	angiotensin converting enzyme 2 (hACE2) transgenic mice using an in vivo
100	imaging system (IVIS). Moreover, Venus expression from
101	rSARS-CoV-2/Venus-2A was stable up to seven passages in vitro in cultured
102	Vero E6 cells and in vivo up to day 6 post-infection. Importantly, levels of
103	Venus expression correlated well with viral titers detected in the lungs,
104	demonstrating the feasibility of using Venus expression as a valid surrogate
105	marker to evaluate SARS-CoV-2 infection. Using rSARS-CoV-2/Nluc-2A, we
106	were able to track the dynamics of viral infection in real time and longitudinally
107	assess SARS-CoV-2 infection in vivo. Finally, we testified the feasibility of
108	using the rSARS-CoV-2/Nluc-2A to rapidly and accurately identify antibodies
109	that neutralize viral infection in vivo.
110	Our data demonstrate that these next-generation of rSARS-CoV-2

- expressing reporter genes we have generated can be used to easily monitor
- viral infection in cultured cells and in validated animal models of infection.
- 113 Importantly, our new rSARS-CoV-2/Venus-2A or rSARS-CoV-2/Nluc-2A retain
- similar virulence to that of rSARS-CoV-2/WT in K18 hACE2 transgenic mice
- and can be used to investigate viral replication, tropism and viral dissemination
- and pathogenesis *in vivo* and to rapidly identify therapeutics for the treatment
- of SARS-CoV-2 infection and associated COVID-19 disease.

- - -

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446942; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

133 **RESULTS**

134 Generation of rSARS-CoV-2 expressing Venus

	We have recently described the generation and characterization of
136	rSARS-CoV-2 where a reporter gene of interest replaced the viral ORF7a
137	protein (Chiem et al., 2021). However, these rSARS-CoV-2 showed low levels
138	of reporter gene expression during viral infection. To increase expression
139	levels of reporter gene during SARS-CoV-2 infection and avoid the deletion of
140	ORF7a protein, we implemented a strategy we previously used to generate
141	recombinant influenza viruses and mammarenaviruses (Nogales et al., 2019;
142	Ye et al., 2020b). In this approach, the sequences of the reporter Venus
143	fluorescent protein and the porcine teschovirus 1 (PTV-1) 2A self-cleaving
144	peptide (Caì et al., 2018) were cloned upstream of the SARS-CoV-2 N gene
145	(Fig. 1A), and the sequences harboring the fusion Venus-2A-N were cloned
146	into the previously described bacterial artificial chromosome (BAC) containing
146 147	into the previously described bacterial artificial chromosome (BAC) containing the entire SARS-CoV-2 genome (Chiem et al., 2020; Ye et al., 2020a). We
147	the entire SARS-CoV-2 genome (Chiem et al., 2020; Ye et al., 2020a). We
147 148	the entire SARS-CoV-2 genome (Chiem et al., 2020; Ye et al., 2020a). We rescued rSARS-CoV-2/Venus-2A virus according to our previously described
147 148 149	the entire SARS-CoV-2 genome (Chiem et al., 2020; Ye et al., 2020a). We rescued rSARS-CoV-2/Venus-2A virus according to our previously described protocol (Chiem et al., 2020; Ye et al., 2020a). Vero E6 cells infected with the
147 148 149 150	the entire SARS-CoV-2 genome (Chiem et al., 2020; Ye et al., 2020a). We rescued rSARS-CoV-2/Venus-2A virus according to our previously described protocol (Chiem et al., 2020; Ye et al., 2020a). Vero E6 cells infected with the tissue culture supernatant from Vero E6 cells transfected with the BAC
147 148 149 150 151	the entire SARS-CoV-2 genome (Chiem et al., 2020; Ye et al., 2020a). We rescued rSARS-CoV-2/Venus-2A virus according to our previously described protocol (Chiem et al., 2020; Ye et al., 2020a). Vero E6 cells infected with the tissue culture supernatant from Vero E6 cells transfected with the BAC containing the viral genome of rSARS-CoV-2/Venus-2A resulted in the

155	detected in lysate obtained from both rSARS-CoV-2/Venus-2A- and

- rSARS-CoV-2/WT-infected Vero E6 cells (Fig. 1C). We confirmed the genetic
- 157 identity of rSARS-CoV-2/Venus-2A using reverse-transcription polymerase
- 158 chain reaction (RT-PCR) to amplify the Venus sequence and the entire
- sequence between ORF8 and N. The Venus fragment was amplified from cells
- infected with rSARS-CoV-2/Venus-2A, while the fragment between ORF8 and
- 161 N was detected in cells infected with either rSARS-CoV-2/WT or
- rSARS-CoV-2/Venus-2A. As predicted, the amplified fragment from
- rSARS-CoV-2/Venus-2A infected cells had a higher molecular size than the
- ¹⁶⁴ one obtained from rSARS-CoV-2/WT-infected cells (**Fig. 1D**).
- 165 In vitro characterization of rSARS-CoV-2/Venus-2A
- 166 We next assessed the fitness of rSARS-CoV-2/Venus-2A in Vero E6 cells
- ¹⁶⁷ by evaluating its growth kinetics, plaque phenotype, and reporter expression
- and compared them to our previously described rSARS-CoV-2/ Δ 7a-Venus and
- rSARS-CoV-2/WT. rSARS-CoV-2/Venus-2A showed similar growth kinetics to
- those of rSARS-CoV-2/WT or rSARS-CoV-2/ Δ 7a-Venus (**Fig. 2A**). Likewise,
- 171 rSARS-CoV-2/Venus-2A, rSARS-CoV-2/WT and rSARS-CoV-2/∆7a-Venus
- exhibited similar plaque phenotypes (**Fig. 2B**). Notably, plaques formed by
- 173 rSARS-CoV-2/Venus-2A, but not those of rSARS-CoV-2/ Δ 7a-Venus, could be
- 174 readily detected using a fluorescent imaging system, most likely because of
- the higher levels of Venus expressed from the locus of the viral N than those
- from the locus of the viral ORF7a (Fig. 2B). We next examined Venus

177	expression in Vero E6 cells infected	d (MOI 0.001) with either
-----	--------------------------------------	---------------------------

	178	rSARS-CoV-2/Venus-2A or rSARS-CoV-2/ Δ 7a-Venus	. Both infections showed
--	-----	--	--------------------------

- peak Venus expression at 48 h post-infection (hpi), but Venus expression
- 180 levels from rSARS-CoV-2/Venus-2A infected Vero E6 cells were higher than
- those infected with rSARS-CoV-2/ Δ 7a-Venus (**Fig. 2C**). To confirm this, we
- 182 prepared whole cell lysates from Mock, rSARS-CoV-2/Venus-2A and
- rSARS-CoV-2/ Δ 7a-Venus infected Vero E6 cells and analyzed them by
- 184 Western blot. Venus expression levels in rSARS-CoV-2/Venus-2A infected
- 185 Vero E6 cells were greater than those of rSARS-CoV-2/ Δ 7a-Venus infected
- cells at all time points, whereas expression levels of N protein were
- 187 comparable at all time points in Vero E6 cells infected with
- rSARS-CoV-2/Venus-2A and rSARS-CoV-2/ Δ 7a-Venus (Fig. 2D).

189 *In vivo* characterization of rSARS-CoV-2/Venus-2A

- 190 K18 transgenic mice expressing hACE2 have been shown to be a good
- animal model of SARS-CoV-2 infection (Oladunni et al., 2020; Zheng et al.,
- 192 2021). We therefore examined whether SARS-CoV-2 infection could be
- tracked *ex vivo* using Venus expression. To that end, K18 hACE2 transgenic
- ¹⁹⁴ mice were infected intranasally with 10^5 PFU of rSARS-CoV-2/Venus-2A,
- rSARS-CoV-2/ Δ 7a-Venus or rSARS-CoV-2/WT (Fig. 3). Mice were euthanized
- at 1, 2, 4 and 6 days post-infection (dpi), and their lungs were excised and
- imaged ex vivo using an in vivo imaging system (AMI spectrum). Venus
- expression was readily detected in all lungs obtained from mice infected with

199	rSARS-CoV-2/Venus-2A but not those infected with rSARS-CoV-2/ Δ 7a-Venus,
200	or rSARS-CoV-2/WT (Fig. 3A). Quantitative analyses showed that Venus
201	intensity peaks at 2 dpi and decreases over the course of infection in the lungs
202	of infected mice (Fig. 3B). Nevertheless, gross lesions on the lung surface of
203	mice infected with rSARS-CoV-2/Venus-2A was comparable to those observed
204	in rSARS-CoV-2/WT or rSARS-CoV-2/ Δ 7a-Venus infected mice (Fig. 3C and
205	3D). In addition, infection with rSARS-CoV-2/Venus-2A and
206	rSARS-CoV-2/ Δ 7a-Venus resulted in comparable viral titers to those observed
207	in K18 hACE2 transgenic mice infected with rASRS-CoV-2/WT in all organs at
208	all times pi (Fig. 3E), suggesting that the undetectable Venus expression in the
209	lungs of K18 hACE2 mice infected with rSARS-CoV-2/ Δ 7a-Venus is unlikely
210	due to lower levels of viral replication in vivo. Notably, we observed a
211	correlation between virus replication and fluorescence intensity in the lungs
212	(Fig. 3F).
213	To investigate the pathogenicity of rSARS-CoV-2/Venus-2A, we infected
214	(10 ⁵ PFU) K18 hACE2 transgenic mice intranasally with
215	rSARS-CoV-2/Venus-2A, rSARS-CoV-2/ Δ 7a-Venus or rSARS-CoV-2/WT, and
216	monitored changes in body weight and survival rate for 12 days after viral
217	infection. All infected mice showed significant bodyweight loss starting from 4
218	dpi. Mice infected with rSARS-CoV-2/ Δ 7a-Venus succumbed to viral infection
219	by 8 dpi and mice infected with rSARS-CoV-2/Venus-2A or rSARS-CoV-2/WT
220	succumbed to infection by 9 dpi (Fig. 3G and 3H).

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446942; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

In vitro and *in vivo* stability of rSARS-CoV-2/Venus-2A

- Because reporter-expressing rSARS-CoV-2 applications necessitate
- genetic and phenotypic stability, we evaluated the stability of
- rSARS-CoV-2/Venus-2A in vitro and in vivo. To that end, we passaged the
- rSARS-CoV-2/Venus-2A seven times in Vero E6 cells and tissue culture
- supernatant (TCS) from selected passages were subjected to the analysis of
- 227 plaque assay using a fluorescent imaging system and immunostaining with the
- 1C7C7 N protein monoclonal antibody (MAb) (Fig. 4A, left). Viruses present in
- TCS from P1, P3, P5 and P7 retained 100% Venus expression (**Fig. 4A**, right).
- 230 For the *in vivo* stability evaluation of rSARS-CoV-2/Venus-2A, lung
- homogenates from K18 hACE2 transgenic mice at 1, 2, 4 and 6 dpi infected
- with rSARS-CoV-2/Venus-2A were subjected to plaque assay using a
- fluorescent imaging system and immunostaining with the 1C7C7 N protein
- MAb (**Fig. 4B**, left). Lung homogenates from 1 and 2 dpi retained 100% Venus
- expression, and homogenates from 4 and 6 dpi retained 99% and 98%,
- respectively, Venus expression (**Fig. 4B**, right).

237 Visualization of SARS-CoV-2 replication dynamic *in vivo*

- 238 While fluorescent Venus expression allowed us to conduct *ex vivo* imaging
- of lungs from SARS-CoV-2 infected mice, it did not allow us to track viral
- infection in the entire mouse using IVIS. To circumvent this problem, we
- engineered a Nluc-expressing rSARS-CoV-2 using our reverse genetic system
- and the same 2A strategy (**Fig. 5A**). This rSARS-CoV-2/Nluc-2A exhibited a

243	similar plaque phenotype and comparable growth kinetics in Vero E6 cells as
244	the rSARS-CoV-2/WT and our previously described rSARS-CoV-2/ Δ 7a-Nluc
245	(Fig. 5B and 5C). Notably, Nluc expression levels were increased by more
246	than 30-folds in Vero E6 cells infected with rSARS-CoV-2/Nluc-2A than
247	rSARS-CoV-2/∆7a-Nluc at 72 hpi (Fig. 5D).
248	Since the rSARS-CoV-2/Nluc-2A expressed significantly higher levels of
249	Nluc than those of our previously described rSARS-CoV-2/ Δ 7a-Nluc <i>in vitro</i> ,
250	we evaluated whether SARS-CoV-2 infection could be tracked in vivo using
251	Nluc expression directed by rSARS-CoV-2/Nluc-2A. To that end, we infected
252	(10 ⁵ PFU) K18 hACE2 transgenic mice intranasally with rSARS-CoV-2/Nluc-2A
253	or rSARS-CoV-2/WT (Fig. 6). Mice were anesthetized, retro-orbitally injected
254	with Nluc substrate and then imaged under an IVIS at 1, 2, 4 and 6 dpi. Nluc
255	expression was readily detected in mice infected with rSARS-CoV-2/Nluc-2A
256	but not those infected with rSARS-CoV-2/WT (Fig. 6A), as previously shown in
257	vitro (Fig. 5D). Quantitative analyses showed that Nluc intensity continued
258	increasing at later dpi (Fig. 6B). Gross lesions on the lung surface of mice
259	infected with rSARS-CoV-2/Nluc-2A was comparable to those in the WT
260	rSARS-CoV-2 infected mice (Fig. 6C and 6D). Importantly, viral titers detected
261	in the rSARS-CoV-2/Nluc-2A infected mice were comparable to those infected
262	with rSARS-CoV-2/WT in all organs tested at different dpi (Fig. 6E), despite
263	the Nluc activity was only detected in the organs from rSARS-CoV-2/Nluc-2A
264	virus infected mice (Fig. 6F). Unexpectedly, the Nluc intensity did not correlate

265	with the viral titers in the lungs at 4 and 6 dpi (Fig. 6G), indicating the Nluc
266	accumulates in vivo. Meanwhile, we also compared the pathogenicity of
267	rSARS-CoV-2/Nluc-2A and rSARS-CoV-2/WT in K18 hACE2 transgenic mice.
268	Both rSARS-CoV-2/Nluc-2A and rSARS-CoV-2/WT showed similar virulence
269	(Figs. 6H and 6I).
270	Effect of NAbs on progression of NIuc-2A virus infection in vivo
271	Although several vaccines against COVID-19 have been already approved
272	for emergency use by United States (US) Food and Drug Administration (FDA),
273	identification and characterization of SARS-CoV-2 NAbs represent a valuable
274	therapeutic option to counteract the putative emergence of variants of concern
275	(VoC). Currently, most NAb screenings are performed in tissue cultured cells
276	rather than in vivo, which is heavily reliant upon viral titration of animal organs,

a process that is time and labor intensive. We therefore investigated whether

the use of rSARS-CoV-2/Nluc-2A could expedite the screening process and

facilitate the investigation of how NAb affects the kinetics of virus infection. To

that end, we treated K18 hACE2 transgenic prophylactically with 1212C2, a

previously described SARS-CoV-2 NAb (Piepenbrink et al., 2021), for 12 h,

and then infected them (10^5 PFU) with rSARS-CoV-2/Nluc-2A. Non-invasive

longitudinal imaging of the mice revealed that 1212C2 treated mice

dramatically restricted rSARS-CoV-2/Nluc-2A multiplication since no significant

Nluc signal was detected at any time point examined (Figs. 7A and 7B). These

results were also supported by the observation of reduced lung surface lesions

287	(Figs. 7C and 7D), Nluc expression (Fig. 7E) and virus titers (Fig. 7F) in the
288	nasal turbinate, lungs, and brains of 1212C2-treated mice. Moreover, 1212C2
289	was able to protect mice from clinical symptoms of rSARS-CoV-2/Nluc-2A
290	infection as determined by changes in body weight (Fig. 7G) and survival rate
291	(Fig. 7H).
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	
307	
308	

309 **DISCUSSION**

310	In this study,	we report a	novel strategy to	generate re	plication com	petent
010	m and brady,	no roport a	11010101010099	generatere	phoadon oom	p 0 . 0

- reporter-expressing (e.g., Venus or Nluc) rSARS-CoV-2 using the
- well-documented BAC-based reverse genetic system (Ye et al., 2020a). Our
- 313 rSARS-CoV-2/Venus-2A and rSARS-CoV-2/Nluc-2A both exhibited
- rSARS-CoV-2/WT-like growth properties *in vitro* and *in vivo* without displaying
- attenuation and allowed us to monitor virus infection *ex vivo* in the lungs of
- infected mice (rSARS-CoV-2/Venus-2A) and the dynamics of viral replication in
- the entire mouse (rSARS-CoV-2/Nluc-2A) using non-invasive longitudinal *in*
- *vivo* imaging. Importantly, we demonstrate the feasibility of using
- rSARS-CoV-2/Nluc-2A to rapidly identify prophylactics and/or therapeutics in
- 320 *vivo*.

321 We and others have previously demonstrated the feasibility of using this 2A 322 approach to generate recombinant viruses expressing reporter genes fused to 323 a viral protein (Caì et al., 2018; Manicassamy et al., 2010; Nogales et al., 2019; 324 Ye et al., 2020b). To generate these novel reporter rSARS-CoV-2 expressing 325 higher level of reporter gene, we placed the PTV-1 2A self-cleaving peptide 326 between the reporter gene and the viral N gene (Fig. 1). This results in the 327 expression of a polyprotein that is post-translationally cleaved at the 2A site 328 leading to the individual expression of the reporter gene and the viral N protein 329 (Luke et al., 2010), and the expression of Venus in rSARS-CoV-2/Venus-2A 330 was extremely increased in vitro and in vivo (Figs. 2 and 3, respectively). The

331	rationale of cloning the reporter gene fused to the viral N gene to increase
332	reporter gene expression was based on the N protein being one of the most
333	abundant structural proteins produced during SARS-CoV-2 and other CoVs
334	infections (Hiscox et al., 1995; Hou et al., 2020; Scobey et al., 2013).
335	Importantly, this new 2A approach does not remove any viral gene from the
336	viral genome. Although recent data from our laboratory (Silvas et al., 2021)
337	suggest that ORF7a is not essential for SARS-CoV-2 replication in vitro and in
338	vivo, it is still largely unknown whether the lack of ORF7a affects some
339	unknown aspects of SARS-CoV-2 infections. In addition, this also increases
340	the instability concern of reporter gene, as shown in a recent study where a
341	reporter gene fused into the C-terminus of ORF7a was not stable (Rihn et al.,
342	2021). Contrarily, our rSARS-CoV-2/Venus-2A exhibited 100% stability after
343	seven passages in cultured cells and retained 98% stability in vivo at 6 dpi (Fig.
344	4).
345	The increased expression level of reporter gene also facilitates the use of
346	bioluminescence imaging of the entire infected mouse. rSARS-CoV-2/Nluc-2A
347	expressed ~30 folds higher levels of Nluc than rSARS-CoV-2/ Δ 7a-Nluc in
348	a la se la dia (Eta E) - l'al alla a la cara da la cara la la facto da cara da cara d
	cultured cells (Fig. 5), which allowed us to track the viral infection as early as 1
349	dpi (Fig. 6A). Another advantage is that the rSARS-CoV-2/Nluc-2A could
349 350	
	dpi (Fig. 6A). Another advantage is that the rSARS-CoV-2/Nluc-2A could

353	activity correlated well with the titers detected in the lungs at 1 and 2 dpi (Figs.
354	6E and 6F). However, viral titers in lungs were decreased at 4 and 6 dpi,
355	whereas we still detected high levels of Nluc activity. This may reflect Nluc
356	stability (Hall et al., 2012), which may lead to the accumulation and gradual
357	increase of Nluc signal during the course of viral infection. This explanation
358	was also supported by the in vitro infection data in which the viral titers were
359	declining yet and the Nluc activity was gradually increasing (Fig. 5D).
360	NAb represent a promising prophylactic and/or therapeutic treatment
361	against SARS-CoV-2, particularly for individuals infected with newly identified
362	VoC. However, evaluation of SARS-CoV-2 NAb in vivo relies on the necropsy
363	and viral titration of tissues and/or organs from infected animals. To overcome
364	this limitation, we established a rapid method based on a non-invasive
365	measurement of Nluc expression. By using this in vivo imaging system, NAbs
366	could be easily identified as early as 1 dpi and in a relative high throughput
367	method. This was further supported by Nluc activity, viral titration, body weight
368	changes and survival rate (Fig. 7), indicating our strategy provides a rapid in
369	vivo screening method to identify NAbs against SARS-CoV-2.
370	In the present work, we have documented a new strategy to generate
371	replication-competent reporter rSARS-CoV-2 expressing higher levels of
372	reporter gene than those previously described by substituting the viral ORF7a
373	protein with the report gene. This novel strategy does not eliminate any viral
374	gene and these new reporter-expressing rSARS-CoV-2 were genetically stable

375	and replicated as efficiently as rSARS-CoV-2/WT both in vitro and in vivo, with
376	comparable pathogenicity in K18 hACE2 transgenic mice. Notably, the robust
377	levels of reporter gene expression of these new reporter-expressing
378	rSARS-CoV-2 represent an excellent option to study viral pathogenesis, tissue
379	tropism, and replication kinetics of SARS-CoV-2, including recently identified
380	VoC.
381	
382	
383	
384	
385	
386	
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446942; this version posted June 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

397

398 MATERIAL AND METHODS

399 Biosafety

- 400 All the *in vitro* and *in vivo* experiments with infectious rSARS-CoV-2 were
- 401 conducted under appropriate biosafety level (BSL) 3 and animal BSL3 (ABSL3)
- 402 laboratories, respectively, at Texas Biomedical Research Institute (Texas
- Biomed). Experiments were approved by the Texas Biomed Institutional
- Biosafety (IBC) and Animal Care and Use (IACUC) committees.

405 Cells and viruses

- 406 African green monkey kidney epithelial cells (Vero E6, CRL-1586) were
- 407 obtained from the American Type Culture Collection (ATCC, Bethesda, MD)
- and maintained in Dulbecco's modified Eagle medium (DMEM) supplemented
- 409 with 5% (v/v) fetal bovine serum (FBS, VWR) and 1%
- 410 penicillin-streptomycin-glutamine (PSG) solution (Corning).
- 411 Recombinant (r)SARS-CoV-2 were generated based on the backbone of
- the USA-WA1/2020 strain using a previously described bacterial artificial
- 413 chromosome (BAC)-based reverse genetics system (Chiem et al., 2020; Ye et
- 414 al., **2020a**).

415 **Rescue of rSARS-CoV-2**

- 416 Virus rescue experiments were performed as previously described
- 417 (Avila-Perez et al., 2019). Briefly, confluent monolayers of Vero E6 cells (10⁶
- cells/well, 6-well plates, triplicates) were transfected with 4.0 μg/well of

419	SARS-CoV-2 BAC using Lipofectamine 2000. After 24 h, transfection media
420	was exchanged for post-infection media (DMEM supplemented with 2% FBS
421	and 1% PSG), and cells were split and seeded into T75 flasks 72 h
422	post-transfection. After incubation for another 72 h, tissue culture supernatants
423	were collected, labeled as P0 and stored at -80°C. After being titrated, the P0
424	virus was used to infect fresh Vero E6 cells at MOI 0.0001 for 72 h to generate
425	P1 stocks. P1 viral stocks were aliquoted and stored at -80°C until being used.
426	Western blot
427	Whole cell lysates, SDS-PAGE, and Western blotting were performed as
428	previously described (Ye et al., 2020b). Briefly, cells were lysed in passive lysis
429	buffer (Promega, MI, USA) at 4°C for 30 min, followed by centrifugation at
430	12,000 g at 4°C for another 30 min. Equivalent amounts of cell lysates were
431	subjected to 12% SDS-PAGE and transferred to nitrocellulose membranes.
432	After blocking with 5% bovine serum albumin in PBS containing 0.1% Tween
433	20 at room temperature for 1 h, the membranes were incubated with the
434	indicated primary antibodies at 4°C overnight, followed by horseradish
435	peroxidase-conjugated secondary antibody incubation at 37°C for 1 h. β -Actin
436	was used as the loading control. Membranes were developed with ECL
437	detection reagent (Thermo Fisher Scientific) in the ChemiDoc MP Imaging
438	System (Bio-Rad, Hercules, CA, USA).
439	Immunofluorescence assay (IFA)
440	Vero E6 cells (10 ⁶ cells/well, 6-well plate format, triplicates) were

441	mock-inoculated or inoculated with the tissue culture supernatant (1 ml/well) of
442	Vero E6 cells transfected with the BACs collected at 72 h post-transfection. At
443	48 h post-inoculation, cells were fixed with 10% formaldehyde solution at $4^{\circ}C$
444	overnight and permeabilized using 0.5% (v/v) Triton X-100 in PBS for 15 min at
445	room temperature. Then, cells were incubated overnight with 1 μ g/ml of a
446	SARS-CoV cross-reactive N MAb (1C7C7) at 4°C, washed stringently with
447	PBS, and stained with a FITC-labeled goat anti-mouse IgG (1:200). Finally,
448	cells were visualized and imaged under a EVOS fluorescent microscope
449	(Thermo Fisher Scientific).
450	RT-PCR
451	Total RNA from virus infected (MOI=0.01) Vero E6 cells (10 ⁶ cells/well,
452	6-well plate format) was extracted with TRIzol Reagent (Thermo Fisher
453	Scientific) according to the manufacturer's instructions. RT-PCR amplification
454	of the viral genome spanning nucleotides 27,895-29,534 (according to the
455	SARS-CoV-2 USA-WA1/2020 viral genome) was performed using Super Script
456	II Reverse transcriptase (Thermo Fisher Scientific) and Expanded High Fidelity
456 457	
	II Reverse transcriptase (Thermo Fisher Scientific) and Expanded High Fidelity
457	II Reverse transcriptase (Thermo Fisher Scientific) and Expanded High Fidelity PCR System (Sigma Aldrich). The amplified DNA products were separated on

461 Confluent monolayers of Vero E6 cells (10⁶ cells/well, 6-well plate format,
 462 triplicates) were infected with serial viral dilutions for 1 h at 37°C. After viral

463	adsorption, cells were overlaid with pi media containing 1% low melting agar
464	and incubated at 37°C. At 72 hpi, cells were fixed overnight with 10%
465	formaldehyde solution. For visualization of Venus, plates were photographed
466	under a ChemiDoc MP Imaging System. For immunostaining, cells were
467	permeabilized with 0.5% (v/v) Triton X-100 in PBS for 15 min at room
468	temperature and immunostained using the SARS-CoV cross-reactive N
469	protein 1C7C7 MAb (1 μ g/ml) and the Vectastain ABC kit (Vector Laboratories),
470	following the manufacturers' instruction. After immunostaining, plates were
471	scanned and photographed using a ChemiDoc MP Imaging System.
472	Virus growth kinetics
473	Confluent monolayers of Vero E6 cells (6-well format, 10 ⁶ cells/well,
474	triplicates) were mock infected or infected (MOI=0.01) with rSARS-CoV-2/WT,
475	rSARS-CoV-2/∆7a-Venus, rSARS-CoV-2/Venus-2A or rSARS-CoV-2/Nluc-2A.
476	After 1 h of virus adsorption at 37°C, cells were washed with chilled PBS and
477	overlaid with 3 ml of pi medium and incubated at 37°C. At the indicated times
478	pi (12, 24, 48 and 72 h), viral titers in the tissue culture supernatants were
479	determined by plaque assay (Nogales et al., 2014). Presence of Nluc in the
480	tissue culture supernatants from mock and rSARS-CoV-2/WT,
481	rSARS-CoV-2/ Δ 7a-Nluc or rSARS-CoV-2/Nluc-2A infected cells was quantified
482	using Nano-Glo $^{\ensuremath{\mathbb{R}}}$ Luciferase Assay System (Promega) following the
483	manufacturers' specification.
484	Animal experiments

485	All animal protocols were approved by Texas Biomed IACUC (1718MU).
486	Five-week-old female K18 hACE2 transgenic mice were purchased from The
487	Jackson Laboratory and maintained in the animal facility at Texas Biomed
488	under specific pathogen-free conditions. For virus infection, mice were
489	anesthetized following gaseous sedation in an isoflurane chamber and
490	inoculated intranasally with a dose of 10^5 PFU/mouse.
491	For ex vivo imaging of lungs, mice were humanely euthanized at 1, 2, 4
492	and 6 dpi to collect lungs. Fluorescent images of lungs were photographed
493	using an <i>in vivo</i> imaging system (AMI HTX) and the bright field images of lungs
494	were taken using an iPhone 6s (Apple, CA, USA). Nasal turbinate, lungs and
495	brains from mock or infected animals were homogenized in 1 ml of PBS for 20
496	s at 7,000 rpm using a Precellys tissue homogenizer (Bertin Instruments,
497	Yvelines, France). Tissue homogenates were centrifuged at 12,000 g (4 $^\circ$ C) for
498	5 min, and supernatants were collected and titrated by plaque assay and
499	immunostaining as previously described.
500	For in vivo bioluminescence imaging, mice were anesthetized with
501	isoflurane, injected retro-orbitally with 100 μ l of Nano-Glo luciferase substrate
502	(Promega), and immediately imaged. The bioluminescence data acquisition
503	and analysis were performed using the Aura program (AMI spectrum). Flux
504	measurements were acquired from the region of interest. The scale used is
505	included in each figure. Immediately after imaging, nasal turbinate, lungs, and
506	brains were collected and homogenized in 1 ml of PBS. Supernatants were

507	collected and presence of virus was determined by plaque assay and
508	immunostaining, as described above. Nluc activity in the tissue culture
509	supernatants was determined under a multiplate reader (BioTek Instruments,
510	Inc) as above.
511	For the body weight and survival studies, five-week-old female K18
512	hACE2 transgenic mice were infected intranasally with 10 ⁵ PFU/animal
513	following gaseous sedation in an isoflurane chamber. After infection, mice
514	were monitored daily for morbidity (body weight) and mortality (survival rate)
515	for 12 days. Mice showing a loss of more than 25% of their initial body weight
516	were defined as reaching the experimental end-point and humanely
517	euthanized, and the survival curves were plotted according to the method of
518	Kaplan-Meier (Efron, 1988).
519	Statistical analysis
520	All data is presented as mean \pm standard deviation (SD) for each group
521	
021	and analyzed by SPSS13.0 (IBM, Armonk, NY, USA). A P value of less than
522	and analyzed by SPSS13.0 (IBM, Armonk, NY, USA). A <i>P</i> value of less than 0.05 (<i>P</i> <0.05) was considered statistically significant.
522	
522 523	
522 523 524	
522 523 524 525	

529	We are grateful to Dr. Thomas Moran at The Icahn School of Medicine at
530	Mount Sinai for providing the SARS-CoV cross-reactive 1C7C7 N protein MAb.
531	
532	AUTHOR CONTRIBUTIONS
533	C.Y rescued the recombinant viruses and conducted the in vitro
534	characterization; C.Y, K.C, J.P, J.A.S and D.M.V conducted the in vivo
535	experiments; J.B.T, J.J.K and M.R.W provided critical reagents; J.C.T deep
536	sequenced the viruses; C.Y drafted the manuscript; J.B.T, J.J.K, M.R.W and
537	J.C.T revised the manuscript; L.M.S conceived the study, provided funding,
538	revised and finalized the manuscript.
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	
549	FIGURE LEGENDS
550	Figure 1. Generation of a rSARS-CoV-2 expressing Venus-2A.

- 551 (A) Schematic representation of the BAC for generation of
- rSARS-CoV-2/Venus-2A. The sequence encoding the fusion construct
- 553 Venus-2A was inserted in the viral genome of SARS-CoV-2 in the BAC. The
- ⁵⁵⁴ white box represents the intergenic region between ORF8 and N. The green
- box represents Venus. PTV-1 2A is indicated in light blue.
- (B) Vero E6 cells were mock-infected or infected with rBAC-SARS-CoV-2/WT
- or rSARS-CoV-2/Venus-2A for 48 h, fixed and immunostained with a MAb
- against the viral N protein (1C7C7). Cell nuclei were stained with DAPI.
- ⁵⁵⁹ Representative images are shown. Scale bars, 100 μm.
- 560 (C) Whole cell lysates from Vero E6 cells mock-infected or infected with
- rSARS-CoV-2 WT or Venus-2A for 48 h were subjected to Western blot
- analysis using antibodies against Venus and the viral N protein (1C7C7).
- 563 β -actin was used as a loading control.
- 564 (**D**) Total cellular RNA from Vero E6 cells mock-infected or infected with WT or
- Venus-2A rSARS-CoV-2 was isolated at 48 hpi. RT-PCR was used to amplify
- 566 Venus (top) or the region between the ORF8 and N proteins (bottom), and the
- ⁵⁶⁷ products were separated on a 0.7% agarose gel.

568 Figure 2. Characterization of rSARS-CoV-2/Venus-2A in vitro.

- (A) Tissue culture supernatants from cells infected (MOI 0.01) with
- rSARS-CoV-2/WT, rSARS-CoV-2/ Δ 7a-Venus or rSARS-CoV-2/Venus-2A, were
- 571 collected at the indicated times pi, and viral titers were determined by plaque
- assay. LOD, limitation of detection; ns, not significant.

573	(B)	Vero E6 cells infected with ~15 PFU of rSARS-CoV-2/WT (left	t),
-----	------------	---	-----

- ⁵⁷⁴ rSARS-CoV-2/Δ7a-Venus (middle) or rSARS-CoV-2/Venus-2A (right) were
- 575 fixed and fluorescent plaques were photographed under a ChemiDoc MP
- ⁵⁷⁶ imaging system (top). After imaging, viral plaques were immunostained with
- the 1C7C7 N protein MAb (bottom).
- 578 (C-D) Vero E6 cells infected (MOI 0.001) with rSARS-CoV-2/ Δ 7a-Venus (top)
- or rSARS-CoV-2/Venus-2A (bottom) were monitored at the indicated times pi
- using fluorescent microscopy (C). Cell nuclei were stained with DAPI. Scale
- bars, 100 µm. At the same times pi, whole cell lysate were prepared and
- analyzed by Western blot analysis using antibodies against Venus and
- 583 SARS-CoV-2 N protein (1C7C7). β-Actin was used as a loading control (**D**).

584 Figure 3. Replication dynamics of rSARS-CoV-2/Venus-2A *in vivo*.

- 585 (A-B) Five-week-old K18 hACE2 transgenic mice were mock-infected or
- infected (10^5 PFU/mouse) with rSARS-CoV-2/WT (WT),
- ⁵⁸⁷ rSARS-CoV-2/Δ7a-Venus (Δ7a-Venus) or rSARS-CoV-2/Venus-2A (Venus-2A).
- Lungs were excised at 1, 2, 4 and 6 dpi, and Venus expression was assessed
- ⁵⁸⁹ under an IVIS (A). Fluorescence intensity was quantitively analyzed by the
- 590 program of Aura (**B**).
- (C-D) Images of lungs were photographed at 1, 2, 4 and 6 dpi (C) and the
- ⁵⁹² gross lesions on the lung surfaces were quantitively analyzed by ImageJ (**D**).
- 593 **ns, not significant.**
- 594 (E) Viral titers in the nasal turbinate (left), lungs (middle) and brain (right) were

- ⁵⁹⁵ determined by plaque assay. ns, not significant.
- 596 (F) Correlation between viral titers and Venus intensity in the lungs of
- ⁵⁹⁷ rSARS-CoV-2/Venus-2A infected mice.
- 598 (G-H) Five-week-old K18 hACE2 transgenic mice were mock-infected or
- ⁵⁹⁹ intranasally inoculated with 10⁵ PFU/mouse of rSARS-CoV-2/WT,
- rSARS-CoV-2/ Δ 7a-Venus or rSARS-CoV-2/Venus-2A and monitored for 12
- days for body weight loss (**G**) and survival (**H**).
- 602 Figure 4. Stability of rSARS-CoV-2/Venus-2A.
- (A) The rSARS-CoV-2/Venus-2A was passaged 7 times in Vero E6 cells and
- the first (P1), third (P3), fifth (P5) and seventh (P7) passage supernatants were
- analyzed by plaque assay. Fluorescent plaques were detected under a
- 606 ChemiDoc MP imaging system (top) and then were immunostained with the
- 1C7C7 N MAb (bottom). The ratio of Venus positive over N positive plaques
- 608 was calculated (right).
- (B) The lung from one of the mice described in Figure 3 was homogenized and
- 610 the clarified supernatant was collected and analyzed by plaque assay.
- Fluorescent plaques were detected using the ChemiDoc MP imaging system
- (top) and then immunostained with the N protein MAb 1C7C7 N (bottom).
- ⁶¹³ Venus-negative plaques were circled in yellow (bottom). The ratio of
- ⁶¹⁴ Venus-positive over N-positive plaques was calculated (right).

Figure 5. Generation and characterization of rSARS-CoV-2 expressing

616 Nano luciferase-2A *in vitro*.

- 617 (A) Schematic representation of the BAC for generation of
- rSARS-CoV-2/Nluc-2A. The Nluc coding sequence is indicated by the light
- 619 blue box.
- 620 (B) Vero E6 cells infected with ~15 PFU of rSARS-CoV-2/WT (left),
- rSARS-CoV-2/Δ7a-Nluc (middle) or rSARS-CoV-2/Nluc-2A (right) were fixed,
- 622 permeabilized and immunostained with the 1C7C7 N protein MAb.
- 623 (C) Tissue culture supernatants from Vero E6 cells infected (MOI 0.01) with
- ⁶²⁴ rSARS-CoV-2/WT, rSARS-CoV-2/Δ7a-Nluc or rSARS-CoV-2/Nluc-2A, were
- 625 collected at the indicated times pi, and tissue culture supernatants were
- titrated by plaque assay. LOD, limitation of detection. ns, not significant.
- 627 (D) Tissue culture supernatants from Vero E6 cells infected (MOI 0.01) with
- ⁶²⁸ rSARS-CoV-2/WT, rSARS-CoV-2/Δ7a-Nluc or rSARS-CoV-2/Nluc-2A, were
- 629 collected at the indicated times pi and Nluc activity in the tissue culture
- 630 supernatants was determined. ns, not significant.
- Figure 6. *In vivo* dynamics of SARS-CoV-2 infection by real-time
- 632 monitoring of Nluc expression.
- (A-B) Five-week-old K18 hACE2 transgenic mice were mock-infected or
- 634 infected (10⁵ PFU/mouse) with rSARS-CoV-2/WT (WT) or
- rSARS-CoV-2/Nluc-2A (Nluc-2A). Mice were anesthetized at 1, 2, 4 and 6 dpi
- and retro-orbitally injected with the Nluc substrate. Nluc expression was
- 637 determined using an IVIS system (A) and quantitively analyzed by the Aura
- 638 program (**B**).

- 639 (C-D) Lungs were excised and photographed at 1, 2, 4 and 6 dpi (C), and
- gross lesions on the lung surfaces were quantitively analyzed by ImageJ (**D**).
- 641 ns, not significant.
- 642 (E) Nluc activity in the nasal turbinate (left), lungs (middle) and brain (right)
- from infected mice were determined using a multi-plate reader. ns, not
- 644 significant.
- 645 (F) Viral titers in the nasal turbinate (left), lungs (middle) and brain (right) were
- 646 determined by plaque assay. ns, not significant.
- 647 (G) Correlation between viral titers and Nluc intensity in the lungs of
- 648 rSARS-CoV-2/Nluc-2A-infected mice.
- 649 (H-I) Five-week-old K18 hACE2 transgenic mice were mock-infected or
- infected (10⁵ PFU/mouse) with rSARS-CoV-2/WT or rSARS-CoV-2/Nluc-2A
- and monitored for 12 days for changes in body weight (**H**) and survival (**I**).
- **Figure 7. Prophylactic effect of 1212C2 on mice infected with**
- 653 rSARS-CoV-2/Nluc-2A.
- (A-B) Five-week-old K18 hACE2 transgenic mice were injected with isotype
- ⁶⁵⁵ IgG control or 1212C2 MAbs and 12 h after treatment, mice were infected (10⁵
- 656 PFU/mouse) with rSARS-CoV-2/Nluc-2A (Nluc-2A). Mock-treated and
- mock-infected mice were included as controls. Mice were anesthetized at 1, 2,
- 4 and 6 dpi and retro-orbitally injected with the Nluc substrate. Nluc expression
- was determined using an IVIS system (A) and quantitively analyzed by the
- 660 Aura program (**B**).

6	61	(C-D) The lungs were excised and photographed at 1, 2, 4 and 6 dpi (C) and
6	62	the gross lesions on the lung surfaces were quantitively analyzed by ImageJ
6	63	(D). ns, not significant.
6	64	(E) Nluc activity in the nasal turbinate (left), lungs (middle) and brains (right)
6	65	from infected mice were measured using a multi-plate reader.
6	66	(F) Viral titers in the nasal turbinate (left), lungs (middle) and brain (right) were
6	67	determined by plaque assay.
6	68	(G-H) Five-week-old K18 hACE2 transgenic mice were injected with isotype
6	69	IgG control or 1212C2 MAbs and 12 h after treatment, mice were infected
6′	70	(10 ⁵ PFU/mouse) with rSARS-CoV-2/Nluc-2A (Nluc-2A). Mock-treated and
6'	71	mock-infected mice were included as controls. Mice were monitored for 12
6′	72	days for changes in body weight I (G) and survival (H).
6′	73	
6′	74	
6′	75	
6′	76	
6′	77	
6′	78	
6′	79	
63	80	
63	81	

683 **REFERENCES**

- Avila-Perez, G., Park, J.G., Nogales, A., Almazan, F., and Martinez-Sobrido, L.
- 685 (2019). Rescue of Recombinant Zika Virus from a Bacterial Artificial
- 686 Chromosome cDNA Clone. J Vis Exp.
- 687 Caì, Y., Iwasaki, M., Beitzel, B.F., Yú, S., Postnikova, E.N., Cubitt, B., DeWald,
- L.E., Radoshitzky, S.R., Bollinger, L., and Jahrling, P.B. (2018). Recombinant
- Lassa virus expressing green fluorescent protein as a tool for high-throughput
- drug screens and neutralizing antibody assays. Viruses *10*, 655.
- 691 Chiem, K., Vasquez, D.M., Park, J.-G., Platt, R.N., Anderson, T., Walter, M.R.,
- Kobie, J.J., Ye, C., and Martinez-Sobrido, L. (2021). Generation and
- 693 Characterization of recombinant SARS-CoV-2 expressing reporter genes. J
- 694 Virol, e02209-02220.
- 695 Chiem, K., Ye, C., and Martinez Sobrido, L. (2020). Generation of
- 696 Recombinant SARS-CoV-2 Using a Bacterial Artificial Chromosome. Current
- 697 protocols in microbiology 59, e126.
- De Wit, E., Van Doremalen, N., Falzarano, D., and Munster, V.J. (2016). SARS
- and MERS: recent insights into emerging coronaviruses. Nature Reviews
 Microbiology *14*, 523.
- Efron, B. (1988). Logistic-Regression, Survival Analysis, and the Kaplan-Meier
- 702 Curve. J Am Stat Assoc 83, 414-425.
- Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G.,
- Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., et al. (2012). Engineered

	1 10								
705	luciferase re	nortor trom a	n door		chrimn	nitilizina		imidazor	N/rozinono
7.020			1 UEEL	J SEA	5000000			11110/07/01	
	10010100010			000	01 II II II I	Serie - ing	a	maaeor	, a

- ⁷⁰⁶ substrate. ACS Chem Biol *7*, 1848-1857.
- Hiscox, J.A., Cavanagh, D., and Britton, P. (1995). Quantification of individual
- ⁷⁰⁸ subgenomic mRNA species during replication of the coronavirus transmissible
- gastroenteritis virus. Virus Res 36, 119-130.
- Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon III,
- K.H., Kato, T., Lee, R.E., Yount, B.L., and Mascenik, T.M. (2020). SARS-CoV-2
- reverse genetics reveals a variable infection gradient in the respiratory tract.
- 713 Cell *182*, 429-446. e414.
- Hu, B., Guo, H., Zhou, P., and Shi, Z.-L. (2020). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 1-14.
- Imai, M., Iwatsuki-Horimoto, K., Hatta, M., Loeber, S., Halfmann, P.J.,
- Nakajima, N., Watanabe, T., Ujie, M., Takahashi, K., Ito, M., et al. (2020).
- ⁷¹⁸ Syrian hamsters as a small animal model for SARS-CoV-2 infection and
- countermeasure development. Proc Natl Acad Sci U S A *117*, 16587-16595.
- 720 Kim, Y.I., Kim, S.G., Kim, S.M., Kim, E.H., Park, S.J., Yu, K.M., Chang, J.H.,
- Kim, E.J., Lee, S., Casel, M.A.B., et al. (2020). Infection and Rapid
- Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 27, 704-709 e702.
- Li, J., Gong, X., Wang, Z., Chen, R., Li, T., Zeng, D., and Li, M. (2020). Clinical
- features of familial clustering in patients infected with 2019 novel coronavirus
- in Wuhan, China. Virus Res *286*, 198043.
- ⁷²⁶ Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang,

727	B., Zhu, N., et al. (2020). Genomic characterisation and epidemiology of 2019
728	novel coronavirus: implications for virus origins and receptor binding. Lancet
729	395, 565-574.

Luke, G., Escuin, H., De Felipe, P., and Ryan, M. (2010). 2A to the fore research, technology and applications. Biotechnol Genet Eng Rev *26*, 223-260.

733 Manicassamy, B., Manicassamy, S., Belicha-Villanueva, A., Pisanelli, G., 734 Pulendran, B., and García-Sastre, A. (2010). Analysis of in vivo dynamics of 735 influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci USA 107, 11531-11536. 736 Nogales, A., Avila-Perez, G., Rangel-Moreno, J., Chiem, K., DeDiego, M.L., 737 and Martinez-Sobrido, L. (2019). A Novel Fluorescent and Bioluminescent 738 739 Bireporter Influenza A Virus To Evaluate Viral Infections. J Virol 93. Nogales, A., Baker, S.F., Ortiz-Riano, E., Dewhurst, S., Topham, D.J., and 740 741 Martinez-Sobrido, L. (2014). Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol 88, 742 743 10525-10540. Oladunni, F.S., Park, J.-G., Pino, P.A., Gonzalez, O., Akhter, A., Allué-Guardia, 744

- A., Olmo-Fontánez, A., Gautam, S., Garcia-Vilanova, A., and Ye, C. (2020).
- Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting
- enzyme 2 transgenic mice. Nature communications *11*, 1-17.
- Piepenbrink, M.S., Park, J.-G., Oladunni, F.S., Deshpande, A., Basu, M.,

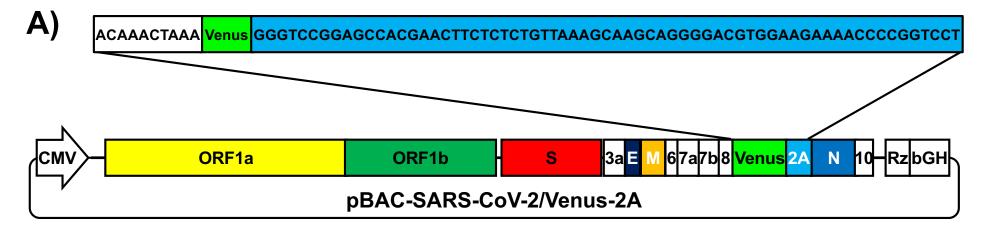
Sarkar, S., Loos, A., Woo, J., Lovalenti, P., and Sloan, D. (2021). Therapeutic

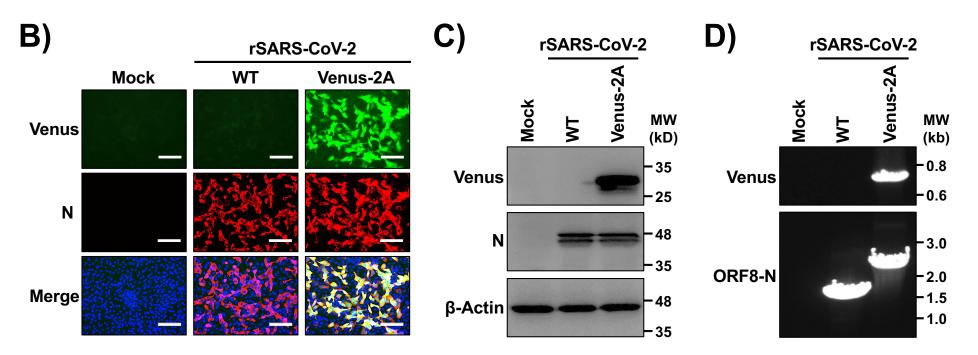
749

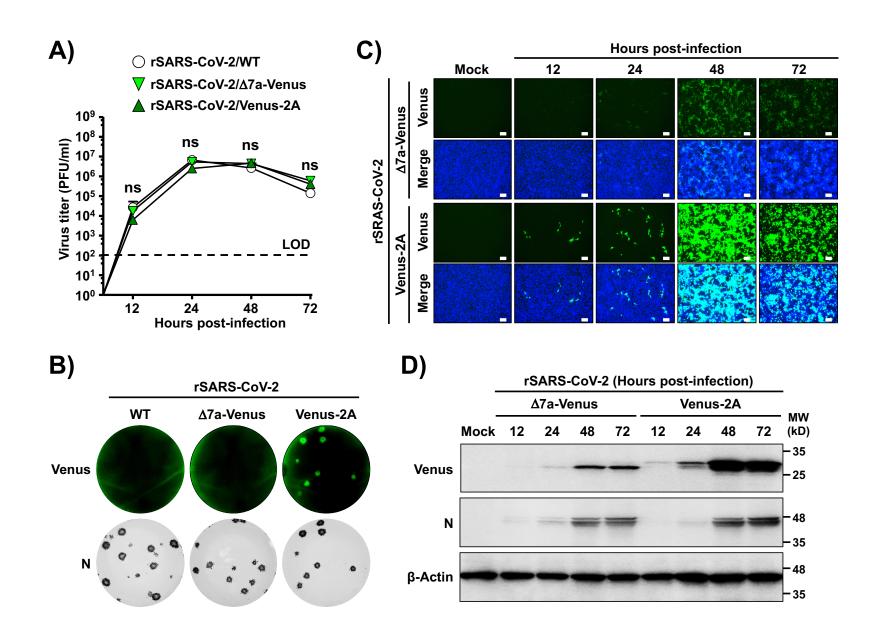
750	activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal					
751	antibody in hamsters. Cell Reports Medicine, 100218.					
752	Rihn, S.J., Merits, A., Bakshi, S., Turnbull, M.L., Wickenhagen, A., Alexander,					
753	A.J.T., Baillie, C., Brennan, B., Brown, F., Brunker, K., et al. (2021). A plasmid					
754	DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit					
755	for COVID-19 research. PLoS Biol 19, e3001091.					
756	Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S.,					
757	Menachery, V.D., Graham, R.L., Swanstrom, J., Bove, P.F., Kim, J.D., et al.					
758	(2013). Reverse genetics with a full-length infectious cDNA of the Middle East					
759	respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 110,					
760	16157-16162.					
761	Silvas, J., Vasquez, D.M., Park, JG., Chiem, K., Torrelles, J., Platt, R.N.,					
762	Anderson, T., Ye, C., and Martínez-Sobrido, L. (2021). Contribution of					

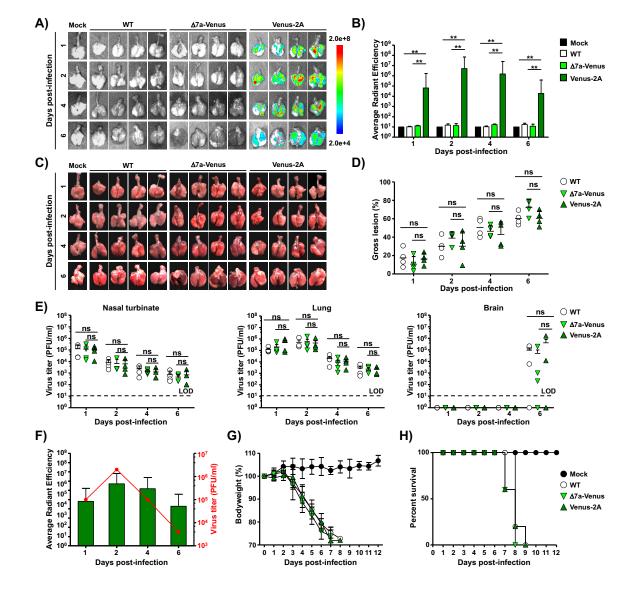
763 SARS-CoV-2 accessory proteins to viral pathogenicity in K18 hACE2
 764 transgenic mice. bioRxiv.

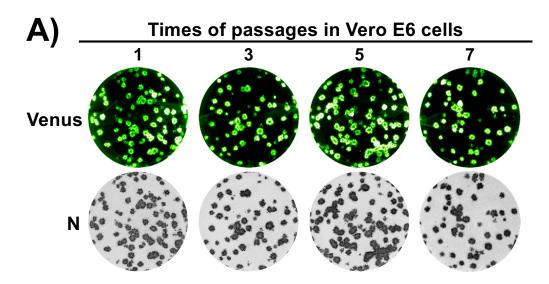
Sims, A.C., Baric, R.S., Yount, B., Burkett, S.E., Collins, P.L., and Pickles, R.J.
(2005). Severe acute respiratory syndrome coronavirus infection of human
ciliated airway epithelia: role of ciliated cells in viral spread in the conducting
airways of the lungs. J Virol *79*, 15511-15524.

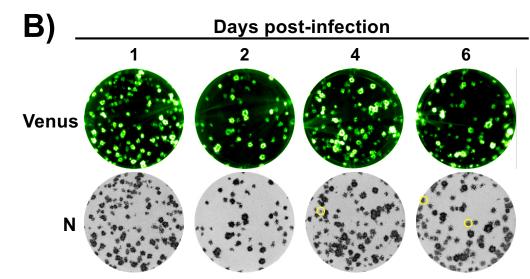

Singh, D.K., Singh, B., Ganatra, S.R., Gazi, M., Cole, J., Thippeshappa, R.,

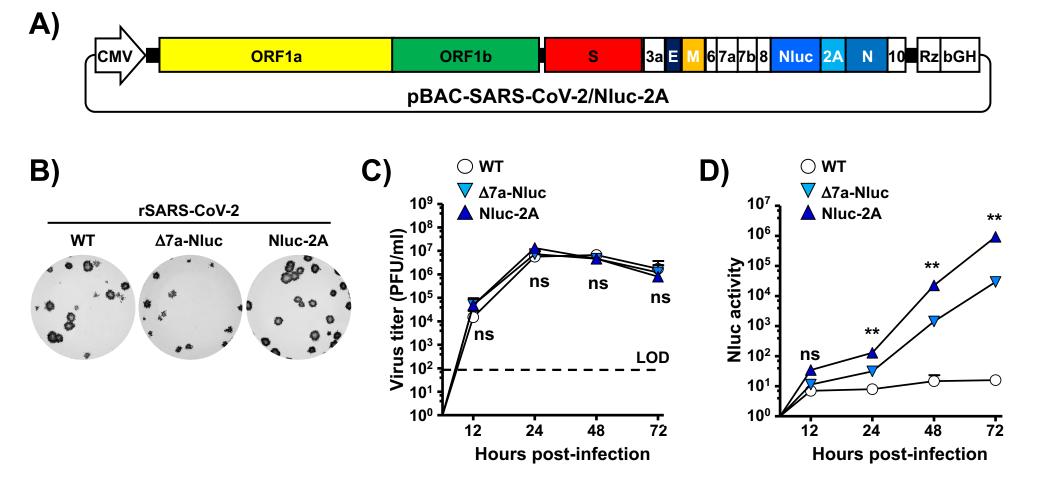

Alfson, K.J., Clemmons, E., Gonzalez, O., Escobedo, R., et al. (2021).

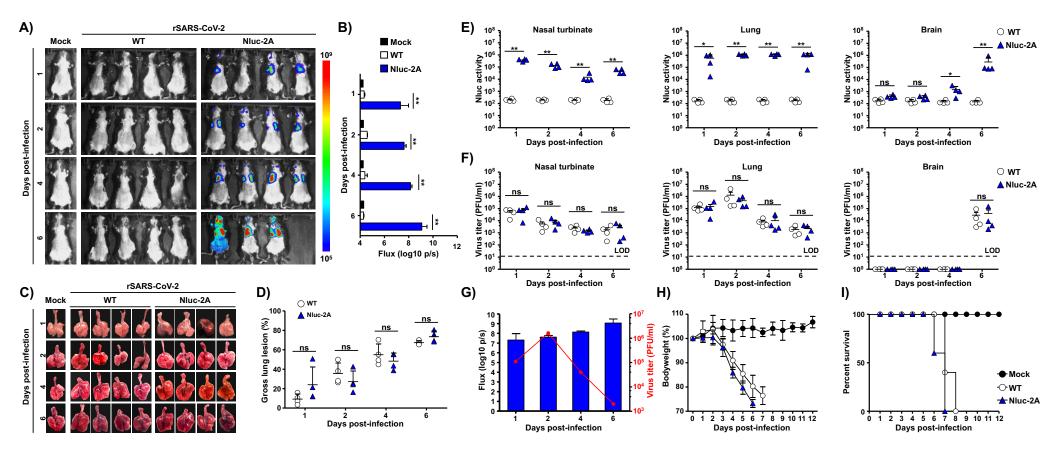

771	Responses to acute infection with SARS-CoV-2 in the lungs of rhesus
772	macaques, baboons and marmosets. Nat Microbiol 6, 73-86.
773	Sun, S.H., Chen, Q., Gu, H.J., Yang, G., Wang, Y.X., Huang, X.Y., Liu, S.S.,
774	Zhang, N.N., Li, X.F., Xiong, R., et al. (2020). A Mouse Model of SARS-CoV-2
775	Infection and Pathogenesis. Cell Host Microbe 28, 124-133 e124.
776	Wu, J.T., Leung, K., and Leung, G.M. (2020). Nowcasting and forecasting the
777	potential domestic and international spread of the 2019-nCoV outbreak
778	originating in Wuhan, China: a modelling study. Lancet 395, 689-697.
779	Xie, X., Muruato, A., Lokugamage, K.G., Narayanan, K., Zhang, X., Zou, J., Liu,
780	J., Schindewolf, C., Bopp, N.E., and Aguilar, P.V. (2020a). An infectious cDNA
781	clone of SARS-CoV-2. Cell host microbe
782	27, 841-848. e843.
783	Xie, X., Muruato, A.E., Zhang, X., Lokugamage, K.G., Fontes-Garfias, C.R.,
784	Zou, J., Liu, J., Ren, P., Balakrishnan, M., Cihlar, T., et al. (2020b). A
785	nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of
786	anti-infective drugs for COVID-19. Nat Commun 11, 5214.
787	Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu,

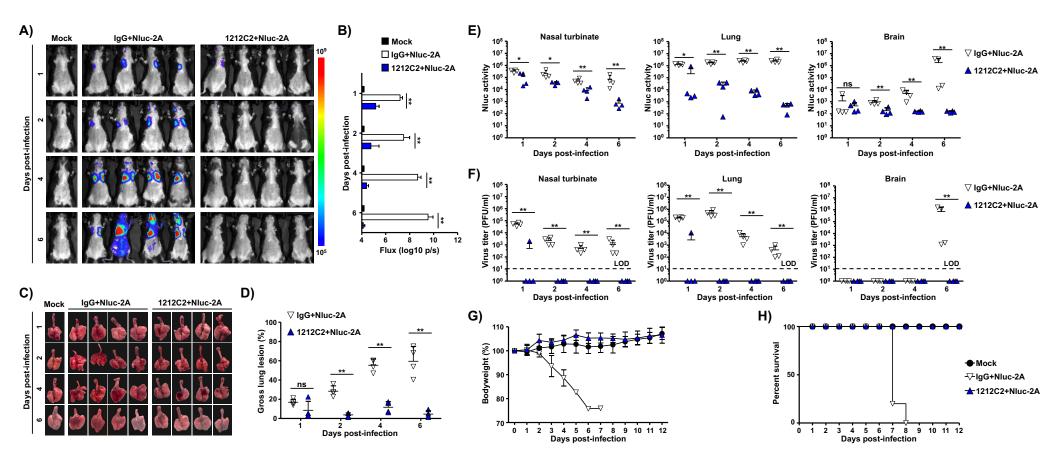

- H., Zhu, L., et al. (2020). Pathological findings of COVID-19 associated with
- acute respiratory distress syndrome. Lancet Respir Med *8*, 420-422.
- Ye, C., Chiem, K., Park, J.-G., Oladunni, F., Platt, R.N., Anderson, T., Almazan,
- F., de la Torre, J.C., and Martinez-Sobrido, L. (2020a). Rescue of SARS-CoV-2
- ⁷⁹² from a single bacterial artificial chromosome. mBio *11*, e02168-02120.


793	Ye, C., de la Torre, J.C., and Martinez-Sobrido, L. (2020b). Development of
794	Reverse Genetics for the Prototype New World Mammarenavirus Tacaribe
795	Virus. J Virol 94.
796	Zheng, J., Wong, L.R., Li, K., Verma, A.K., Ortiz, M.E., Wohlford-Lenane, C.,
797	Leidinger, M.R., Knudson, C.M., Meyerholz, D.K., McCray, P.B., Jr., et al.
798	(2021). COVID-19 treatments and pathogenesis including anosmia in
799	K18-hACE2 mice. Nature 589, 603-607.
800	








	P1	Р3	Р5	P7
Venus+	68	66	71	72
N+	68	66	71	72
Venus+/N+	100%	100%	100%	100%

	D1	D2	D4	D6
Venus+	78	52	98	108
N+	78	52	99	110
Venus+/N+	100%	100%	99%	98%

