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Abstract—Objective: Models of Gene Regula-
tory Networks (GRNs) capture the dynamics of
the regulatory processes that occur within the cell
as a means to understand the variability observed
in gene expression between different conditions.
Possibly the simplest mathematical construct
used for modeling is the Boolean network, which
dictates a set of logical rules for transition
between states described as Boolean vectors. Due
to the complexity of gene regulation and the
limitations of experimental technologies, in most
cases knowledge about regulatory interactions
and Boolean states is partial. In addition, the
logical rules themselves are not known a-priori.
Our goal in this work is to present a methodology
for inferring this information from the data,
and to provide a measure for comparing net-
work states under different biological conditions.
Methods: We present a novel methodology for
integrating experimental data and performing a
search for the optimal consistent structure via
optimization of a linear objective function under
a set of linear constraints. We also present a
statistical approach for testing the similarity of
network states under different conditions. Re-
sults: Our methodology finds the optimal model
using an experimental gene expression dataset
from human CD4 T-cells and shows that network
states are different between healthy controls and
rheumatoid arthritis patients. Conclusion: The
problem can be solved optimally using real-world
data. Properties of the inferred network show
the importance of a general approach. Signifi-
cance: Our methodology will enable researchers
to obtain a better understanding of the function
of gene regulatory networks and their biological
role.

I. INTRODUCTION

Maintenance of cellular functions re-
quires the orchestration of many interleav-
ing processes over time and space. A Gene
Regulatory Network (GRN) is a set of
genes such that the present state of their
expression trajectory can be predicted from
past states via the regulatory relationships
between the genes. Due to their simple
building blocks GRNs have been used to

model the regulation of processe as differ-
ent as cell differentiation, circadian clocks
and diauxic shift [1], [2], [3]. Conse-
quently, many methods for reconstructing
GRNs from experimental data at vary-
ing levels of details have been proposed
[4], [5], [6]. The simplest formulation, the
Boolean network, describes gene expres-
sion states as Boolean values and changes
in those levels as Boolean functions [7].
While the simplicity of this model imposes
a certain level of abstraction it also makes
it applicable to a broader range of datasets
and simplifies its analysis. Interestingly, de-
spite the relative simplicity of Boolean net-
works, fitting a Boolean network to a gene
expression dataset given a set of regulatory
relationships is an NP-Hard problem [8]. In
practice the exact regulatory relationships
are not known, which can result in re-
dundant regulators after fitting. A possible
remedy to this problem is impose non-
redundant logic as a requirement in the so-
lution of the fitting problem [4], [9]. How-
ever, this approach contradicts the widely
accepted principle that a simpler model that
provides the same degree of fit to the data
is preferable to a more complex one [10],
[11], [12]. In this paper we present a novel
algorithm for fitting a Boolean network to
a gene expression dataset that addresses
the problem of redundant regulators. In
addition, we provide a method to compute
the statistical significance of difference be-
tween network states under different condi-
tions. We apply our methodology to a gene
expression dataset from human CD4 T-cells
that was obtained from rheumatoid arthritis
patients and healthy controls .

II. METHODS

A. Optimal Fit of Boolean Networks
A gene expression dataset consists of

a N × M matrix where N corresponds
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to the number of genes whose expression
level was measured and M corresponds to
the number of experiments. In a typical
dataset N � M. The expression values in
the matrix can be discrete or continuous,
depending on the experimental technology
that was used for generating the data, but
higher values always represent a higher
expression level. In order to map these
values to Boolean values one needs to label
each observation as belonging to a state of
low or high expression. Since the proposed
methodology is independent of the choice
of a mapping, in the rest of this section we
will assume that the mapping has already
been applied to the data.

A trajectory of a Boolean network is
a sequence of states such that each state
except for the first state in the sequence
is derived from the previous state using
a set of Boolean functions. Each Boolean
function determines the value of exactly
one gene, and its inputs are the states of any
number of genes in the network. Usually,
it is assumed that the number of inputs
is small compared to the total number
of genes. The regulatory relationships of
a Boolean network can be illustrated as
edges from inputs to outputs in a directed
graph, called a regulation graph. A gene
that has an outgoing edge to another gene
is referred to as a regulator, and a gene
with an incoming edge as a target (a gene
can be both a regulator and a target). A
steady state is a state that repeats itself in
a trajectory indefinitely unless perturbed by
external signals, i.e. signals that are not part
of the network. In a typical gene expression
dataset the experiments correspond to a
single time point, and therefore the network
is assumed to be in a steady state in each
experiment. For simplicity of description
we assume in the rest of this section that
the network is in steady state, however the

algorithm presented here is applicable to
any type of data.

Discrepancies between a dataset and a
network model occur when the Boolean
values in an experimental dataset do not
agree with any network trajectory due to ex-
perimental noise. This presents a difficulty
if the network model is not known a-priori,
since enumerating all possible networks is
infeasible. Formally, let Cgi,j denote the
Boolean value of gene gi in experiment
j, and let eg1,g2 denote a directed edge
between genes g1 and g2. We say that the
data contains a discrepancy if for some
gene g and two experiments i1 and i2,
Cgj ,i1 = Cgj ,i2 for all genes gj such that
an edge egj ,g exists, but Cg,i1 6= Cg,i2 .
It follows from the network’s determinism
that at least one of the experiments i1 or i2
does not agree with any network trajectory.

Assuming that P 6= NP , there does
not exist a polynomial time algorithm for
resolving all the discrepancies with the
minimal number of changes. Therefore, ei-
ther a heuristic that finds a local optimum
or an algorithm that may not terminate
in a reasonable amount of time must be
used instead. Another difficulty is that a
strict subset of the regulation graph may
provide a solution with the same number
of changes to the expression dataset, and
so the structure of the network itself needs
to be considered in the search for the op-
timal solution. This brings another level of
complexity to the already difficult problem.

B. An Algorithm for the Optimal Minimal
Network

The in-degree of nodes in the regula-
tion graph is usually assumed to be small
compared to the number of genes or the
number of experiments. If we assume that
it is a constant value in terms of compu-
tational complexity, we can define a set of
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constraints on the values that have to be
changed in order to remove all discrep-
ancies from the data. Let Cij denote the
Boolean input value of gene i at experiment
j, and let Bgi,j equal 1 if the value of gene
gi in experiment j was flipped in the solu-
tion, and otherwise 0. Then for every exper-
iment j and for every gene gk+1 with reg-
ulators g1, g2, ..., gk and for every Boolean
vector (w1, w2, ..., wk) , wj ∈ {0, 1} , if the
output of the Boolean function that deter-
mines the value of gk+1, I(w1, w2, ..., wk),
is 1, the following constraint must hold:

k∑
r=1

(Crj · (wr + (1− 2 · wr) ·Bgr,j) (1)

+(1−Crj) · ((1−wr)+(2 ·wr−1) ·Bgr,j))

+Ck+1 ·Bgi,j + (1− Ck+1) · (1−Bgi,j)

< (2− I(w1, w2, ..., wk)) · (k + 1)

This constraint means that if the output
variable I(w1, w2, ..., wk) was set to 1,
whenever the inputs w1, w2, ..., wk appear in
the solution the output (the value of gk+1)
must be 1. Similarly, if I(w1, w2, ..., wk) is
set to 0 the following constraint must hold:

k∑
r=1

(Crj · (wr + (1− 2 · wr) ·Bgr,j) (2)

+(1−Crj) · ((1−wr)+(2 ·wr−1) ·Bgr,j))

+Ck+1 · (1−Bgi,j) + (1− Ck+1) ·Bgi,j

< (I(w1, w2, ..., wk) + 1) · (k + 1)

By requiring that under these constraints
the following sum is minimized:∑

i∈1,..,N
j∈1,..,MBij

we can use a branch and bound algo-
rithm for 0/1 integer programming to find

a solution that fits the data with a minimal
number of changes and construct a new
dataset with values Dij = ((Cij + Bij)
mod 2), i ∈ 1..N, j ∈ 1..M .
However, this formulation still ignores the
possible existence of multiple optimal solu-
tions that correspond to different network
structures, for if after resolution of the
discrepancies only a strict subset of inputs
uniquely determines a function’s output
then the edges in the regulation graph that
correspond to the rest of the inputs can be
removed. In order to choose the solution
that results in the smallest network, for
every gene gi and each one of its targets
gj , we create another Boolean variable Rij ,
that is added to the right hand side of
additional constraints created for gj . These
constraints are similar to (1) and (2) but
with all subsets of regulators removed and
with their Rij variables in the r.h.s. If the
Rij are equal to 1 then given a solution
that satisfies the the full constraints, the
new constraints will be satisfied as well. If
the new constraints can be satisfied without
setting Rij to 1, then the edge from gi
to gj in the regulation graph is redundant.
Therefore, all the variables Rij have weight

1
|E|+1

in the objective function, where |E| is
the number of edges in the regulation graph.
The number of variables in the resulting
0/1 integer linear programming is M ·N +∑N

i=1 2
indegree(gi) + |E|. Once the corrected

values Dij are obtained from the optimal
solution, we remove redundant regulators
to obtain the inferred network structure.

Given the optimal network and its in-
ferred states, we now wish to compute the
probability of seeing the observed differ-
ence between two groups of states, referred
to as cases and controls, by chance. In
order to do that, we compute the differ-
ence between the expected between-group
state distance and the expected within-
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group state distance, where the two groups
are cases and controls. A distance between
two binary states is simply the sum of non-
identical entries.∑M

i=1

∑M
j=1,j 6=i

∑N
k=1 |Dki −Dkj|

M · (M − 1)
− (3)

∑
i∈group1

∑
j∈group1,j 6=i

∑N
k=1 |Dki −Dkj|

|group1| · |group1− 1| · 2
−

∑
i∈group2

∑
j∈group2,j 6=i

∑N
k=1 |Dki −Dkj|

|group2| · |group2− 1| · 2
In order to generate a value from the

null distribution we sample a number of
random states equal to the number of states
in the data and apply the network logic
to find steady states. We then compute the
same statistic (3) by randomly assigning the
patient and healthy labels from the data to
these states.

III. Results

A. A Gene Regulatory Network for T-cell
Migration

In order to test our algorithm we obtained
gene expression values from the dataset of
Ye et al. [13] and constructed a regula-
tion graph using transcription factor-targets
pairs from the ORegAnno database [14].
Ye et al. [13] measured gene expres-
sion in CD4+ T cells from 13 rheumatoid
arthritis patients and 9 healthy controls.
After RMA normalization, we retrieved
genes corresponding to the Gene Ontol-
ogy term ”leukocyte tethering or rolling”
(GO:0050901) and their regulators from
ORegAnno [14]. For each gene, expression
values greater or equal to the mean expres-
sion level were mapped to a binary 1, and
expression values lower than the mean to
a binary 0. A set of transcription factors
such that the conditional entropy of their

target is at most 0.2 was selected for each
gene using forward selection. This corre-
sponds to a fraction of 0.05 target values
that are not predicted by the regulators.
The resulting network contained 57 genes,
from which 29 are transcription factors and
28 are targets. In order to fit the minimal
network to the gene expression data, we
used the Gurobi solver [15] with parame-
ter GomoryPasses=0. The optimal solution
flips 54 Boolean values, which corresponds
to a noise level of approximately 4.3%.

B. Analysis of the Minimal Network’s Struc-
ture and Logic

Figure 1 displays a multidimensional
scaling of the samples using the binary
distance between them after network fit-
ting. The figure shows that the patient and
healthy samples are linearly separable and
that there is more diversity among patient
samples than among healthy controls. After
fitting, 9 of the 28 targets were shown to
have had a redundant regulator that was
removed in the minimal network. Figure
2 shows the number of regulators of each
gene before and after the fitting. We con-
clude that fitting improves our ability to
assign regulators to targets.
Since the enzymes encoded by the genes
FUT4, FUT7 and FUT9 play a role in
the production of the Lewis antigen whose
presence on leukocytes has been linked to
immune disorders, we examined the cor-
responding regulation functions in order
to determine which type of intervention
would be needed to down-regulate the ex-
pression of the target genes. The minimal
interventions that down-regulate the tran-
scription of FUT9 are either up-regulating
CTCF, down-regulating FOXA1 or down-
regulating TP53, depending on the patient.
Down-regulating of FUT4 expression re-
quires down-regulation of either ESR1 or
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EGR1, depending on the patient. In some
of the patients, down-regulating the tran-
scription of FUT7 requires modifying the
expression or activity of at least two tran-
scription factors, and therefore it is the least
favorable target with respect to perturbation
size.
In order to characterize the complexity of
the regulatory logic we examined for all
genes the correlation between the number
of expressed regulators and the expression
of the target. The mean Kendall’s tau was
0.03, indicating that the output of regulation
functions is in general not associated with
the number of expressed regulators. Fur-
thermore, the correlation was not associated
with the number of regulators.

C. Comparison of Patient and Healthy Net-
work States

The noise level of different genes in the
model is of interest since assumptions about
this parameter are often made in models
of gene expression. Therefore, we exam-
ined for each gene the number of input
values of each type (Boolean 0 and 1)
that were flipped in the optimal fit. The
distribution of noise across the genes was
not symmetric and was not associated with
an expressed state (Boolean 1) or non-
expressed state(Boolean 0). This suggests
that modeling assumptions that assign an
equal level of noise for all genes may lead
to wrong conclusions. In order to test the
hypothesis that the group of patient network
states and the group of healthy network
states come from the same distribution,
we calculated the difference between the
expected between-group state distance and
the expected within-group distance, and
generated the null distribution as described
methods section. This procedure does not
make assumptions about the distribution of

measurement noise. The p-value obtained
by calculating the statistic for 100 permu-
tations of the data was less than 0.01. The
null distribution and the value of the statis-
tic calculated for the data are displayed in
Figure 3. We conclude that patient and
network states are likely generated from
different distributions.

IV. Conclusion

We propose a new algorithm for fitting a
Boolean network model to gene expression
data that improves on previous approaches
by minimizing the size of the network that
fits the data optimally. Using a database of
curated transcription factor-target pairs and
steady-state data from rheumatoid arthritis
patients and healthy controls, we found
the minimal network structure that fits the
data optimally. Inspection of the structural
properties of the inferred network show
that fitting prunes redundant regulators,
which stresses the importance of sparsity
constraints in the search algorithm. Fur-
thermore, the inferred logic was diverse
and showed that constraints on the logic
functions should be avoided. By sampling
random states and applying the inferred
network logic we found that patient and
healthy network states are likely to arise
from different distributions. The regulatory
relationships between transcription factors
and their targets as given by the model and
the expression profiles of the patients en-
abled the selection of transcription factors
that are candidates for therapeutic interven-
tion. Changing the level of these factors
in affected tissues, according to the model,
will reduce the expression of genes that are
essential for leukocyte migration into the
area of inflammation.
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