
1

Supplementary Information

Genome-wide reconstruction of rediploidization following autopolyploidization

across one hundred million years of salmonid evolution

Manu Kumar Gundappa, Thu-Hien To, Lars Grønvold, Samuel A.M. Martin, Sigbjørn Lien, Juergen Geist,

David Hazlerigg, Simen R. Sandve, Daniel J. Macqueen

Contents:

Supplementary Methods

Supplementary Methods 1: Generation of a draft huchen genome assembly

Supplementary Methods 2: Scripts used in the study

Supplementary Methods 3: Mapping SSR trees to the brown trout genome

Supplementary Figures:

Supplementary Fig. 1. Huchen genome assembly validation

Supplementary Fig. 2. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa03 and Ssa06 in the Atlantic salmon genome.

Supplementary Fig. 3. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa04 and Ssa08 in the Atlantic salmon genome.

Supplementary Fig. 4. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa02 and Ssa12 in the Atlantic salmon genome.

Supplementary Fig. 5. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa02 and Ssa05 in the Atlantic salmon genome.

Supplementary Fig. 6. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa03 and Ssa23 in the Atlantic salmon genome.

Supplementary Fig. 7. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa07 and Ssa17 in the Atlantic salmon genome.

Supplementary Fig. 8. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa11 and Ssa26 in the Atlantic salmon genome.

Supplementary Fig. 9. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa16 and Ssa17 in the Atlantic salmon genome.

Supplementary Fig. 10. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa05 and Ssa09 in the Atlantic salmon genome.

2

Supplementary Fig. 11. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Str01 and Str32 in the brown trout genome (orthologous to Ssa06 and Ssa03 in the Atlantic salmon

genome, respectively).

Supplementary Fig. 12. Mapping of reconstructed lineage-specific rediploidization histories contrasting

Ssa06 from Atlantic salmon with its orthologous region in brown trout (Str01)

Supplementary Fig. 13. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue

regions Ssa03 and Ssa06 in the Atlantic salmon genome, using protein-coding gene trees as opposed to our

genome-wide alignments.

Supplementary Fig. 14. Gene expression of ohnologue and singleton gene sets residing in genomic regions

with distinct rediploidization ages

Supplementary Fig. 15. Summary of steps used to generate multispecies ohnologue alignments in advance

of phylogenomic analyses.

Supplementary Fig. 16. Example trees for SSR1 topology

Supplementary Fig. 17. Example trees for SSR2 topology

Supplementary Fig. 18. Example trees for SSR3 topology

Supplementary Fig. 19. Example trees for SSR4 topology

Supplementary Fig. 20. Example trees for SSR5 topology

Supplementary Fig. 21. Temporal constraints used in Bayesian rediploidization age analysis for genomic

regions with distinct rediploidization histories

Supplementary Tables

Supplementary Table 1. Statistics for huchen genome sequencing data

Supplementary Table 2. Statistics for the final huchen genome assembly

Supplementary Table 3. Repeat prediction within the huchen genome

Supplementary Data - Provided at https://figshare.com/s/b30a7c7a579392320085

Supplementary Data 1: Position of ohnologue blocks in ancestral rediploidization (AORe) regions within

the Atlantic salmon genome

Supplementary Data 2: Position of ohnologue blocks in subfamily-specific rediploidization (SSR) regions

within the Atlantic salmon genome

Supplementary Data 3: Multiple alignment format file statistics for ohnologue blocks within ancestral

rediploidization (AORe) regions (prior to data filtering)

Supplementary Data 4: Multiple alignment format file statistics for ohnologue blocks within subfamily-

specific rediploidization (SSR) regions (pre data filtering)

3

Supplementary Data 5: Number of alignments retained within ancestral rediploidization (AORe) regions

post filtering

Supplementary Data 6: Number of alignments retained within subfamily-specific rediploidization regions

post filtering

Supplementary Data 7: All sequence alignments and phylogenetic trees used in the study

Supplementary Data 8: Information on sequence alignments and phylogenetic trees used in rediploidization

analyses for AORe and SSR regions (accompanying alignments and tree files are provided in

Supplementary Data 7).

Supplementary Data 9: Ohnologue gene tree topologies mapped to different predicted subfamily-specific

rediploidization (SSR) scenarios.

Supplementary Data 10: Details of concatenated alignments used in MCMCtree Bayesian analysis to date

the onset of ohnologue divergence (i.e. rediploidization ages) across AORe and SSR regions defined in the

Atlantic salmon genome.

Supplementary Data 11: Estimated Bayesian divergence times for the onset of ohnologue divergence (i.e.

rediploidization ages) across the concatenated alignments (Supplementary Data 9) for duplicated regions in

AORe and SSR regions.

Supplementary Data 12: Functional enrichment in biological processes (GOslim terms) for ohnologue pairs

and singleton genes extracted from regions of the genome with unique rediploidization histories.

Supplementary Data 13: Genes used in GOSlim analyses detailed in Supplementary Data 12 (matched to

the same categories described therein)

Supplementary Data 14: Details of alignments used in ohnologue positive selection analyses

Supplementary Data 15: Results of Branch-Site Random Effects Likelihood test for ohnologue selection

across three different rediploidization categories contrasting three defined branches of salmonid phylogeny

Supplementary Data 16: Ohnologue genes under positive selection along three defined branches of

salmonid phylogeny according to Branch-Site Random Effects Likelihood test for ohnologues across three

different rediploidization categories (i.e. Supplementary Data 15)

Supplementary Methods

Supplementary Methods 1: Generation of a draft huchen genome assembly

Haploidy induction

Haploidy was induced using a bespoke UVC chamber. High-quality eggs from four females and milt from

three males was collected into sterile falcon tubes. The milt was chilled on ice, pooled and diluted with an

extender (7.25 g NaCl, 0.4 g KCl, 0.8 g NaHCO3, 2 g glucose mixed in 1L distilled water) (1:4

Milt:Extender)(Şahin et al. 2013). The diluted milt showed high motility under a light microscope. The

4

UVC bulb (254nm) was allowed to reach maximum intensity before use, and a UVC meter was used to

measure the intensity of irradiation. Diluted spermatozoa were spread on petri dishes forming thin layers of

~1mm. Separate replicated petri dishes were irradiated for 3, 6, 9 and 12 mins at an intensity of 1464

uw/cm2, with a distance of 10cm between the spermatozoa and UVC bulb. Irradiated spermatozoa were

used to fertilize four different batches of eggs. The fertilized eggs were incubated at 11oC under a flow-

through system and monitored daily to remove any dead eggs. UVC treated eggs were sampled 23d post-

fertilization when the eggs in a control groups without UVC irradiation started to hatch. Eggs were fixed in

95% ethanol and stored at -20oC. Embryos subjected to irradiation from all time points, along with control

diploids, were analysed for relative DNA content by flow cytometry using eye cells (done by Xelect Ltd, St

Andrews) (Fig. S1). The UVC treated embryos were under-developed and a major proportion remained

unhatched. Flow cytometry analysis confirmed haploidy in embryos subjected to irradiation for 3 and 6

mins.

Genomic DNA extraction and sequencing

Genomic DNA (gDNA) was extracted from candidate haploid embryos using the Thermo Scientific®

Genomic DNA Purification Kit (K0512) and eluted in ~100μl of 1X TE buffer. Concentration was

measured using a Qubit® 2.0 fluorimeter (dsDNA HS ASsay Kit, Invitrogen™), integrity was assessed

using agarose gel electrophoresis, and purity was assessed using a Nanodrop 2000 system (Thermo

Scientific®). The sequenced haploid gDNA sample exhibited 260/230 and 260/280 nm ratios of 1.9 and 1.9

and had a total yield and concentration of 6.55 ug. The sample displayed high integrity on an agarose gel.

The gDNA sample was sent to the Earlham Institute (Norwich, UK), where paired-end and mate-pair

libraries were constructed. Prior to library creation, the gDNA was run on a TapeStation 4200 system

(Agilent Technologies) to confirm its integrity and its concentration was re-quantified as described above.

A PCR-free library (~500bp insert) was prepared using the TruSeq DNA Sample Prep kit (Illumina) and

sequenced on 2.5 lanes of the Illumina HiSeq 2500 with a 250bp paired-end metric. In addition, two mate-

pair libraries of ~6kb and ~12kb were generated using the method outlined in Heavens et al. 2015 and

sequenced on one HiSeq 2500 lane, again with a 250bp paired-end metric. Full statistics on the raw

sequence data are provided in Supplementary Table 1.

Quality control and trimming

Sequencing data quality control was done using FastQC (version 0.11.3) (Andrews 2010). Paired-end reads

were quality trimmed using TrimGalore (https://github.com/FelixKrueger/TrimGalore) so that all bases had

a quality score >30, removing any read (and its pair) trimmed to less than 40 bp length. Adapter trimming

was performed, setting the --stringency parameter to 5. Mate pair reads were trimmed using the same

approach and subjected to further mate-pair adapter trimming using NxTrim (O’Connell et al., 2015) set to

retain sequences ≥40bp post-trimming. This ensured high-quality mate-pair reads were separated from

5

those devoid of mate-pair adapters or showing the wrong orientation. Statistics for quality-controlled final

sequence data are presented in Supplementary Table 2.

Genome size estimation

Genome size was estimated using the paired end sequence data. Jellyfish-2.2.6 (Marçais and Kingsford

2011) was used to generate k-mer distribution histograms for k-mer sizes of 101 and 111 using ~100M QC-

passed paired reads. KAT tools v.2.3.4 (Mapleson et al. 2017) was used to generate a k-mer distribution

histogram for a k-mer size of 67 with the ‘KAT comp’ option. The k-mer distributions were analysed via

Genomescope (Vurture et al. 2017), which predicted a genome size of 2.0 to 2.2 Gb for the Jellyfish

histograms and 1.9–2.1Gb for the KAT histogram. A single homozygous peak was observed in the k-mer

distribution histograms generated through both approaches, providing additional evidence for haploidy

(Supplementary Fig 1).

Genome assembly

Genome assembly was performed in a stepwise process using different algorithms for contig assembly,

scaffolding and gap-filling. Contig generation done using W2RAP (Clavijo et al. 2017) with a k-mer value

of 208, minimum contig length filter of 800bp and remaining parameters set to default. The contig

assembly was evaluated for completeness using BUSCO v3 against the Actinopterygii dataset (Simão et al.

2015) and contiguity statistics were generated using the abyss-fac option within the ABySS 2.0 toolkit

(Jackman et al. 2017). This initial assembly had a size of 1.83 Gb comprising 268,622 contigs and a

BUSCO (Waterhouse et al. 2018) completeness score of 74.9% (see next section). Scaffolding was done

using the mate-pair sequence data with SSPACE 3.0 (Boetzer et al. 2011). The W2RAP contigs were

scaffolded in succession using the 6Kb followed by the 12Kb insert libraries. The assembly was then gap-

filled using GapFiller 1.10 (Boetzer and Pirovano 2012) for four iterations using 80x coverage paired-end

sequence data. Scaffolding using SSPACE 3.0 resulted in a marked increase in assembly size and >14-fold

increase in contiguity (Supplementary Table 2). Gap closing with four iterations eliminated a total of 66.43

Mb spanning 34,132 gaps. The overall gap content in the assembly remained at around 569 Mbp. Statistics

for the final assembly are given in Supplementary Table 2.

Genome completeness assessment

The scaffolded huchen assembly was screened for 458 conserved eukaryotic proteins using CEGMA (Parra

et al. 2007) and 4,584 conserved Actinopterygii genes using BUSCO (Waterhouse et al. 2018). The

assembly achieved a CEGMA completeness score of 95% (Supplementary Table 2). 4,135 (90.2%) of the

BUSCO genes were complete in the final assembly (Supplementary Table 2). Fragmented BUSCOs

comprised a small (3.2%) proportion of genes in the assembly. Assembly quality was further assessed

using KAT tools v.2.3.4.(Mapleson et al. 2017). KAT comp was used to compare k-mer content of the

paired-end reads to the k-mer content of the scaffolded assembly. A spectra plot was used to gauge

6

completeness and the presence of mis-assemblies, which displayed a normal distribution, consistent with a

haploid assembly (Supplementary Table 2).

Repeat prediction and masking

Repeat masking was performed using RepeatMasker (Smit et al. 2015). Repbase (Bao et al. 2015) was used

to download updated repeat databases (44,968 sequences, 117.2 Mb). Repeat libraries for Atlantic salmon

(http://lucy.ceh.uvic.ca/repeatmasker/cbr_repeatmasker.py) and European grayling (Varadharajan et al.

2018) containing 2,494 (1.2 Mb) and 1,195 (0.87 Mb) respective sequences were also downloaded. In

addition, de novo repeat modelling was performed using RepeatModeler (Smit et al. 2015; Smit and

Hubley 2015). The de novo repeat library was subjected to blastx (Altschul et al. 1997) against the UniProt

database to remove any repeats matching an annotated protein-coding gene. All these datasets were merged

into a single library that was used for the repeat masking. The curated de novo repeat library salmon

contained 1,158 sequences comprising 0.9 Mb. Repeat masking in combination with the other repeated

libraries masked a total of 932.1 Mb (~37 %) of the huchen genome. Unclassified elements dominated the

different repeat categories accounting for ~ 429 Mb (Supplementary Table 3).

Supplementary Methods 2: Scripts used in study

script: Filter a MAF file for alignment depth of two and retrieve count data for each alignment.##(BASH)

#1

for i in *.maf

do

grep -A 2 "mult=2" $i >$i.filter

done #pulls out all the alignment blocks with depth=2 from a maf file

#2

for i in *.filter

do

grep -A 1 -B 1 "ChrA" $i >$i.ChrA _mult2;

done #split the maf file into separate files for each Atlantic salmon ohnologue sequence.

#3

for i in *mult2

do

grep ‘scaffold|NW’ $i | \ #

cut -c 1-50 | \

cut -f 1 | \

cut -f 2 -d '.' | sort | \

uniq -c >$i.ids #generate counts for each scaffold in each MAF file.

done

Categorise trees into different SSR levels (R script)

7

library(ape)

library(phytools)

library(phangorn)

library(geiger)

check.topologya = function(tree){
 salmonid.tips = c('huc', 'ssa', 'omy', 'oki', 'ots','thy', '1sa', 'sal')
 if(length(grep('thy', tree$tip.label, value = T))==0) cat ("no_grayling\n")
 if(is.monophyletic(tree,grep('thy',tree$tip.label[substr(tree$tip.label, 1, 3) %in% salmonid.tips],invert = T,
value = T))){
 cat('LORe_thy\n')}
 treex<-drop.tip(tree, grep('thy', tree$tip.label, value = T))
 if(length(grep('huc', treex$tip.label, value = T))==0) cat ("no_hucho\n")
 if(is.monophyletic(treex,grep('huc',treex$tip.label[substr(treex$tip.label, 1, 3) %in% salmonid.tips],invert
= T, value = T))){
 cat('LORe_huc\n')}
 treey<-drop.tip(treex, grep('huc', treex$tip.label, value = T))
 if(length(grep('ssa', treey$tip.label, value = T))==0) cat ("no_salmo\n")
 if(is.monophyletic(treey,grep('ssa',treey$tip.label[substr(treey$tip.label, 1, 3) %in% salmonid.tips],invert
= T, value = T))){
 cat('LORe_ssa\n')}
 treez<-drop.tip(treey, grep('ssa', treey$tip.label, value = T))
 if(length(grep('sal', treez$tip.label, value = T))==0) cat ("no_salvelinus\n")
 if(is.monophyletic(treez,grep('sal',treez$tip.label[substr(treez$tip.label, 1, 3) %in% salmonid.tips],invert =
T, value = T))){
 cat('LORe_sal\n')
 tree = drop.tip(tree, grep('huc', tree$tip.label, value = T))
 dupfinder.results = dupFindera(tree, salmonids = grep('huc', salmonid.tips, invert = T, value = T))
 test1 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), dupfinder.results$alpha)
 test2 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), grep('huc', dupfinder.results$alpha, invert
= T, value = T))
 return(identical(test1,test2) & test1 == T)
 }
 dupfinder.results = dupFindera(tree) # dupfinder function adapted from Varadharajan et al, 2018
 if(length(dupfinder.results)>0){
 cat('Normal dup tree\n')
 test1 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), dupfinder.results$alpha)
 test2 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), grep('huc', dupfinder.results$alpha, invert
= T, value = T))
 return(identical(test1,test2) & test1 == T)
 }
 if(length(dupfinder.results)==0){
 print('No dup')
 is.monophyletic(tree, grep('huc', tree$tip.label[substr(tree$tip.label, 1, 3) %in% salmonid.tips], invert =
T, value = T))
 }
}

#simple function to test for duplicate branching and SSR type.
lore_testing=function(tree){
 tree2<-read.tree(file = tree)
 if(length(grep('esox', tree2$tip.label, value = T))>0){

8

 test3<-root(tree2,outgroup = grep('esox', tree2$tip.label, value = T), resolve.root = TRUE)
 }else if (length(grep('thym_chr_a', tree2$tip.label, value = T))>0){
 test3<-root(tree2,outgroup = grep('thym_chr_a', tree2$tip.label, value = T), resolve.root = TRUE)
 }else if (length(grep('thym_chr_b', tree2$tip.label, value = T))>0){
 test3<-root(tree2,outgroup = grep('thym_chr_b', tree2$tip.label, value = T), resolve.root = TRUE)
 #}else if (length(grep('huc', tree2$tip.label, value = T))==1){
 #test3<-root(tree2,outgroup = grep('huc', tree2$tip.label, value = T), resolve.root = TRUE)
 }else {
 test3<-midpoint(tree2, node.labels = "label")}
 check.topologya(test3)
plot.coldupsa(tr = test3)
}

#standard looping - works good
files <- list.files(path="D:/trees/", pattern="*.treefile", full.names=TRUE, recursive=FALSE)
sink('ssr3_chra_chrb_10nodes.txt')
pdf("ssr3_chra_chrb_10nodes.txt ", width = 12, height = 12, paper = "a4r")
par(mfrow=c(2,1))
for(i in 1:length(files)){
 file<-cat(files[i],('\n'))
 lore_testing(files[i])
cat ('\n')}
sink()
dev.off()

#######get coordinates for salmon chromosomes from a MAF file (Bash script)#################
grep ssaXX.ssaXX mult11.maf | cut -c 1-55 | sort -n -k 3 >mult11_ssal_sorted_coordinates.txt

Retrieve genes from different SSR blocks and AORe regions in salmon genome (Rscript)

library(tidyverse)
library(openxlsx)
library(readxl)

##load data
aore_regions<-read_excel("aore_boundaries.xlsx")
aore_regions<-as.data.frame(apply(aore_regions,2,function(x)gsub('\\s+', '',x))) ### remove any spaces in
the whole data

lore_regions<-read_excel("lore_boundaries.xlsx")
lore_regions<-as.data.frame(apply(lore_regions,2,function(x)gsub('\\s+', '',x)))

chr_id_replace<-read_excel("ncbi_cigene_mapping.xlsx")
ssal_gene_pos<- read_tsv("Ssal_genePos.tsv")

duplicates<-read.table("duplicates_list.txt",header = T)
dup1<- duplicates$gene1
dup2<- duplicates$gene2
dups_list<- as.data.frame(c(dup1,dup2))
dups_list$`c(dup1, dup2)`<-as.numeric(dups_list$`c(dup1, dup2)`)

###change gene names to cigene
salmon_genes<-merge(ssal_gene_pos,chr_id_replace,by.x = c("seqname"), by.y = c("ncbi"),
 all.x = T, all.y = F) %>% na.omit(T) %>% select(cigene,start,end,geneID) %>% arrange(cigene,start)

9

salmon_genes$start <- as.numeric(salmon_genes$start)
salmon_genes$end <- as.numeric(salmon_genes$end)

function to get genes within aore boundaries
try1<-lapply(1:nrow(aore_regions),function(i){
 ref_chro <- as.character(aore_regions$chr[i])
 ref_start <- as.numeric(aore_regions$start[i])
 ref_end <- as.numeric(aore_regions$end[i])
 filter(salmon_genes,cigene == ref_chro,start > ref_start & start < ref_end)
 })

aore_genes<-bind_rows(try1)
aore_genes['redip'] = "AORe"

function against lore regions
lore_redip <- filter(lore_regions, redip == "SSR1") ## set SSR1, SSR2. SSR3,SSR4,SSR5

try2<-lapply(1:nrow(lore_redip),function(i){
 ref_chro <- as.character(lore_redip$chr[i])
 ref_start <- as.numeric(lore_redip$start[i])
 ref_end <- as.numeric(lore_redip$end[i])
 filter(salmon_genes,cigene == ref_chro,start > ref_start & start < ref_end)
})

SSR1_genes<-bind_rows(try2)
SSR1_genes['redip'] = "SSR1"
SSR1_genes$geneID = as.numeric(SSR1_genes$geneID)

SSR2_genes<-bind_rows(try2)
SSR2_genes['redip'] = "SSR2"

SSR3_genes<-bind_rows(try2)
SSR3_genes['redip'] = "SSR3"

SSR4_genes<-bind_rows(try2)
SSR4_genes['redip'] = "SSR4"

SSR5_genes<-bind_rows(try2)
SSR5_genes['redip'] = "SSR5"

compare it against the duplicates database from Bertolotti et al
aore_dups<-as.data.frame(intersect(dups_list$`c(dup1, dup2)`, aore_genes$geneID))
ssr1_dups<-as.data.frame(intersect(dups_list$`c(dup1, dup2)`, SSR1_genes$geneID))
ssr2_dups<-as.data.frame(intersect(dups_list$`c(dup1, dup2)`, SSR2_genes$geneID))
ssr3_dups<-intersect(dups_list$`c(dup1, dup2)`, SSR3_genes$geneID)
ssr4_dups<-intersect(dups_list$`c(dup1, dup2)`, SSR4_genes$geneID)
ssr5_dups<-intersect(dups_list$`c(dup1, dup2)`, SSR5_genes$geneID)

ssr_345_dups<- as.data.frame(c(ssr3_dups,ssr4_dups,ssr5_dups)) ### merge all ssr345 into one dataframe

gene_annotation<-read_csv("genes_products.csv")

aore_dups_annotation<-left_join(aore_dups,gene_annotation)
ssr1_dups_annotation<-left_join(ssr1_dups,gene_annotation)

10

ssr2_dups_annotation<-left_join(ssr2_dups,gene_annotation)
ssr345_dups_annotation<-left_join(ssr345_dups,gene_annotation)

Get unique and shared GOslim terms from different rediploidization categories (R script)

###load data

daore<-read_excel("GO_slim_to_plot.xlsx", sheet = "AORE_ohno")
daore2<-daore %>% select(Term, Count)
daore2['redip']='AORe-ohnologue'

dssr1<-read_excel("GO_slim_to_plot.xlsx", sheet = "SSR1_ohno")
dssr12<-dssr1 %>% select(Term, Count)
dssr12['redip']='SSR1-ohnologue'

dssr2<-read_excel("GO_slim_to_plot.xlsx", sheet = "SSR2_ohno")
dssr22<-dssr2 %>% select(Term, Count)
dssr22['redip']='SSR2-ohnologue'

dssr345<-read_excel("GO_slim_to_plot.xlsx", sheet = "SSR345_ohno")
dssr3452<-dssr345 %>% select(Term, Count)
dssr3452['redip']='SSR345-ohnologue'

saore<-read_excel("GO_slim_to_plot.xlsx", sheet = "AORE_sing")
saore2<-saore %>% select(Term, Count)
saore2['redip']='AORe-singleton'
unique_singletons<- as.vector(saore2$Term)

####pool data and aggregate

pool1<-rbind(saore2,daore2,dssr12,dssr22,dssr3452)

upset_data<-aggregate(redip ~ Term, unique(pool1), paste, collapse = "&") ## aggregate by GO terms

datapool<-aggregate(redip ~ Term, unique(pool1), paste, collapse = ",") ## aggregate by GO terms

GO_slim_unique_shared<- datapool %>% arrange(redip)

##
R script to parse orthogroups and get dN/dS values for selected nodes

title: "Identify branches of interest in aBSREL results"
output:
 html_document:
 toc: yes
 toc_float: yes
 code_folding: hide
editor_options:
 chunk_output_type: console

```{r setup, include=FALSE} 



11 
 

knitr::opts_chunk$set(echo = TRUE) 
library(tidyverse) 
library(ape) 
library(jsonlite) 
``` 

```{r load_data} 
source("getEdgesToClade.R") 
# extract trees from json files: 
extractTreesFromJSON <- function(jsonpath){ 
  tibble( file = dir(jsonpath,full.names = T,pattern = ".json$")) %>%  
    mutate( data = map( file, read_json)) %>%  
    mutate( jsonTree = map( data, ~ read.tree(text = paste0(.x$input$trees$`0`,";")) )) %>%  
    mutate( OG = sub(".fasta.ABSREL.json","",basename(file))) %>%  
    with( setNames(jsonTree,OG)) 
} 
 
resultPath <- "~/Dropbox/REWIRED project/received files/from_manu/aBSREL results for Manu article" 
 
ssr1Trees <- extractTreesFromJSON(file.path(resultPath,"ssr1_json")) 
ssr2Trees <- extractTreesFromJSON(file.path(resultPath,"ssr2_json")) 
aoreTrees <- extractTreesFromJSON(file.path(resultPath,"aore_json")) 
 
spcTree <- read.tree("data/from_ortho_pipeline/SpeciesTree_rooted_node_labels.txt") 
# define some useful constants 
N6spcs <- c("Stru","Ssal","Omyk","Okis","Salp") 
N5spcs <- c(N6spcs,"Hhuc") 
N4spcs <- c(N5spcs,"Tthy") 
 
``` 
Species tree
```{r} 
plot.phylo(spcTree, show.node.label = T,use.edge.length = F) 
``` 

Identifying clades
The aim is to identify the branches of the gene-trees that lead to specific clades defined by a set of species.
The algorithm I use here identifies edges in the tree where the all children of the child node are in the set of
clade species, with no copies, but the same is not true for the parent node.
branches of interest
AORE - Ortholog resolution at salmonid common ancestor
Branches of interest are:
* (blue) the branches going from duplication node to the two N4 clades (All salmonids)
* (red) the branches going to the two N6 clades (All salmonids except Tthy and Hhuc)

Example

```{r} 
OG="OG1v0000101.121" 
tree = aoreTrees[[OG]] 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N4spcs)] <- "blue" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2, main=OG) 
``` 


12

stats
How many clades do we identify in each tree? Do they overlap? Are the clades rooted in internal nodes (as
opposed to tips)?
```{r} 
trees = aoreTrees 
 
N6cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N6spcs) 
N4cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N4spcs) 
N_N6clades <- sapply(N6cladeEdges,length) 
N_N4clades <- sapply(N4cladeEdges,length) 
overlap <- sapply(mapply(FUN = intersect,x=N6cladeEdges,y=N4cladeEdges),length) 
table(N_N6clades,N_N4clades,overlap=overlap>0) 
edges2nodeNames <- function(edges,tree){ 
  nodes <- tree$edge[edges,2] 
  c(tree$tip.label,tree$node.label)[nodes] 
} 
 
N6nodeNames <- mapply( edges = N6cladeEdges, tree=trees, FUN=edges2nodeNames) 
N4nodeNames <- mapply( edges = N4cladeEdges, tree=trees, FUN=edges2nodeNames) 
allN6nodesInternal <- sapply(N6nodeNames,function(x) all(grepl("^Node",x))) 
allN4nodesInternal <- sapply(N4nodeNames,function(x) all(grepl("^Node",x))) 
 
goodTrees <- N_N6clades==2 & N_N4clades==2 & overlap==0 
 
table(allN6nodesInternal,goodTrees) 
 
aore_goodTrees <- N_N6clades==2 & N_N4clades==2 & overlap==0 & allN6nodesInternal & 
allN4nodesInternal 
 
``` 
Of the `r length(trees)` AORE trees, `r sum(aore_goodTrees)` trees have exactly two N4 clades and two N6
clades that do not overlap.
Bad tree #1
Only one inner N4 clade:

```{r} 
# which(N_N6clades==1 & N_N4clades==2 & overlap==0) 
OG="OG1v0011980.15" 
tree = trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N4spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 

Bad tree #2
One clade is missing both Tthy and Hhuc, therefore N4 clade is same as N6 clade:
```{r} 
# which(N_N6clades==2 & N_N4clades==2 & overlap>0) 
OG="OG1v0014017.13" 
tree = trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 



13 
 

edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N4spcs)] <- "blue" 
edgeColors[intersect(getEdgesToClade(tree,N4spcs),getEdgesToClade(tree,N6spcs))] <- "purple" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 


SSR1 - Ortholog resolution after Tthy split
Branches of interest are:
* (blue) the branches going from duplication node to the two N5 clades (All salmonids except Tthy)
* (red) the branches going to the two N6 clades (All salmonids except Tthy and Hhuc)
Example
```{r} 
tree = ssr1Trees$OG1v0000520.54 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N5spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2, main="OG1v0000520.54") 
``` 

stats
How many clades do we identify in each tree?
```{r} 
trees = ssr1Trees 
 
N6cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N6spcs) 
N5cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N5spcs) 
N_N6clades <- sapply(N6cladeEdges,length) 
N_N5clades <- sapply(N5cladeEdges,length) 
 
overlap <- sapply(mapply(FUN = intersect,x=N6cladeEdges,y=N5cladeEdges),length) 
 
table(N_N6clades,N_N5clades,overlap=overlap>0) 
 
 
N6nodeNames <- mapply( edges = N6cladeEdges, tree=trees, FUN=edges2nodeNames) 
N5nodeNames <- mapply( edges = N5cladeEdges, tree=trees, FUN=edges2nodeNames) 
 
allN6nodesInternal <- sapply(N6nodeNames,function(x) all(grepl("^Node",x))) 
allN5nodesInternal <- sapply(N5nodeNames,function(x) all(grepl("^Node",x))) 
 
goodTrees <- N_N6clades==2 & N_N5clades==2 & overlap==0 
 
ssr1_goodTrees <- N_N6clades==2 & N_N5clades==2 & overlap==0 & allN6nodesInternal & 
allN5nodesInternal 
 
``` 
Of the `r length(ssr1Trees)` ssr1 trees, `r sum(ssr1_goodTrees)` trees have exactly two N5 clades and two
N6 clades that do not overlap.
Bad tree #1

```{r} 
# which(N_ssr1N6clades==9 & N_ssr1N5clades==12) 



14 
 

tree = ssr1Trees$OG1v0000994.33 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N5spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main="OG1v0000994.33") 
``` 

Completely messed up...
Bad tree #2
Contains duplicate Hhuc gene:
```{r} 
# which(N_ssr1N6clades==2 & N_ssr1N5clades==3 & ssr1_overlap==0) 
OG = "OG1v0004789.19" 
tree = ssr1Trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N5spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 
SSR2 - Ortholog resolution after Hhuc split
Branches of interest are:
* (red) the branches going from duplication node to the two N6 clades (All salmonids except Tthy and
Hhuc)

Example
```{r} 
# filter(OGtbl, geneID=="105019051")$N0 
OG="OG1v0000596.55" 
tree = ssr2Trees[[OG]] 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2, main=OG) 
``` 

stats
How many clades do we identify in each tree? Do they overlap? Are the clades rooted in internal nodes (as
opposed to tips)?
```{r} 
trees = ssr2Trees 
 
N6cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N6spcs) 
N_N6clades <- sapply(N6cladeEdges,length) 
table(N_N6clades) 
N6nodeNames <- mapply( edges = N6cladeEdges, tree=trees, FUN=edges2nodeNames) 
allN6nodesInternal <- sapply(N6nodeNames,function(x) all(grepl("^Node",x))) 
goodTrees <- N_N6clades==2  
table(allN6nodesInternal,goodTrees) 
ssr2_goodTrees <- N_N6clades==2 & allN6nodesInternal 
 
``` 


15

Of the `r length(trees)` SSR2 trees, `r sum(ssr2_goodTrees)` trees have exactly two N6 clades which are
not tip nodes.
Bad tree #1
Salp duplicates form a clade:

```{r} 
which(N_N6clades==4) 
OG="OG1v0000981.48" 
tree = trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 

Bad tree #2

```{r} 
# which(N_N6clades==4) 
OG="OG1v0006983.18" 
tree = trees[[OG]] 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 

CSV files
Combine all the csv files for the "good" trees and add a column identifying the nodes of interest.
```{r} 
 
getCladeNodeNames <- function(tree,cladeSpcs){ 
  edges <- getEdgesToClade(tree,cladeSpcs) 
  edges2nodeNames(edges,tree) 
} 
 
nodeTbl <- bind_rows( 
  .id="oreType", 
  aore = tibble(OG = names(aore_goodTrees)[aore_goodTrees]) %>%  
    mutate( N6 = map(OG, function(OG){getCladeNodeNames(tree=aoreTrees[[OG]], cladeSpcs = 
N6spcs)})) %>%  
    mutate( N4 = map(OG, function(OG){getCladeNodeNames(tree=aoreTrees[[OG]], cladeSpcs = 
N4spcs)})) %>%  
    gather(key = "clade",value = "node",N6,N4) %>%  
    unnest(node), 
  ssr1 = tibble(OG = names(ssr1_goodTrees)[ssr1_goodTrees]) %>%  
    mutate( N6 = map(OG, function(OG){getCladeNodeNames(tree=ssr1Trees[[OG]], cladeSpcs = 
N6spcs)})) %>%  
    mutate( N5 = map(OG, function(OG){getCladeNodeNames(tree=ssr1Trees[[OG]], cladeSpcs = 
N5spcs)})) %>%  
    gather(key = "clade",value = "node",N6,N5) %>%  
    unnest(node), 
  ssr2 = tibble(OG = names(ssr2_goodTrees)[ssr2_goodTrees]) %>%  
    mutate( N6 = map(OG, function(OG){getCladeNodeNames(tree=ssr2Trees[[OG]], cladeSpcs = 
N6spcs)})) %>%  



16 
 

    gather(key = "clade",value = "node",N6) %>%  
    unnest(node) 
) 
combinedCSVtable <-  
  nodeTbl %>%  
  select(oreType, OG) %>% 
  distinct() %>%  
  mutate( filename=file.path(resultPath,paste0(oreType,"_json"), 
                     paste0(OG,".fasta.ABSREL.json.csv")) ) %>%  
  mutate( tbl = map(filename,read_csv,col_types = cols())) %>% 
  select(-filename) %>%  
  unnest(tbl) %>%  
  left_join(nodeTbl, by=c("oreType","OG","node")) 
 
write_csv(combinedCSVtable,"combinedCSVtable.csv") 
``` 
plot the dN/dS values for for the identified clades
```{r} 
combinedCSVtable %>%  
  filter( !is.na(clade)) %>%  
  filter( baseline_omega < 200) %>%  
  ggplot( aes(x=clade,y=baseline_omega)) + geom_boxplot() + facet_grid( . ~ oreType) +  
  coord_cartesian(ylim=c(0,2))  
``` 


Supplementary Methods 3: SSR trees mapped to the brown trout genome

The chromosome level genome of brown trout (NCBI accession: GCA_901001165.1) was used to explore

the impact of genome assembly on the mapping of SSR tree topologies (Supplementary Fig. 11-12). The

goal was to answer whether the physical interspersing of distinct SSR phylogenetic topologies along

Atlantic salmon chromosomes was caused by assembly artefacts. For this test, we selected the ohnologue

block represented by Atlantic salmon chromosome arms 03 and 06 (Ssa03-06) owing to the large number

of recovered phylogenetic trees. Brown trout sequences homologous to Ssa03 and Ssa06 were identified by

BLASTn as chromosomes 01 and 32 (St01, St32). Multispecies genome alignments accommodating these

brown trout sequences were generated and processed using the methods described in the main text, except

that the resultant tree topologies were visualized along St01 and St32 instead of Ssa03 and Ssa06

(Supplementary Fig. 11). In addition, a circos plot was generated to compare Ssa06 with its brown trout

putative orthologue St01 to consider the impact of rearrangements across species (Supplementary Fig. 12).

17

Supplementary Figures

Supplementary Fig. 1. Huchen genome assembly validation. a Flow cytometry validation of haploidy in huchen.
DNA content index for a diploid huchen individual (top panel) and for the sequenced haploid embryo (bottom panel).
b Genomescope k-mer distribution for the huchen using paired-end sequence data (k-mer value: 101) c KAT plot for
the gap-filled huchen assembly. The black region represents paired-end sequences that are not present in the assembly.
The red region represents paired-end sequences used once in the assembly. The distribution of the red area indicates a
homozygous assembly.

18

Supplementary Fig. 2. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa03 and Ssa06 in the Atlantic salmon genome. A circos plot is shown at the top of the figure, where each sweeping
band represents the location of ohnologue regions sampled in sequence alignments on Ssa03 and Ssa06. The panel
immediately proximal to these bands shows the percent nucleotide sequence identity between the duplicated regions;
orange = 90-95%, red = > 95%. The colour of each band represents the phylogenetic topology reconstructed for each
sampled alignment with respect to trees presented below the circos plot based on matching colours (e.g. sweeping
blue bands represent SSR1 topologies). We also provide the number (n) of sampled trees per defined rediploidization
history.

19

Supplementary Fig. 3. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa04 and Ssa08 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

20

Supplementary Fig. 4. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa02 and Ssa12 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

21

Supplementary Fig. 5. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa02 and Ssa05 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

22

Supplementary Fig. 6. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa03 and Ssa23 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

23

Supplementary Fig. 7. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa07 and Ssa17 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

24

Supplementary Fig. 8. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa11 and Ssa26 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

25

Supplementary Fig. 9. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa16 and Ssa17 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

26

Supplementary Fig. 10. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa05 and Ssa09 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend.

27

Supplementary Fig. 11. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Str01 and Str32 in the brown trout genome (orthologous to Ssa06 and Ssa03 in the Atlantic salmon genome,
respectively). This figure demonstrates a similar intermixing of phylogenetic signals (i.e. different rediploidization
histories) in the brown trout genome as observed for the Atlantic salmon genome (compare with Supplementary Fig.
3). All other details are as described in the Supplementary Fig. 2 legend.

28

Supplementary Fig. 12. Mapping of reconstructed lineage-specific rediploidization histories contrasting Ssa06 from
Atlantic salmon with its orthologous region in brown trout (Str01) demonstrating the persistence of intermixing of
phylogenetic signals (i.e. different rediploidization histories) in both genome assemblies. All other details are as
described in the Supplementary Fig. 2 legend.

29

Supplementary Fig. 13. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions
Ssa03 and Ssa06 in the Atlantic salmon genome, using protein-coding gene trees as opposed to our genome-wide
alignments.

30

Supplementary Fig. 14. Gene expression of ohnologue (yellow shading) and singleton gene (blue shading) sets
residing in genomic regions with distinct rediploidization ages. RNA-Seq transcripts per million (TPM) data for
Atlantic salmon tissues from Lien et al. 2016. Box and whisker plot definition: each box spans the interquartile range,
with the median (Q2) as a central bar, and upper and lower bounds representing the respective minimum and
maximum values within the 25th percentile (Q1) and 75th percentile (Q3). The upper and lower whisker bounds
represent the largest and smallest values lying within 1.5 times above Q3 and below Q1, respectively. One-way
ANOVA was performed to test for differences in TPM across the shown gene sets (overall P value given in graphs).
Tukey’s test was performed to identify category specific TPM differences (differences among categories at 95%
confidence level shown by different letters).

31

Supplementary Fig. 15. Summary of steps used to generate multispecies ohnologue alignments in advance of
phylogenomic analyses.

32

Supplementary Fig. 16. Example trees for SSR1 topology. a-c. Example trees matching exactly to the predicted
topology with no ambiguity, d-f. Example trees with minor ambiguity in branching but overwhelmingly supporting
the expected topology, g-i. Example trees rejected due to ambiguous topology or low support. The numbers at the
nodes of each tree indicate bootstrap support values Species abbreviations: thym = European grayling; ssa = Atlantic
salmon; salp = Arctic charr; omyk = rainbow trout; otsh = chinook salmon; huc = huchen; esox = northern pike. All
SSR trees are provided in Supplementary Data 7 and their genomic coordinates in Atlantic salmon are given in
Supplementary Data 8.

33

Supplementary Fig. 17. Example trees for SSR2 topology. Other details as in the Supplementary Fig. 16 legend.

34

Supplementary Fig. 18. Example trees for SSR3 topology. Other details as in the Supplementary Fig. 16 legend.

35

Supplementary Fig. 19. Example trees for SSR4 topology. Other details as in the Supplementary Fig. 16 legend.

36

Supplementary Fig. 20. Example trees for SSR5 topology. Other details as in the Supplementary Fig. 16 legend.

37

Supplementary Fig. 21. Temporal constraints used in Bayesian rediploidization age analysis for genomic regions
with distinct rediploidization histories. The shown topologies were set in the MCMCtree analyses, with black triangles
indicating the position of temporal calibrations, which were set as uniform distribution priors.

38

Supplementary Tables

Supplementary Table 1. Statistics for huchen genome sequencing data

Data type Library Read pairs Total data (Gb) Coverage Mean read length (bp)

Raw sequencing data

Paired-end 397,529,369 198.76 90.34 250

6Kb mate-pair 78,491,938 39.24 17.83 250

12Kb mate-pair 213,236,078 106.61 48.46 250

Total: 689,257,385 344.61 156.63 250

Post quality control

Paired-end 370,394,584 139.26 63.3 188

6Kb mate-pair 44,935,049 11.68 5.31 131

12Kb mate-pair 124,687,467 32.29 14.70 129

Total: 520,017,100 178.17 83.31 N/A

39

Supplementary Table 2. Statistics for the final huchen genome assembly

Statistic All sequences

Assembly Size 2,487,549,814

Ungapped length 1,917,049,985

Scaffold N50 287,338 Kb

Contig N50 37,369

Longest Scaffold 4.603 Mb

No scaffolds 71,639

% GC content 42.61 %

Complete BUSCOs 90.2%

Complete – single copy 48.6 %

Complete - duplicated 41.6 %

Fragmented 3.2 %

Missing 6.6%

CEGMA-Complete 236

CEGMA-Fragmented 4

CEGMA-Missing 8

40

Supplementary Table 3. Repeat prediction within the huchen genome

Element
Number of

elements
length Percentage

SINEs 20,347 4,143,480 0.17

 AIUs 1 64 0

 MIRs 0 0 0

LINEs 202,026 100,766,745 4.05

 LINE1 3,809 1,831,205 0.07

 LINE2 71,383 410,39,218 1.65

 L3/CR1 2,012 877,215 0.04

LTR elements 58,047 36,317,611 1.46

 ERVL 3 321 0

 ERVL-MaLRs 0 0 0

 ERV_classI 7,818 5,592,413 0.22

 ERV_classII 162 138,073 0.01

DNA elements 904,622 308,552,003 12.40

 hAT-Charlie 7,988 2,777,233 0.11

 TcMar-Tigger 70 31,297 0

Unclassified 708,405 428,579,333 17.23

Total interspersed repeats 878,359,172 35.31

Small RNA 75 9,505 0

Satellites 107,39 4,887,842 0.2

Simple repeats 661,233 44,896,670 1.8

Low complexity 94,780 7,661,339 0.31

TOTAL 932,098,879 37.47

41

Supplementary References

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic

Acids Research 25:3389–3402.

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.

Bao W, Kojima KK, Kohany O. 2015. Repbase Update, a database of repetitive elements in
eukaryotic genomes. Mobile DNA 6:11.

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled contigs
using SSPACE. Bioinformatics 27:578–579.

Boetzer M, Pirovano W. 2012. Toward almost closed genomes with GapFiller. Genome Biol 13:R56.

Clavijo BJ, Accinelli GG, Wright J, Heavens D, Barr K, Yanes L, Di-Palma F. 2017. W2RAP: a
pipeline for high quality, robust assemblies of large complex genomes from short read data.
bioRxiv:110999.

Heavens D, Accinelli GG, Clavijo B, Clark MD. 2015. A method to simultaneously construct up to 12
differently sized Illumina Nextera long mate pair libraries with reduced DNA input, time, and
cost. BioTechniques 59:42–45.

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H,
Coombe L, Warren RL, et al. 2017. ABySS 2.0: resource-efficient assembly of large genomes
using a Bloom filter. Genome Res. 27:768–777.

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR,
Zimin A, et al. 2016. The Atlantic salmon genome provides insights into rediploidization.
Nature 533:200–205.

Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, Clavijo BJ. 2017. KAT: a K-mer
analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics
33:574–576.

Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics 27:764–770.

O’Connell, J., Schulz-Trieglaff, O., Carlson, E., Hims, M., Gormley, N. and Cox, A., 2015. NxTrim:
optimized trimming of Illumina mate pair reads: Table 1. Bioinformatics, 31(12), pp.2035-
2037.

Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in
eukaryotic genomes. Bioinformatics 23:1061–1067.

Şahin T, Kurtoğlu İZ, Balta F. 2013. Effect of different extenders and storage periods on motility and
fertilization rate of rainbow trout (Oncorhynchus mykiss) semen. Universal Journal of

Agricultural Research 1:65–69.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing
genome assembly and annotation completeness with single-copy orthologs. Bioinformatics
31:3210–3212.

42

Smit AFA, Hubley R. 2015. RepeatModeler Open-1.0. 2008–2015. Seattle, USA: Institute for
Systems Biology. Available from: httpwww. repeatmasker. org.

Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open-4.0. 2013–2015. :289–300.

Varadharajan S, Sandve SR, Gillard GB, Tørresen OK, Mulugeta TD, Hvidsten TR, Lien S, Vøllestad
LA, Jentoft S, Nederbragt AJ, et al. 2018. The grayling genome reveals selection on gene
expression regulation after whole-genome duplication. Genome Biology and Evolution
10:2785–2800.

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. 2017.
GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics
33:2202–2204.

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV,
Zdobnov EM. 2018. BUSCO Applications from Quality Assessments to Gene Prediction and
Phylogenomics. Molecular Biology and Evolution 35:543–548.

