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Supplementary Methods 1: Generation of a draft huchen genome assembly 

 

Haploidy induction 

Haploidy was induced using a bespoke UVC chamber. High-quality eggs from four females and milt from 

three males was collected into sterile falcon tubes. The milt was chilled on ice, pooled and diluted with an 

extender (7.25 g NaCl, 0.4 g KCl, 0.8 g NaHCO3, 2 g glucose mixed in 1L distilled water) (1:4 

Milt:Extender)(Şahin et al. 2013). The diluted milt showed high motility under a light microscope. The 
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UVC bulb (254nm) was allowed to reach maximum intensity before use, and a UVC meter was used to 

measure the intensity of irradiation. Diluted spermatozoa were spread on petri dishes forming thin layers of 

~1mm. Separate replicated petri dishes were irradiated for 3, 6, 9 and 12 mins at an intensity of 1464 

uw/cm2, with a distance of 10cm between the spermatozoa and UVC bulb. Irradiated spermatozoa were 

used to fertilize four different batches of eggs. The fertilized eggs were incubated at 11oC under a flow-

through system and monitored daily to remove any dead eggs. UVC treated eggs were sampled 23d post-

fertilization when the eggs in a control groups without UVC irradiation started to hatch. Eggs were fixed in 

95% ethanol and stored at -20oC. Embryos subjected to irradiation from all time points, along with control 

diploids, were analysed for relative DNA content by flow cytometry using eye cells (done by Xelect Ltd, St 

Andrews) (Fig. S1). The UVC treated embryos were under-developed and a major proportion remained 

unhatched. Flow cytometry analysis confirmed haploidy in embryos subjected to irradiation for 3 and 6 

mins.  

 

Genomic DNA extraction and sequencing  

Genomic DNA (gDNA) was extracted from candidate haploid embryos using the Thermo Scientific® 

Genomic DNA Purification Kit (K0512) and eluted in ~100μl of 1X TE buffer. Concentration was 

measured using a Qubit® 2.0 fluorimeter (dsDNA HS ASsay Kit, Invitrogen™), integrity was assessed 

using agarose gel electrophoresis, and purity was assessed using a Nanodrop 2000 system (Thermo 

Scientific®). The sequenced haploid gDNA sample exhibited 260/230 and 260/280 nm ratios of 1.9 and 1.9 

and had a total yield and concentration of 6.55 ug. The sample displayed high integrity on an agarose gel. 

The gDNA sample was sent to the Earlham Institute (Norwich, UK), where paired-end and mate-pair 

libraries were constructed. Prior to library creation, the gDNA was run on a TapeStation 4200 system 

(Agilent Technologies) to confirm its integrity and its concentration was re-quantified as described above. 

A PCR-free library (~500bp insert) was prepared using the TruSeq DNA Sample Prep kit (Illumina) and 

sequenced on 2.5 lanes of the Illumina HiSeq 2500 with a 250bp paired-end metric. In addition, two mate-

pair libraries of ~6kb and ~12kb were generated using the method outlined in Heavens et al. 2015 and 

sequenced on one HiSeq 2500 lane, again with a 250bp paired-end metric. Full statistics on the raw 

sequence data are provided in Supplementary Table 1. 

 

Quality control and trimming 

Sequencing data quality control was done using FastQC (version 0.11.3) (Andrews 2010). Paired-end reads 

were quality trimmed using TrimGalore (https://github.com/FelixKrueger/TrimGalore) so that all bases had 

a quality score >30, removing any read (and its pair) trimmed to less than 40 bp length. Adapter trimming 

was performed, setting the --stringency parameter to 5. Mate pair reads were trimmed using the same 

approach and subjected to further mate-pair adapter trimming using NxTrim (O’Connell et al., 2015) set to 

retain sequences ≥40bp post-trimming. This ensured high-quality mate-pair reads were separated from 
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those devoid of mate-pair adapters or showing the wrong orientation. Statistics for quality-controlled final 

sequence data are presented in Supplementary Table 2.  

 

Genome size estimation 

Genome size was estimated using the paired end sequence data. Jellyfish-2.2.6 (Marçais and Kingsford 

2011) was used to generate k-mer distribution histograms for k-mer sizes of 101 and 111 using ~100M QC-

passed paired reads. KAT tools v.2.3.4 (Mapleson et al. 2017) was used to generate a k-mer distribution 

histogram for a k-mer size of 67 with the ‘KAT comp’ option. The k-mer distributions were analysed via 

Genomescope (Vurture et al. 2017), which predicted a genome size of 2.0 to 2.2 Gb for the Jellyfish 

histograms and 1.9–2.1Gb for the KAT histogram. A single homozygous peak was observed in the k-mer 

distribution histograms generated through both approaches, providing additional evidence for haploidy 

(Supplementary Fig 1).   

 

Genome assembly 

Genome assembly was performed in a stepwise process using different algorithms for contig assembly, 

scaffolding and gap-filling. Contig generation done using W2RAP (Clavijo et al. 2017) with a k-mer value 

of 208, minimum contig length filter of 800bp and remaining parameters set to default. The contig 

assembly was evaluated for completeness using BUSCO v3 against the Actinopterygii dataset (Simão et al. 

2015) and contiguity statistics were generated using the abyss-fac option within the ABySS 2.0 toolkit 

(Jackman et al. 2017). This initial assembly had a size of 1.83 Gb comprising 268,622 contigs and a 

BUSCO (Waterhouse et al. 2018) completeness score of 74.9% (see next section). Scaffolding was done 

using the mate-pair sequence data with SSPACE 3.0 (Boetzer et al. 2011). The W2RAP contigs were 

scaffolded in succession using the 6Kb followed by the 12Kb insert libraries. The assembly was then gap-

filled using GapFiller 1.10 (Boetzer and Pirovano 2012) for four iterations using 80x coverage paired-end 

sequence data. Scaffolding using SSPACE 3.0 resulted in a marked increase in assembly size and >14-fold 

increase in contiguity (Supplementary Table 2). Gap closing with four iterations eliminated a total of 66.43 

Mb spanning 34,132 gaps. The overall gap content in the assembly remained at around 569 Mbp. Statistics 

for the final assembly are given in Supplementary Table 2.  

 

Genome completeness assessment 

The scaffolded huchen assembly was screened for 458 conserved eukaryotic proteins using CEGMA (Parra 

et al. 2007) and 4,584 conserved Actinopterygii genes using BUSCO (Waterhouse et al. 2018). The 

assembly achieved a CEGMA completeness score of 95% (Supplementary Table 2). 4,135 (90.2%) of the 

BUSCO genes were complete in the final assembly (Supplementary Table 2). Fragmented BUSCOs 

comprised a small (3.2%) proportion of genes in the assembly. Assembly quality was further assessed 

using KAT tools v.2.3.4.(Mapleson et al. 2017). KAT comp was used to compare k-mer content of the 

paired-end reads to the k-mer content of the scaffolded assembly. A spectra plot was used to gauge 
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completeness and the presence of mis-assemblies, which displayed a normal distribution, consistent with a 

haploid assembly (Supplementary Table 2). 

 

Repeat prediction and masking 

Repeat masking was performed using RepeatMasker (Smit et al. 2015). Repbase (Bao et al. 2015) was used 

to download updated repeat databases (44,968 sequences, 117.2 Mb). Repeat libraries for Atlantic salmon 

(http://lucy.ceh.uvic.ca/repeatmasker/cbr_repeatmasker.py) and European grayling (Varadharajan et al. 

2018) containing 2,494 (1.2 Mb) and 1,195 (0.87 Mb) respective sequences were also downloaded. In 

addition, de novo repeat modelling was performed using RepeatModeler (Smit et al. 2015; Smit and 

Hubley 2015). The de novo repeat library was subjected to blastx (Altschul et al. 1997) against the UniProt 

database to remove any repeats matching an annotated protein-coding gene. All these datasets were merged 

into a single library that was used for the repeat masking.  The curated de novo repeat library salmon 

contained 1,158 sequences comprising 0.9 Mb. Repeat masking in combination with the other repeated 

libraries masked a total of 932.1 Mb (~37 %) of the huchen genome. Unclassified elements dominated the 

different repeat categories accounting for ~ 429 Mb (Supplementary Table 3).  

 

Supplementary Methods 2: Scripts used in study 

 

############################################################## 
script: Filter a MAF file for alignment depth of two and retrieve count data for each alignment.##(BASH) 
############################################################ 
#1 

for i in *.maf 

do  

grep -A 2 "mult=2" $i >$i.filter  

done #pulls out all the alignment blocks with depth=2 from a maf file 

#2 

for i in *.filter 

do  

grep -A 1 -B 1 "ChrA" $i >$i.ChrA _mult2;  

done #split the maf file into separate files for each Atlantic salmon ohnologue sequence. 

#3 

for i in *mult2 

do 

grep ‘scaffold|NW’ $i | \ # 

cut -c 1-50 | \ 

cut -f 1 | \ 

cut -f 2 -d '.' | sort | \ 

uniq -c >$i.ids #generate counts for each scaffold in each MAF file. 

done 

 

######################################################################## 

Categorise trees into different SSR levels (R script) 
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########################################################## 

library(ape) 

library(phytools) 

library(phangorn) 

library(geiger) 

 

check.topologya = function(tree){ 
  salmonid.tips = c('huc', 'ssa', 'omy', 'oki', 'ots','thy', '1sa', 'sal') 
  if(length(grep('thy', tree$tip.label, value = T))==0) cat ("no_grayling\n") 
  if(is.monophyletic(tree,grep('thy',tree$tip.label[substr(tree$tip.label, 1, 3) %in% salmonid.tips],invert = T, 
value = T))){ 
    cat('LORe_thy\n')} 
  treex<-drop.tip(tree, grep('thy', tree$tip.label, value = T)) 
  if(length(grep('huc', treex$tip.label, value = T))==0) cat ("no_hucho\n") 
  if(is.monophyletic(treex,grep('huc',treex$tip.label[substr(treex$tip.label, 1, 3) %in% salmonid.tips],invert 
= T, value = T))){ 
    cat('LORe_huc\n')} 
  treey<-drop.tip(treex, grep('huc', treex$tip.label, value = T)) 
  if(length(grep('ssa', treey$tip.label, value = T))==0) cat ("no_salmo\n") 
  if(is.monophyletic(treey,grep('ssa',treey$tip.label[substr(treey$tip.label, 1, 3) %in% salmonid.tips],invert 
= T, value = T))){ 
    cat('LORe_ssa\n')} 
  treez<-drop.tip(treey, grep('ssa', treey$tip.label, value = T)) 
  if(length(grep('sal', treez$tip.label, value = T))==0) cat ("no_salvelinus\n") 
  if(is.monophyletic(treez,grep('sal',treez$tip.label[substr(treez$tip.label, 1, 3) %in% salmonid.tips],invert = 
T, value = T))){ 
    cat('LORe_sal\n') 
     tree = drop.tip(tree, grep('huc', tree$tip.label, value = T)) 
     dupfinder.results = dupFindera(tree, salmonids = grep('huc', salmonid.tips, invert = T, value = T)) 
    test1 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), dupfinder.results$alpha) 
     test2 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), grep('huc', dupfinder.results$alpha, invert 
= T, value = T)) 
     return(identical(test1,test2)  & test1 == T) 
      } 
  dupfinder.results = dupFindera(tree) # dupfinder function adapted from Varadharajan et al, 2018 
  if(length(dupfinder.results)>0){ 
    cat('Normal dup tree\n') 
    test1 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), dupfinder.results$alpha) 
    test2 = is.monophyletic(drop.tip(tree, dupfinder.results$beta), grep('huc', dupfinder.results$alpha, invert 
= T, value = T)) 
    return(identical(test1,test2)  & test1 == T) 
  } 
  if(length(dupfinder.results)==0){ 
    print('No dup') 
    is.monophyletic(tree, grep('huc', tree$tip.label[substr(tree$tip.label, 1, 3) %in% salmonid.tips], invert = 
T, value = T)) 
  }  
} 
 

#simple function to test for duplicate branching and SSR type.  
lore_testing=function(tree){ 
  tree2<-read.tree(file = tree) 
  if(length(grep('esox', tree2$tip.label, value = T))>0){ 
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    test3<-root(tree2,outgroup = grep('esox', tree2$tip.label, value = T ), resolve.root = TRUE) 
  }else if (length(grep('thym_chr_a', tree2$tip.label, value = T))>0){ 
    test3<-root(tree2,outgroup = grep('thym_chr_a', tree2$tip.label, value = T ), resolve.root = TRUE)   
  }else if (length(grep('thym_chr_b', tree2$tip.label, value = T))>0){ 
    test3<-root(tree2,outgroup = grep('thym_chr_b', tree2$tip.label, value = T ), resolve.root = TRUE)  
  #}else if (length(grep('huc', tree2$tip.label, value = T))==1){ 
    #test3<-root(tree2,outgroup = grep('huc', tree2$tip.label, value = T ), resolve.root = TRUE) 
      }else { 
    test3<-midpoint(tree2, node.labels = "label")} 
  check.topologya(test3) 
plot.coldupsa(tr = test3) 
} 
 
#standard looping - works good  
files <- list.files(path="D:/trees/", pattern="*.treefile", full.names=TRUE, recursive=FALSE) 
sink('ssr3_chra_chrb_10nodes.txt') 
pdf("ssr3_chra_chrb_10nodes.txt ", width = 12, height = 12, paper = "a4r") 
par(mfrow=c(2,1)) 
for(i in 1:length(files)){ 
  file<-cat(files[i],('\n')) 
  lore_testing(files[i]) 
cat ('\n')} 
sink() 
dev.off() 
 
#######get coordinates for salmon chromosomes from a MAF file (Bash script)################# 
grep ssaXX.ssaXX mult11.maf | cut -c 1-55 | sort -n -k 3 >mult11_ssal_sorted_coordinates.txt 
 
########################################################## 
Retrieve genes from different SSR blocks and AORe regions in salmon genome (Rscript) 
############################################################ 
library(tidyverse) 
library(openxlsx) 
library(readxl) 
 
##load data 
aore_regions<-read_excel("aore_boundaries.xlsx") 
aore_regions<-as.data.frame(apply(aore_regions,2,function(x)gsub('\\s+', '',x))) ### remove any spaces in 
the whole data 
 
lore_regions<-read_excel("lore_boundaries.xlsx") 
lore_regions<-as.data.frame(apply(lore_regions,2,function(x)gsub('\\s+', '',x))) 
 
chr_id_replace<-read_excel("ncbi_cigene_mapping.xlsx") 
ssal_gene_pos<- read_tsv("Ssal_genePos.tsv") 
 
duplicates<-read.table("duplicates_list.txt",header = T) 
dup1<- duplicates$gene1 
dup2<- duplicates$gene2 
dups_list<- as.data.frame(c(dup1,dup2)) 
dups_list$`c(dup1, dup2)`<-as.numeric(dups_list$`c(dup1, dup2)`) 
 
###change gene names to cigene 
salmon_genes<-merge(ssal_gene_pos,chr_id_replace,by.x = c("seqname"), by.y = c("ncbi"),  
      all.x = T, all.y = F) %>% na.omit(T) %>% select(cigene,start,end,geneID) %>% arrange(cigene,start) 
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salmon_genes$start <- as.numeric(salmon_genes$start) 
salmon_genes$end <- as.numeric(salmon_genes$end) 
 
###### function to get genes within aore boundaries 
try1<-lapply(1:nrow(aore_regions),function(i){ 
  ref_chro <- as.character(aore_regions$chr[i]) 
  ref_start <- as.numeric(aore_regions$start[i]) 
  ref_end <- as.numeric(aore_regions$end[i]) 
  filter(salmon_genes,cigene == ref_chro,start > ref_start & start < ref_end) 
  }) 
 
aore_genes<-bind_rows(try1) 
aore_genes['redip'] = "AORe" 
 
#### function against lore regions 
lore_redip <- filter(lore_regions, redip == "SSR1") ## set SSR1, SSR2. SSR3,SSR4,SSR5 
 
try2<-lapply(1:nrow(lore_redip),function(i){ 
  ref_chro <- as.character(lore_redip$chr[i]) 
  ref_start <- as.numeric(lore_redip$start[i]) 
  ref_end <- as.numeric(lore_redip$end[i]) 
  filter(salmon_genes,cigene == ref_chro,start > ref_start & start < ref_end) 
}) 
 
SSR1_genes<-bind_rows(try2) 
SSR1_genes['redip'] = "SSR1" 
SSR1_genes$geneID = as.numeric(SSR1_genes$geneID) 
 
SSR2_genes<-bind_rows(try2) 
SSR2_genes['redip'] = "SSR2" 
 
SSR3_genes<-bind_rows(try2) 
SSR3_genes['redip'] = "SSR3" 
 
SSR4_genes<-bind_rows(try2) 
SSR4_genes['redip'] = "SSR4" 
 
SSR5_genes<-bind_rows(try2) 
SSR5_genes['redip'] = "SSR5" 
 
### compare it against the duplicates database from Bertolotti et al 
aore_dups<-as.data.frame(intersect(dups_list$`c(dup1, dup2)`, aore_genes$geneID)) 
ssr1_dups<-as.data.frame(intersect(dups_list$`c(dup1, dup2)`, SSR1_genes$geneID)) 
ssr2_dups<-as.data.frame(intersect(dups_list$`c(dup1, dup2)`, SSR2_genes$geneID)) 
ssr3_dups<-intersect(dups_list$`c(dup1, dup2)`, SSR3_genes$geneID) 
ssr4_dups<-intersect(dups_list$`c(dup1, dup2)`, SSR4_genes$geneID) 
ssr5_dups<-intersect(dups_list$`c(dup1, dup2)`, SSR5_genes$geneID) 
 
ssr_345_dups<- as.data.frame(c(ssr3_dups,ssr4_dups,ssr5_dups)) ### merge all ssr345 into one dataframe 
 
gene_annotation<-read_csv("genes_products.csv") 
 
aore_dups_annotation<-left_join(aore_dups,gene_annotation) 
ssr1_dups_annotation<-left_join(ssr1_dups,gene_annotation) 
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ssr2_dups_annotation<-left_join(ssr2_dups,gene_annotation) 
ssr345_dups_annotation<-left_join(ssr345_dups,gene_annotation) 
 
 
##################################################################################### 
Get unique and shared GOslim terms from different rediploidization categories (R script) 
####################################################################### 
###load data 
 
daore<-read_excel("GO_slim_to_plot.xlsx", sheet = "AORE_ohno") 
daore2<-daore %>% select(Term, Count) 
daore2['redip']='AORe-ohnologue' 
 
dssr1<-read_excel("GO_slim_to_plot.xlsx", sheet = "SSR1_ohno") 
dssr12<-dssr1 %>% select(Term, Count) 
dssr12['redip']='SSR1-ohnologue' 
 
dssr2<-read_excel("GO_slim_to_plot.xlsx", sheet = "SSR2_ohno") 
dssr22<-dssr2 %>% select(Term, Count) 
dssr22['redip']='SSR2-ohnologue' 
 
dssr345<-read_excel("GO_slim_to_plot.xlsx", sheet = "SSR345_ohno") 
dssr3452<-dssr345 %>% select(Term, Count) 
dssr3452['redip']='SSR345-ohnologue' 
 
saore<-read_excel("GO_slim_to_plot.xlsx", sheet = "AORE_sing") 
saore2<-saore %>% select(Term, Count) 
saore2['redip']='AORe-singleton' 
unique_singletons<- as.vector(saore2$Term) 
 
####pool data and aggregate 
 
pool1<-rbind(saore2,daore2,dssr12,dssr22,dssr3452) 
 
upset_data<-aggregate(redip ~ Term, unique(pool1), paste, collapse = "&")  ## aggregate by GO terms 
 
datapool<-aggregate(redip ~ Term, unique(pool1), paste, collapse = ",")   ## aggregate by GO terms 
 
GO_slim_unique_shared<- datapool %>% arrange(redip) 
 
 
######################################################################################
R script to parse orthogroups and get dN/dS values for selected nodes 
################################################################################# 
--- 
title: "Identify branches of interest in aBSREL results" 
output: 
  html_document:  
    toc: yes 
    toc_float: yes 
    code_folding: hide 
editor_options:  
  chunk_output_type: console 
--- 
```{r setup, include=FALSE} 
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knitr::opts_chunk$set(echo = TRUE) 
library(tidyverse) 
library(ape) 
library(jsonlite) 
``` 
 
```{r load_data} 
source("getEdgesToClade.R") 
# extract trees from json files: 
extractTreesFromJSON <- function(jsonpath){ 
  tibble( file = dir(jsonpath,full.names = T,pattern = ".json$")) %>%  
    mutate( data = map( file, read_json)) %>%  
    mutate( jsonTree = map( data, ~ read.tree(text = paste0(.x$input$trees$`0`,";")) )) %>%  
    mutate( OG = sub(".fasta.ABSREL.json","",basename(file))) %>%  
    with( setNames(jsonTree,OG)) 
} 
 
resultPath <- "~/Dropbox/REWIRED project/received files/from_manu/aBSREL results for Manu article" 
 
ssr1Trees <- extractTreesFromJSON(file.path(resultPath,"ssr1_json")) 
ssr2Trees <- extractTreesFromJSON(file.path(resultPath,"ssr2_json")) 
aoreTrees <- extractTreesFromJSON(file.path(resultPath,"aore_json")) 
 
spcTree <- read.tree("data/from_ortho_pipeline/SpeciesTree_rooted_node_labels.txt") 
# define some useful constants 
N6spcs <- c("Stru","Ssal","Omyk","Okis","Salp") 
N5spcs <- c(N6spcs,"Hhuc") 
N4spcs <- c(N5spcs,"Tthy") 
 
``` 
## Species tree 
```{r} 
plot.phylo(spcTree, show.node.label = T,use.edge.length = F) 
``` 
 
## Identifying clades 
The aim is to identify the branches of the gene-trees that lead to specific clades defined by a set of species. 
The algorithm I use here identifies edges in the tree where the all children of the child node are in the set of 
clade species, with no copies, but the same is not true for the parent node. 
## branches of interest 
### AORE - Ortholog resolution at salmonid common ancestor 
Branches of interest are: 
* (blue) the branches going from duplication node to the two N4 clades (All salmonids) 
* (red) the branches going to the two N6 clades (All salmonids except Tthy and Hhuc) 
 
#### Example 
 
```{r} 
OG="OG1v0000101.121" 
tree = aoreTrees[[OG]] 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N4spcs)] <- "blue" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2, main=OG) 
``` 
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#### stats 
How many clades do we identify in each tree? Do they overlap? Are the clades rooted in internal nodes (as 
opposed to tips)? 
```{r} 
trees = aoreTrees 
 
N6cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N6spcs) 
N4cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N4spcs) 
N_N6clades <- sapply(N6cladeEdges,length) 
N_N4clades <- sapply(N4cladeEdges,length) 
overlap <- sapply(mapply(FUN = intersect,x=N6cladeEdges,y=N4cladeEdges),length) 
table(N_N6clades,N_N4clades,overlap=overlap>0) 
edges2nodeNames <- function(edges,tree){ 
  nodes <- tree$edge[edges,2] 
  c(tree$tip.label,tree$node.label)[nodes] 
} 
 
N6nodeNames <- mapply( edges = N6cladeEdges, tree=trees, FUN=edges2nodeNames) 
N4nodeNames <- mapply( edges = N4cladeEdges, tree=trees, FUN=edges2nodeNames) 
allN6nodesInternal <- sapply(N6nodeNames,function(x) all(grepl("^Node",x))) 
allN4nodesInternal <- sapply(N4nodeNames,function(x) all(grepl("^Node",x))) 
 
goodTrees <- N_N6clades==2 & N_N4clades==2 & overlap==0 
 
table(allN6nodesInternal,goodTrees) 
 
aore_goodTrees <- N_N6clades==2 & N_N4clades==2 & overlap==0 & allN6nodesInternal & 
allN4nodesInternal 
 
``` 
Of the `r length(trees)` AORE trees, `r sum(aore_goodTrees)` trees have exactly two N4 clades and two N6 
clades that do not overlap. 
#### Bad tree #1 
Only one inner N4 clade: 
 
```{r} 
# which(N_N6clades==1 & N_N4clades==2 & overlap==0) 
OG="OG1v0011980.15" 
tree = trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N4spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 
 
#### Bad tree #2 
One clade is missing both Tthy and Hhuc, therefore N4 clade is same as N6 clade: 
```{r} 
# which(N_N6clades==2 & N_N4clades==2 & overlap>0) 
OG="OG1v0014017.13" 
tree = trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
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edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N4spcs)] <- "blue" 
edgeColors[intersect(getEdgesToClade(tree,N4spcs),getEdgesToClade(tree,N6spcs))] <- "purple" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 
 
 
### SSR1 - Ortholog resolution after Tthy split 
Branches of interest are: 
* (blue) the branches going from duplication node to the two N5 clades (All salmonids except Tthy) 
* (red) the branches going to the two N6 clades (All salmonids except Tthy and Hhuc) 
#### Example 
```{r} 
tree = ssr1Trees$OG1v0000520.54 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N5spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2, main="OG1v0000520.54") 
``` 
 
#### stats 
How many clades do we identify in each tree? 
```{r} 
trees = ssr1Trees 
 
N6cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N6spcs) 
N5cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N5spcs) 
N_N6clades <- sapply(N6cladeEdges,length) 
N_N5clades <- sapply(N5cladeEdges,length) 
 
overlap <- sapply(mapply(FUN = intersect,x=N6cladeEdges,y=N5cladeEdges),length) 
 
table(N_N6clades,N_N5clades,overlap=overlap>0) 
 
 
N6nodeNames <- mapply( edges = N6cladeEdges, tree=trees, FUN=edges2nodeNames) 
N5nodeNames <- mapply( edges = N5cladeEdges, tree=trees, FUN=edges2nodeNames) 
 
allN6nodesInternal <- sapply(N6nodeNames,function(x) all(grepl("^Node",x))) 
allN5nodesInternal <- sapply(N5nodeNames,function(x) all(grepl("^Node",x))) 
 
goodTrees <- N_N6clades==2 & N_N5clades==2 & overlap==0 
 
ssr1_goodTrees <- N_N6clades==2 & N_N5clades==2 & overlap==0 & allN6nodesInternal & 
allN5nodesInternal 
 
``` 
Of the `r length(ssr1Trees)` ssr1 trees, `r sum(ssr1_goodTrees)` trees have exactly two N5 clades and two 
N6 clades that do not overlap. 
#### Bad tree #1 
 
```{r} 
# which(N_ssr1N6clades==9 & N_ssr1N5clades==12) 
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tree = ssr1Trees$OG1v0000994.33 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N5spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main="OG1v0000994.33") 
``` 
 
Completely messed up... 
#### Bad tree #2 
Contains duplicate Hhuc gene: 
```{r} 
# which(N_ssr1N6clades==2 & N_ssr1N5clades==3 & ssr1_overlap==0) 
OG = "OG1v0004789.19" 
tree = ssr1Trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
edgeColors[getEdgesToClade(tree,N5spcs)] <- "blue" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 
### SSR2 - Ortholog resolution after Hhuc split 
Branches of interest are: 
* (red) the branches going from duplication node to the two N6 clades (All salmonids except Tthy and 
Hhuc) 
 
#### Example 
```{r} 
# filter(OGtbl, geneID=="105019051")$N0 
OG="OG1v0000596.55" 
tree = ssr2Trees[[OG]] 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2, main=OG) 
``` 
 
#### stats 
How many clades do we identify in each tree? Do they overlap? Are the clades rooted in internal nodes (as 
opposed to tips)? 
```{r} 
trees = ssr2Trees 
 
N6cladeEdges <- lapply(trees, getEdgesToClade, cladeSpcs = N6spcs) 
N_N6clades <- sapply(N6cladeEdges,length) 
table(N_N6clades) 
N6nodeNames <- mapply( edges = N6cladeEdges, tree=trees, FUN=edges2nodeNames) 
allN6nodesInternal <- sapply(N6nodeNames,function(x) all(grepl("^Node",x))) 
goodTrees <- N_N6clades==2  
table(allN6nodesInternal,goodTrees) 
ssr2_goodTrees <- N_N6clades==2 & allN6nodesInternal 
 
``` 
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Of the `r length(trees)` SSR2 trees, `r sum(ssr2_goodTrees)` trees have exactly two N6 clades which are 
not tip nodes. 
#### Bad tree #1 
Salp duplicates form a clade: 
 
```{r} 
which(N_N6clades==4) 
OG="OG1v0000981.48" 
tree = trees[[OG]] 
 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 
 
#### Bad tree #2 
 
```{r} 
# which(N_N6clades==4) 
OG="OG1v0006983.18" 
tree = trees[[OG]] 
edgeColors <- rep("black",Nedge(tree)) 
edgeColors[getEdgesToClade(tree,N6spcs)] <- "red" 
plot(tree, use.edge.length = F,edge.color = edgeColors,edge.width = 2,main=OG) 
``` 
 
## CSV files 
Combine all the csv files for the "good" trees and add a column identifying the nodes of interest. 
```{r} 
 
getCladeNodeNames <- function(tree,cladeSpcs){ 
  edges <- getEdgesToClade(tree,cladeSpcs) 
  edges2nodeNames(edges,tree) 
} 
 
nodeTbl <- bind_rows( 
  .id="oreType", 
  aore = tibble(OG = names(aore_goodTrees)[aore_goodTrees]) %>%  
    mutate( N6 = map(OG, function(OG){getCladeNodeNames(tree=aoreTrees[[OG]], cladeSpcs = 
N6spcs)})) %>%  
    mutate( N4 = map(OG, function(OG){getCladeNodeNames(tree=aoreTrees[[OG]], cladeSpcs = 
N4spcs)})) %>%  
    gather(key = "clade",value = "node",N6,N4) %>%  
    unnest(node), 
  ssr1 = tibble(OG = names(ssr1_goodTrees)[ssr1_goodTrees]) %>%  
    mutate( N6 = map(OG, function(OG){getCladeNodeNames(tree=ssr1Trees[[OG]], cladeSpcs = 
N6spcs)})) %>%  
    mutate( N5 = map(OG, function(OG){getCladeNodeNames(tree=ssr1Trees[[OG]], cladeSpcs = 
N5spcs)})) %>%  
    gather(key = "clade",value = "node",N6,N5) %>%  
    unnest(node), 
  ssr2 = tibble(OG = names(ssr2_goodTrees)[ssr2_goodTrees]) %>%  
    mutate( N6 = map(OG, function(OG){getCladeNodeNames(tree=ssr2Trees[[OG]], cladeSpcs = 
N6spcs)})) %>%  
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    gather(key = "clade",value = "node",N6) %>%  
    unnest(node) 
) 
combinedCSVtable <-  
  nodeTbl %>%  
  select(oreType, OG) %>% 
  distinct() %>%  
  mutate( filename=file.path(resultPath,paste0(oreType,"_json"), 
                     paste0(OG,".fasta.ABSREL.json.csv")) ) %>%  
  mutate( tbl = map(filename,read_csv,col_types = cols())) %>% 
  select(-filename) %>%  
  unnest(tbl) %>%  
  left_join(nodeTbl, by=c("oreType","OG","node")) 
 
write_csv(combinedCSVtable,"combinedCSVtable.csv") 
``` 
## plot the dN/dS values for for the identified clades 
```{r} 
combinedCSVtable %>%  
  filter( !is.na(clade)) %>%  
  filter( baseline_omega < 200) %>%  
  ggplot( aes(x=clade,y=baseline_omega)) + geom_boxplot() + facet_grid( . ~ oreType) +  
  coord_cartesian(ylim=c(0,2))  
``` 
 
 

Supplementary Methods 3: SSR trees mapped to the brown trout genome  

 
The chromosome level genome of brown trout (NCBI accession: GCA_901001165.1) was used to explore 

the impact of genome assembly on the mapping of SSR tree topologies (Supplementary Fig. 11-12). The 

goal was to answer whether the physical interspersing of distinct SSR phylogenetic topologies along 

Atlantic salmon chromosomes was caused by assembly artefacts. For this test, we selected the ohnologue 

block represented by Atlantic salmon chromosome arms 03 and 06 (Ssa03-06) owing to the large number 

of recovered phylogenetic trees. Brown trout sequences homologous to Ssa03 and Ssa06 were identified by 

BLASTn as chromosomes 01 and 32 (St01, St32). Multispecies genome alignments accommodating these 

brown trout sequences were generated and processed using the methods described in the main text, except 

that the resultant tree topologies were visualized along St01 and St32 instead of Ssa03 and Ssa06 

(Supplementary Fig. 11). In addition, a circos plot was generated to compare Ssa06 with its brown trout 

putative orthologue St01 to consider the impact of rearrangements across species (Supplementary Fig. 12). 
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Supplementary Figures 
 

 

 
 
Supplementary Fig. 1. Huchen genome assembly validation. a Flow cytometry validation of haploidy in huchen. 
DNA content index for a diploid huchen individual (top panel) and for the sequenced haploid embryo (bottom panel). 
b Genomescope k-mer distribution for the huchen using paired-end sequence data (k-mer value: 101) c KAT plot for 
the gap-filled huchen assembly. The black region represents paired-end sequences that are not present in the assembly. 
The red region represents paired-end sequences used once in the assembly. The distribution of the red area indicates a 
homozygous assembly. 
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Supplementary Fig. 2. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa03 and Ssa06 in the Atlantic salmon genome. A circos plot is shown at the top of the figure, where each sweeping 
band represents the location of ohnologue regions sampled in sequence alignments on Ssa03 and Ssa06. The panel 
immediately proximal to these bands shows the percent nucleotide sequence identity between the duplicated regions; 
orange = 90-95%, red = > 95%. The colour of each band represents the phylogenetic topology reconstructed for each 
sampled alignment with respect to trees presented below the circos plot based on matching colours (e.g. sweeping 
blue bands represent SSR1 topologies). We also provide the number (n) of sampled trees per defined rediploidization 
history.  
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Supplementary Fig. 3. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa04 and Ssa08 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 4. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa02 and Ssa12 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 5. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa02 and Ssa05 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 6. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa03 and Ssa23 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 

  



23 
 

 
Supplementary Fig. 7. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa07 and Ssa17 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 8. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa11 and Ssa26 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 9. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa16 and Ssa17 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 10. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa05 and Ssa09 in the Atlantic salmon genome. All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 11. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Str01 and Str32 in the brown trout genome (orthologous to Ssa06 and Ssa03 in the Atlantic salmon genome, 
respectively). This figure demonstrates a similar intermixing of phylogenetic signals (i.e. different rediploidization 
histories) in the brown trout genome as observed for the Atlantic salmon genome (compare with Supplementary Fig. 
3). All other details are as described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 12. Mapping of reconstructed lineage-specific rediploidization histories contrasting Ssa06 from 
Atlantic salmon with its orthologous region in brown trout (Str01) demonstrating the persistence of intermixing of 
phylogenetic signals (i.e. different rediploidization histories) in both genome assemblies. All other details are as 
described in the Supplementary Fig. 2 legend. 
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Supplementary Fig. 13. Mapping of reconstructed lineage-specific rediploidization histories for ohnologue regions 
Ssa03 and Ssa06 in the Atlantic salmon genome, using protein-coding gene trees as opposed to our genome-wide 
alignments.  
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Supplementary Fig. 14. Gene expression of ohnologue (yellow shading) and singleton gene (blue shading) sets 
residing in genomic regions with distinct rediploidization ages. RNA-Seq transcripts per million (TPM) data for 
Atlantic salmon tissues from Lien et al. 2016. Box and whisker plot definition: each box spans the interquartile range, 
with the median (Q2) as a central bar, and upper and lower bounds representing the respective minimum and 
maximum values within the 25th percentile (Q1) and 75th percentile (Q3). The upper and lower whisker bounds 
represent the largest and smallest values lying within 1.5 times above Q3 and below Q1, respectively. One-way 
ANOVA was performed to test for differences in TPM across the shown gene sets (overall P value given in graphs). 
Tukey’s test was performed to identify category specific TPM differences (differences among categories at 95% 
confidence level shown by different letters). 
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Supplementary Fig. 15. Summary of steps used to generate multispecies ohnologue alignments in advance of 
phylogenomic analyses. 
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Supplementary Fig. 16. Example trees for SSR1 topology. a-c. Example trees matching exactly to the predicted 
topology with no ambiguity, d-f. Example trees with minor ambiguity in branching but overwhelmingly supporting 
the expected topology, g-i. Example trees rejected due to ambiguous topology or low support. The numbers at the 
nodes of each tree indicate bootstrap support values Species abbreviations: thym = European grayling; ssa = Atlantic 
salmon; salp = Arctic charr; omyk = rainbow trout; otsh = chinook salmon; huc = huchen; esox = northern pike. All 
SSR trees are provided in Supplementary Data 7 and their genomic coordinates in Atlantic salmon are given in 
Supplementary Data 8. 
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Supplementary Fig. 17. Example trees for SSR2 topology. Other details as in the Supplementary Fig. 16 legend. 
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Supplementary Fig. 18. Example trees for SSR3 topology. Other details as in the Supplementary Fig. 16 legend. 
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Supplementary Fig. 19. Example trees for SSR4 topology. Other details as in the Supplementary Fig. 16 legend. 
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Supplementary Fig. 20. Example trees for SSR5 topology. Other details as in the Supplementary Fig. 16 legend. 
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Supplementary Fig. 21. Temporal constraints used in Bayesian rediploidization age analysis for genomic regions 
with distinct rediploidization histories. The shown topologies were set in the MCMCtree analyses, with black triangles 
indicating the position of temporal calibrations, which were set as uniform distribution priors.  
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Supplementary Tables 

 

 
 

Supplementary Table 1. Statistics for huchen genome sequencing data 

 

Data type Library Read pairs Total data (Gb) Coverage  Mean read length (bp) 

Raw sequencing data  

Paired-end 397,529,369 198.76 90.34 250 

6Kb mate-pair 78,491,938 39.24 17.83 250 

12Kb mate-pair 213,236,078 106.61 48.46 250 

Total: 689,257,385 344.61 156.63 250 

Post quality control 

Paired-end 370,394,584 139.26 63.3 188 

6Kb mate-pair 44,935,049 11.68  5.31 131 

12Kb mate-pair 124,687,467 32.29  14.70 129 

Total: 520,017,100 178.17  83.31 N/A 
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Supplementary Table 2. Statistics for the final huchen genome assembly 

 

Statistic All sequences 

Assembly Size 2,487,549,814 

Ungapped length 1,917,049,985 

Scaffold N50 287,338 Kb 

Contig N50 37,369 

Longest Scaffold 4.603 Mb 

No scaffolds 71,639 

% GC content 42.61 % 

Complete BUSCOs 90.2% 

Complete – single copy 48.6 % 

Complete - duplicated 41.6 % 

Fragmented 3.2 % 

Missing 6.6% 

CEGMA-Complete  236 

CEGMA-Fragmented 4 

CEGMA-Missing 8 
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Supplementary Table 3. Repeat prediction within the huchen genome 

 

Element  
Number of 

elements 
length Percentage 

SINEs  20,347 4,143,480 0.17 

 AIUs 1 64 0 

 MIRs 0 0 0 

LINEs  202,026 100,766,745 4.05 

 LINE1 3,809 1,831,205 0.07 

 LINE2 71,383 410,39,218 1.65 

 L3/CR1 2,012 877,215 0.04 

LTR elements  58,047 36,317,611 1.46 

 ERVL 3 321 0 

 ERVL-MaLRs 0 0 0 

 ERV_classI 7,818 5,592,413 0.22 

 ERV_classII 162 138,073 0.01 

DNA elements  904,622 308,552,003 12.40 

 hAT-Charlie 7,988 2,777,233 0.11 

 TcMar-Tigger 70 31,297 0 

Unclassified  708,405 428,579,333 17.23 

Total interspersed repeats 878,359,172 35.31 

Small RNA  75 9,505 0 

Satellites  107,39 4,887,842 0.2 

Simple repeats  661,233 44,896,670 1.8 

Low complexity  94,780 7,661,339 0.31 

TOTAL   932,098,879 37.47 

 

 

 

 

 

 

 

 

 



41 
 

 

Supplementary References 

 
 

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped 
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 

Acids Research 25:3389–3402. 

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. 

Bao W, Kojima KK, Kohany O. 2015. Repbase Update, a database of repetitive elements in 
eukaryotic genomes. Mobile DNA 6:11. 

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled contigs 
using SSPACE. Bioinformatics 27:578–579. 

Boetzer M, Pirovano W. 2012. Toward almost closed genomes with GapFiller. Genome Biol 13:R56. 

Clavijo BJ, Accinelli GG, Wright J, Heavens D, Barr K, Yanes L, Di-Palma F. 2017. W2RAP: a 
pipeline for high quality, robust assemblies of large complex genomes from short read data. 
bioRxiv:110999. 

Heavens D, Accinelli GG, Clavijo B, Clark MD. 2015. A method to simultaneously construct up to 12 
differently sized Illumina Nextera long mate pair libraries with reduced DNA input, time, and 
cost. BioTechniques 59:42–45. 

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, 
Coombe L, Warren RL, et al. 2017. ABySS 2.0: resource-efficient assembly of large genomes 
using a Bloom filter. Genome Res. 27:768–777. 

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, 
Zimin A, et al. 2016. The Atlantic salmon genome provides insights into rediploidization. 
Nature 533:200–205. 

Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, Clavijo BJ. 2017. KAT: a K-mer 
analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 
33:574–576. 

Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of 
occurrences of k-mers. Bioinformatics 27:764–770. 

O’Connell, J., Schulz-Trieglaff, O., Carlson, E., Hims, M., Gormley, N. and Cox, A., 2015. NxTrim:   
optimized trimming of Illumina mate pair reads: Table 1. Bioinformatics, 31(12), pp.2035-
2037. 

Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in 
eukaryotic genomes. Bioinformatics 23:1061–1067. 

Şahin T, Kurtoğlu İZ, Balta F. 2013. Effect of different extenders and storage periods on motility and 
fertilization rate of rainbow trout (Oncorhynchus mykiss) semen. Universal Journal of 

Agricultural Research 1:65–69. 

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing 
genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 
31:3210–3212. 



42 
 

Smit AFA, Hubley R. 2015. RepeatModeler Open-1.0. 2008–2015. Seattle, USA: Institute for 
Systems Biology. Available from: httpwww. repeatmasker. org. 

Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open-4.0. 2013–2015. :289–300. 

Varadharajan S, Sandve SR, Gillard GB, Tørresen OK, Mulugeta TD, Hvidsten TR, Lien S, Vøllestad 
LA, Jentoft S, Nederbragt AJ, et al. 2018. The grayling genome reveals selection on gene 
expression regulation after whole-genome duplication. Genome Biology and Evolution 
10:2785–2800. 

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. 2017. 
GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 
33:2202–2204. 

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, 
Zdobnov EM. 2018. BUSCO Applications from Quality Assessments to Gene Prediction and 
Phylogenomics. Molecular Biology and Evolution 35:543–548. 

 


