
1 
 

Title: To rarefy or not to rarefy: Enhancing diversity analysis of microbial communities through 1 

next-generation sequencing and rarefying repeatedly 2 

Authors: Ellen S. Camerona, Philip J. Schmidtb, Benjamin J.-M. Tremblaya, Monica B. 3 

Emelkob, Kirsten M. Müllera,* 4 

a Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, 5 

Canada, N2L 3G1 6 

b Department of Civil and Environmental Engineering, University of Waterloo, 200 University 7 

Ave. W, Waterloo, Ontario, Canada, N2L 3G1 8 

* Corresponding author. Tel.: +1 519 888 4567x32224 9 

E-mail address: kirsten.muller@uwaterloo.ca (K.M. Müller). 10 

  11 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2020.09.09.290049doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290049
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 12 

Amplicon sequencing has revolutionized our ability to study DNA collected from environmental 13 

samples by providing a rapid and sensitive technique for microbial community analysis that 14 

eliminates the challenges associated with lab cultivation and taxonomic identification through 15 

microscopy. In water resources management, it can be especially useful to evaluate ecosystem 16 

shifts in response to natural and anthropogenic landscape disturbances to signal potential water 17 

quality concerns, such as the detection of toxic cyanobacteria or pathogenic bacteria. Amplicon 18 

sequencing data consist of discrete counts of sequence reads, the sum of which is the library size. 19 

Groups of samples typically have different library sizes that are not representative of biological 20 

variation; library size normalization is required to meaningfully compare diversity between them. 21 

Rarefaction is a widely used normalization technique that involves the random subsampling of 22 

sequences from the initial sample library to a selected normalized library size. Rarefying is often 23 

dismissed as statistically invalid because subsampling effectively discards a portion of the 24 

observed sequences. Nonetheless, it remains prevalent in practice. Notably, the superiority of 25 

rarefying relative to many other normalization approaches has been argued in diversity analysis. 26 

Here, repeated rarefying is proposed as a tool for diversity analyses to normalize library sizes. 27 

This enables (i) proportionate representation of all observed sequences and (ii) characterization 28 

of the random variation introduced to diversity analyses by rarefying to a smaller library size 29 

shared by all samples. While many deterministic data transformations are not tailored to produce 30 

equal library sizes, repeatedly rarefying reflects the probabilistic process by which amplicon 31 

sequencing data are obtained as a representation of the source microbial community. 32 

Specifically, it evaluates which data might have been obtained if a particular sample’s library 33 
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size had been smaller and allows graphical representation of the effects of this library size 34 

normalization process upon diversity analysis results.  35 

Keywords (Maximum 6 keywords) 36 

Library size normalization, amplicon sequencing, alpha diversity, beta diversity, Shannon index, 37 

Bray-Curtis dissimilarity 38 

1. Introduction  39 

Next-generation sequencing (NGS) has revolutionized the understanding of environmental 40 

systems through the characterization of microbial communities and their function by examining 41 

DNA collected from samples that contain mixed assemblages of organisms (Bartram et al., 2011; 42 

Hugerth and Andersson, 2017; Shokralla et al., 2012). It is well known that fewer than 1% of 43 

species in the environment can be isolated and cultured, limiting the ability to identify rare and 44 

difficult-to-cultivate members of the community (Bodor et al., 2020; Cho and Giovannoni, 2004; 45 

Ferguson et al., 1984). In addition to the limitations of culturing, microscopic evaluation of 46 

environmental samples remains of limited utility because of challenges in high-resolution 47 

taxonomic identification and the inability to infer function from morphology (Hugerth and 48 

Andersson, 2017). Metagenomic evaluations employ NGS technology to analyze large quantities 49 

of diverse environmental DNA (Thomas et al., 2012) and have largely eliminated challenges 50 

associated with culturing and microscopic identification (McMurdie and Holmes, 2014). 51 

Metagenomics encompasses a conglomerate of different sequencing experimental designs, 52 

including amplicon sequencing (sequencing of amplified genes of interest) and shotgun 53 

sequencing (sequencing of fragments of present genetic material). While shotgun sequencing 54 

allows characterization of the entire community, including both taxonomic composition and 55 

functional gene profiles, it is not widely accessible due to high sequencing costs and 56 
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computational requirements for analysis (Bartram et al., 2011; Clooney et al., 2016; Langille et 57 

al., 2013). In contrast, the relatively low cost of amplicon sequencing has made it an increasingly 58 

popular technique (Clooney et al., 2016; Langille et al., 2013). The amplification and sequencing 59 

of specific genes (e.g., taxonomic marker genes) enables characterization of microbial 60 

community composition (Hodkinson and Grice, 2015); as a result, it has been successfully 61 

applied in many areas of environmental and water research. For example, amplicon sequencing 62 

has been used to characterize and predict cyanobacteria blooms (Tromas et al., 2017), describe 63 

microbial communities found in aquatic ecosystems (Zhang et al., 2020), and evaluate 64 

groundwater vulnerability to pathogen intrusion (Chik et al., 2020). It has also been applied to 65 

water quality and treatment performance monitoring in diverse settings (Vierheilig et al., 2015), 66 

including drinking water distribution systems (Perrin et al., 2019; Shaw et al., 2015), drinking 67 

water biofilters (Kirisits et al., 2019), anaerobic digesters (Lam et al., 2020), and cooling towers 68 

(Paranjape et al., 2020).  69 

Processing and analysis of amplicon sequencing data are statistically complicated for a 70 

number of reasons (Weiss et al., 2017). In particular, library sizes (i.e., the total number of 71 

sequencing reads within a sample) can vary widely among different samples, even within a 72 

single sequencing run, and the disparity in library sizes between samples may not represent 73 

actual differences in microbial communities (McMurdie and Holmes, 2014). Amplicon 74 

sequencing libraries cannot be compared directly for this reason. For example, two replicate 75 

samples with 5,000 and 20,000 sequence reads, respectively, are likely to have different read 76 

counts for specific sequence variants simply due to the difference in library size. While 77 

parametric tools such as generalized linear modelling (e.g., McMurdie and Holmes, 2014) can 78 

provide a statistically sound framework for differential abundance analysis, drawing biologically 79 
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meaningful diversity analysis conclusions from amplicon sequencing data typically requires 80 

normalization of library sizes to account for the additional variation in counts that is attributable 81 

to differences in library sizes between samples (McKnight et al., 2019). For example, larger 82 

samples may appear more diverse than smaller samples (Hughes and Hellmann, 2005). Notably, 83 

a variety of normalization techniques that may affect the analysis and interpretation of results 84 

have been suggested, including rarefaction (i.e., the process of rarefying libraries to a common 85 

size).  86 

Rarefaction is a normalization tool initially developed for ecological diversity analyses to 87 

allow for sample comparison without associated bias from differences in sample size (Sanders, 88 

1968). Rarefaction normalizes samples of differing sample size by subsampling each to a shared 89 

threshold. Although initially developed for use in ecological studies, rarefaction is a commonly 90 

used library size normalization technique for amplicon sequencing data. As a result, it is the 91 

subject of considerable debate and statistical criticism (Gloor et al., 2017; McMurdie and 92 

Holmes, 2014). Rarefying is typically conducted in a single iteration that only provides a 93 

snapshot of the community that might have been observed at the smaller normalized library size. 94 

This omits a random subset of observed sequences and potentially also samples with small 95 

library sizes and introduces artificial variation to the data (McMurdie and Holmes, 2014). 96 

Repeatedly rarefying, on the other hand, has the potential to address the statistical concerns 97 

associated with omission of data and could provide a more statistically acceptable technique than 98 

performing a single iteration of rarefying for diversity analyses. It characterizes what data might 99 

have been obtained if a particular sample’s library size had been smaller, revealing what can be 100 

inferred about community diversity in the source from samples of equal library size. Rarefying 101 

repeatedly has received only trivial consideration in the literature (e.g., McMurdie and Holmes, 102 
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2014; Navas-Molina et al., 2013).Diversity analysis approaches grounded in statistical inference 103 

about source microbial diversity (that address the random probabilistic processes through which 104 

NGS yields libraries of sequence reads) could conceptually be superior to rarefying (Willis, 105 

2019), but they are not yet fully developed or readily available for routine diversity analysis to 106 

support study of environmental microbial communities. 107 

Here, we investigate the application of repeatedly rarefying as a library size normalization 108 

technique specifically for diversity analyses. This paper graphically evaluates the impact of 109 

subsampling with or without replacement and normalized library size selection on diversity 110 

analyses such as the Shannon index and Bray-Curtis dissimilarity ordinations, specifically. 111 

Rather than representing diversity as a single numerical value or point in an ordination plot 112 

(often following transformation that may not be designed to compensate for differing library 113 

sizes), rarefying repeatedly yields bands of values or patches of points that characterize how 114 

diversity may vary among or between samples at a particular library size. 115 

2. Theory 116 

2.1 Amplicon Sequencing and Diversity Analysis for Microbial Communities in Water – An 117 

Overview 118 

Due to the inevitable interdisciplinarity of environmental water quality research and the 119 

complexity and novelty of next generation sequencing relative to traditional microbiological 120 

methods used in water quality analyses, further detail on amplicon sequencing is provided. 121 

Amplification and sequencing of taxonomic marker genes has been used extensively to examine 122 

phylogeny, evolution, and taxonomic classification of numerous groups across the three domains 123 

of life (Quast et al., 2013; Weisburg et al., 1991; Woese et al., 1990). Taxonomic marker genes 124 

include the 16S rRNA gene in mitochondria, chloroplasts, bacteria and archaea (Case et al., 125 
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2007; Tsukuda et al., 2017; Weisburg et al., 1991; Yang et al., 2016), or the 18S rRNA gene 126 

within the nucleus of eukaryotes (Field et al., 1988). Widely used reference databases have been 127 

developed containing marker gene sequences across numerous phyla (Hugerth and Andersson, 128 

2017).  129 

The 16S rRNA gene consists of nine highly conserved regions separated by nine 130 

hypervariable regions (V1-V9; Gray et al., 1984) and is approximately 1,540 base pairs in length 131 

(Kim et al., 2011; Schloss and Handelsman, 2004). While sequencing of the full 16S rRNA gene 132 

provides the highest taxonomic resolution (Johnson et al., 2019), many studies only utilize partial 133 

sequences due to limitations in read length of NGS platforms (Kim et al., 2011). Next-generation 134 

sequencing on Illumina platforms (Illumina Inc., San Diego, California) produces reads that are 135 

up to 350 base pairs in length, requiring selection of an appropriate region of the 16S rRNA gene 136 

to amplify and sequence for optimal taxonomic resolution (Bukin et al., 2019; Kim et al., 2011). 137 

Sequencing the more conservative regions of the 16S rRNA gene may be limited to resolution of 138 

higher levels of taxonomy, while more variable regions can provide higher resolution for the 139 

classification of sequences to the genus and species levels in bacteria and archaea (Bukin et al., 140 

2019; Kim et al., 2011; Yang et al., 2016).  141 

Different variable regions of the 16S rRNA gene may be biased towards different taxa 142 

(Johnson et al., 2019) and be preferred for different ecosystems (Escapa et al., 2020). For 143 

example, the V4 region has been shown to strongly differentiate taxa from the phyla 144 

Cyanobacteria, Firmicutes, Fusobacteria, Plantomycetes, and Tenericutes but the V3 region best 145 

differentiates taxa from the phyla Proteobacteria (e.g., Escherichia coli, Salmonella spp., 146 

Campylobacter spp.), Acidobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, 147 

Nitrospirae, and Spirochaetae (Zhang et al., 2018). The V4 region of the 16S rRNA gene is 148 
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frequently targeted using specific primers designed to minimize amplification bias while 149 

accounting for common aquatic bacteria (Walters et al., 2015) and is frequently used in aquatic 150 

studies (Zhang et al., 2018). It is important to consider suitability of a 16S rRNA region for the 151 

habitat (Escapa et al., 2020) and the taxa present in the microbial community due to potential 152 

bias of analyzing differing subregions of the 16S rRNA gene (Johnson et al., 2019; Zhang et al., 153 

2018).  154 

The use of amplicon sequencing of partial sequences of the 16S rRNA gene allows 155 

examination of microbial community composition and the exploration of shifts in community 156 

structure in response to environmental conditions (Hodkinson and Grice, 2015), and 157 

identification of differentially abundant taxa between samples (Hugerth and Andersson, 2017). 158 

Amplicon sequencing datasets can be analyzed using a variety of bioinformatics pipelines for 159 

sequence analysis (e.g., sequence denoising, taxonomic classification, diversity analysis) 160 

including mothur (Schloss et al., 2009) and QIIME2 (Bolyen et al., 2019). Previously, 161 

sequencing analysis involved the creation of dataset-dependent operational taxonomic units 162 

(OTUs) by clustering sequences into groups that met a certain similarity threshold, resulting in a 163 

loss of representation of variation in sequences and precluding cross-study comparison (Callahan 164 

et al., 2017). Advances in computational power have allowed a shift from use of OTUs to 165 

amplicon sequence variants (ASVs) representative of each unique sequence in a sample, which 166 

allows for the comparison of sequence variants generated in different studies and retains the full 167 

observed biological variation (Callahan et al., 2017). The implementation of tools included 168 

bioinformatics pipelines, such as DADA2 (Callahan et al., 2016) or Deblur (Amir et al., 2017), 169 

allows quality control of sequencing through the removal of sequencing errors and for the 170 

creation of ASVs.  171 
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Quality controlled sequencing data for a particular run is then organized into large matrices 172 

where columns represent experimental samples and rows contain counts for different ASVs 173 

(Weiss et al., 2017). Amplicon sequencing samples have a total number of sequencing reads 174 

known as the library size (McMurdie and Holmes, 2014), but do not provide information on the 175 

absolute abundance of sequence variants (Gloor et al., 2016, 2017). This data can be used for 176 

studies on taxonomic composition, differential abundance analysis and diversity analyses (Figure 177 

1). Taxonomic classification of 16S rRNA sequences using rRNA databases including SILVA 178 

(Quast et al., 2013), the Ribosomal Database Project (Cole et al., 2014) and GreenGenes 179 

(DeSantis et al., 2006) allows for construction of taxonomic community profiles (Bartram et al., 180 

2011). Taxonomic composition analysis allows for characterization of microbial communities by 181 

classifying sequence variants based on similarities to sequences in online databases. The creation 182 

of taxonomic composition graphs frequently expresses community composition in proportions. 183 

Differential abundance analysis is utilized to explore whether specific sequence variants are 184 

found in significantly different proportions between samples (Weiss et al., 2017) to identify 185 

potential biological drivers for these differences. This application is outside the scope of this 186 

work and is frequently performed using programs initially designed for transcriptomics, such as 187 

DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2009), or programs designed to account 188 

for the compositional structure of sequence data ALDeX2 (Fernandes et al., 2014). The final 189 

potential application of this data is diversity analyses, which can be evaluated on varying scales 190 

from within sample (alpha) to between samples (beta; Sepkoski, 1988) but is associated with the 191 

challenge of the true diversity of environmental sources largely remaining unknown (Hughes et 192 

al., 2001).  193 
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Alpha diversity serves to identify richness (e.g., number of observed sequence variants) and 194 

evenness (e.g., allocation of read counts across observed sequence variants) within a sample 195 

(Willis, 2019). Comparison of alpha diversity among samples of differing library sizes may 196 

result in inherent biases, with samples having larger library sizes appearing more diverse due to 197 

the potential presence of more sequence variants in samples with larger libraries (Hughes and 198 

Hellmann, 2005; Willis, 2019). This has commonly required samples to have equal library sizes 199 

before comparison to prevent bias fabricated only from differences in initial library size. 200 

Diversity indices used to characterize the alpha diversity of samples include but are not limited 201 

to the Shannon index (Shannon, 1948), Chao1 index (Chao and Bunge, 2002), and Simpson 202 

index (Simpson, 1949), but unique details of such indices should be understood for correct 203 

usage. For example, Chao1 relies on the observation of singletons in data to estimate diversity 204 

(Chao and Bunge, 2002), but denoising processes for sequencing data may remove singleton 205 

reads making the Chao1 estimator invalid for accurate analysis. The Shannon index, used in this 206 

study, is affected by differing library sizes because the contribution of rare sequences to total 207 

diversity is progressively lost with smaller library sizes. 208 

Similar to alpha diversity, samples with differing library sizes in beta diversity analyses may 209 

produce erroneous results due to the potential for samples with larger library sizes to have more 210 

unique sequences simply due to the presence of more sequence variants (Weiss et al., 2017). A 211 

variety of beta diversity metrics can be used to compare sequence variant composition between 212 

samples including Bray-Curtis (Bray and Curtis, 1957) or Unifrac (Lozupone and Knight, 2007) 213 

distances, which can then be visualized using ordination techniques (e.g., PCA, PCoA, NMDS). 214 

Bray-Curtis dissimilarity, used in this study, includes pairwise comparison of the numbers for 215 
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each ASV between two samples, which are expected to be quite dissimilar (even if the 216 

communities they represent are not) if library sizes vary substantially. 217 

2.2 Limitations of Library Size Normalization Techniques 218 

Diversity analysis, as it is presently applied, usually requires library size normalization to 219 

account for bias introduced through varying read counts in samples. For example, samples with 220 

larger library sizes may appear more diverse simply due to the presence of more sequences. 221 

Normalization techniques that feature various statistical transformations have been proposed for 222 

use in place of rarefying or proportions (McKnight et al., 2019), including upper-quartile log fold 223 

change (e.g., Robinson et al., 2009), centered log-ratio transformations (e.g., Gloor et al., 2017), 224 

geometric mean pairwise ratios (e.g., Chen et al., 2018), variance stabilizing transformations 225 

(e.g., Love et al., 2014) or relative log expressions (e.g., Badri et al., 2018). McKnight et al. 226 

(2019) noted that the failure of most normalization techniques to transform data to equal library 227 

sizes for diversity analysis “is discouraging, as standardizing read depths are the initial impetus 228 

for normalizing the data (i.e., if all samples had equal read depths after sequencing, there would 229 

be no need to normalize”. 230 

These proposed alternatives to rarefying are also often compromised by the presence of large 231 

proportions of zero count data in tabulated amplicon sequencing read counts. Zero counts 232 

represent a lack of information (Silverman et al., 2018) and may arise from true absence of the 233 

sequence variant in the sample or a loss resulting in it not being detected when it was actually 234 

present (Tsilimigras and Fodor, 2016; Wang and LêCao, 2019). Nonetheless, many 235 

normalization procedures for amplicon sequencing datasets require zero counts to be omitted or 236 

modified, especially when applying transformations that utilize logarithms (e.g., centered log-237 

ratio, relative log expressions, geometric mean pairwise ratios). Methods that utilize logarithms 238 
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involve fabricating count values (pseudocounts) for the many zeros of which amplicon 239 

sequencing datasets are comprised and selecting a pseudocount value is an additional challenge 240 

(Weiss et al., 2017) that may be accomplished using probabilistic arguments (Gloor et al., 2016; 241 

2017). Zeros are a natural occurrence in discrete, count-based data such as the counting of 242 

microorganisms or amplicon sequences and adjusting or omitting them can introduce substantial 243 

bias into microbial analyses (Chik et al., 2018). 244 

McMurdie and Holmes (2014) noted that use of proportions is problematic due to 245 

heteroscedasticity: for example, one sequence read in a library size of 100 is a far less precise 246 

representation of source composition than 100 sequence reads in a library size of 10,000, even 247 

though both comprise 1% of the observed sequences. McKnight et al. (2019) favour use of 248 

proportions in diversity analysis without noting how precision of proportions, and the degree to 249 

which alpha diversity in the source is reflected (Willis, 2019), varies with library size. Willis 250 

(2019) also points towards a conceptually better approach to diversity analysis that accounts for 251 

measurement error and the difference between the sample data and the population 252 

(environmental source) of which the sample data are only a partial representation. Diversity 253 

analysis in general does not do this, as it applies a set of calculations to sample data (or some 254 

transformation thereof) to obtain one value of alpha diversity or one point on an ordination plot. 255 

Pending further development of such approaches, this study revisits rarefying because of the 256 

practical simplicity of comparing diversity among samples of equal library size. 257 

McMurdie and Holmes (2014) propose that rarefying is not a statistically valid normalization 258 

technique due to the omission of valid data, which may be resolved for the purposes of diversity 259 

analysis by rarefying repeatedly to represent all sequences in the proportions with which they 260 

were observed and compare sample-level microbial community diversity at a particular library 261 
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size. In addition, McMurdie and Holmes (2014) dismissed repeatedly rarefying as a 262 

normalization technique, in part because repeatedly rarefying an artificial library consisting of a 263 

50:50 ratio of two sequence variants does not yield a 50:50 ratio at the rarefied library size and 264 

this added noise could affect downstream analyses. However, such error is inherent to 265 

subsampling, whether from a population or from a larger sequence library and has thus already 266 

affected samples with smaller library sizes; it is the reason why simple proportions are less 267 

precise in samples with smaller library sizes. 268 

McMurdie and Holmes (2014), also cited the investigation of Navas-Molina et al. (2013) as 269 

an example of repeatedly rarefying to normalize library sizes and used it to support their 270 

dismissal of this technique due to the omission of valid data and added variability. However, it is 271 

critical to note that the work in Navas-Molina et al. (2013) reported using jackknife resampling 272 

of sequences, which cannot be equated to repeatedly rarefying (random resampling with or 273 

without replacement). Hence, it is necessary to build upon preliminary analysis of repeatedly 274 

rarefying as a normalization technique and to explore the impact of subsampling approach and 275 

normalized library size on diversity analysis results. 276 

3. Methods 277 

3.1 Example Data – DNA Extraction and Amplicon Sequencing  278 

Samples used in this study are part of a larger study at Turkey Lakes Watershed (North Part, 279 

ON), but only an illustrative subset of samples is considered for the purpose of evaluating 280 

rarefaction rather than for ecological interpretation. This allows evaluation of repeated rarefying 281 

as a normalization technique without utilizing simulated data. DNA extracts isolated from 282 

environmental samples were submitted for amplicon sequencing using the Illumina MiSeq 283 

platform (Illumina Inc., San Diego, California) at the commercial laboratory Metagenom Bio 284 
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Inc. (Waterloo, Ontario). Primers designed to target the 16S rRNA gene V4 region [515FB 285 

(GTGYCAGCMGCCGCGGTAA) and 806RB (GGACTACNVGGGTWTCTAAT; Walters et 286 

al., 2015)] were used for PCR amplification. 287 

3.2 Sequence Processing and Library Size Normalization 288 

The program QIIME2 (v. 2019.10; Bolyen et al., 2019) was used for bioinformatic processing of 289 

sequence reads. Demultiplexed paired-end sequences were trimmed and denoised, including the 290 

removal of chimeric sequences and singleton sequence variants to avoid sequences that may not 291 

be representative of real organisms, using DADA2 (Callahan et al., 2016) to construct the ASV 292 

table. Zeroing all singleton sequences could erroneously remove legitimate sequences, 293 

particularly if the sequence in question is detected in large numbers in other similar samples; 294 

however, the potential effect of such error upon diversity analysis is beyond the scope of this 295 

work. Output files from QIIME2 were imported into R (v. 4.0.1; R Core Team, 2020) for 296 

community analyses using qiime2R (v. 0.99.23; Bisanz, 2018). Initial sequence libraries were 297 

further filtered using phyloseq (v. 1.32.0; McMurdie and Holmes, 2013) to exclude amplicon 298 

sequence variants that were taxonomically classified as mitochondria or chloroplast sequences. 299 

We developed a package called mirlyn (Multiple Iterations of Rarefaction for Library 300 

Normalization; Cameron and Tremblay, 2020) that facilitates implementation of techniques used 301 

in this study built from existing R packages (Table S1). Using the output from phyloseq, mirlyn 302 

was used to (1) generate rarefaction curves, (2) repeatedly rarefy libraries to account for 303 

variation in library sizes among samples, and (3) plot diversity metrics given repeated 304 

rarefaction.  305 
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3.3 Community Diversity Analyses on Normalized Libraries  306 

The impact of normalized library size on the Shannon index (Shannon, 1948), an alpha diversity 307 

metric, was evaluated. Normalized libraries were also used for beta diversity analysis. A 308 

Hellinger transformation was applied to normalized libraries to account for the arch effect 309 

regularly observed in ecological count data and Hellinger-transformed data were then used to 310 

calculate Bray-Curtis distances (Bray and Curtis, 1957). Principal component analysis (PCA) 311 

was conducted on the Bray-Curtis distance matrices. 312 

3.4 Study Approach 313 

Typically, rarefaction has only been conducted a single time in microbial community analyses, 314 

and this omits a random subset of observed sequences, introducing a possible source of error. To 315 

examine this error, samples were repeatedly rarefied 1000 times. This repetition provides a 316 

representative suite of rarefied samples capturing the randomness in sequence variant 317 

composition imposed by rarefying. The sections below address the various decisions that must be 318 

made by the analyst and factors affecting reliability of results when rarefaction is used.  319 

3.4.1 The Effects of Subsampling Approach – With or Without Replacement 320 

Rarefying library sizes may be performed with or without replacement. To evaluate the effects of 321 

subsampling replacement approaches, we repeatedly rarefied filtered sequence libraries with and 322 

without replacement. Results of the two approaches were contrasted in diversity analyses to 323 

evaluate the impact of subsampling approach on interpretation of results.  324 

3.4.2 The Effects of Normalized Library Size Selection 325 

Rarefying involves the selection of an appropriate sampling depth to be shared by each sample. 326 

To evaluate the effects of different rarefied library sizes, filtered sequence libraries were rarefied 327 
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repeatedly to varying depths. Results for various sampling depths were contrasted in diversity 328 

analyses to evaluate the impact of normalized library size selection on interpretation of results.  329 

4. Results and Discussion 330 

4.1 Use of Rarefaction Curves to Explore Suitable Normalized Library Sizes  331 

 Rarefying requires the selection of a potentially arbitrary normalized library size, which 332 

can impact subsequent community diversity analyses and therefore presents users with the 333 

challenge of making an appropriate decision of what size to select (McMurdie and Holmes, 334 

2014). Suitable sampling depths for groups of samples can be determined through the 335 

examination of rarefaction curves (Figure 2). By selecting a library size that encompasses the 336 

flattening portion of the curve for each sample, it is generally assumed that the normalized 337 

library size will adequately capture the diversity within the samples despite the exclusion of 338 

sequence reads during the rarefying process (i.e., there are progressively diminishing returns in 339 

including more of the observed sequence variants as the rarefaction curve flattens).  340 

Suggestions have previously been made encouraging selection of a normalized library 341 

size that is encompassing of most samples (e.g., 10,000 sequences) and advocation against 342 

rarefying below certain depths (e.g., 1,000 sequences) due to decreases in data quality (Navas-343 

Molina et al., 2013). However, generic criteria may not be applicable to all datasets and 344 

exploratory data analysis is often required to make informed and appropriate decisions on the 345 

selection of a normalized library size. Although previous research advises against rarefying 346 

below certain thresholds, users may be presented with the dilemma of selecting a sampling depth 347 

that either does not capture the full diversity of a sample depicted in the rarefaction curve (Figure 348 

2 – I) or would require the omission of entire samples with smaller library sizes (Figure 2 – III). 349 

The implementation of multiple iterations of rarefying library sizes will aid in alleviating this 350 
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dilemma by capturing the potential losses in community diversity for samples that are rarefied to 351 

lower than ideal depth. Doing so with two or more normalized library sizes may reveal 352 

differences in diversity attributable to relatively rare variants that could be suppressed by 353 

normalizing to too small of a library size. 354 

4.2 The Effects of Subsampling Approach and Normalized Library Size Selection on Alpha 355 

Diversity Analyses 356 

The differences in how rarefying samples may be carried out requires users to be diligent 357 

in the selection of appropriate tools and commands for their analysis. The R package phyloseq, a 358 

popular tool for microbiome analyses, has default settings for rarefying including sampling with 359 

replacement to optimize computational run time and memory usage (McMurdie and Holmes, 360 

2013). Sampling without replacement, however, is more appropriate statistically because it draws 361 

a subset from the observed set of sequences (as though the sample had yielded only the specified 362 

library size), whereas sampling with replacement fabricates a set of sequences in similar 363 

proportions to the observed set of sequences (Figure 3). Sampling with replacement can 364 

potentially cause a rare sequence variant to appear more frequently in the rarefied sample than it 365 

was in the original library.  366 

Rarefying libraries with or without replacement was not found to substantially impact the 367 

Shannon index in the scenarios considered in this study (Figure 4-A), but users should still be 368 

aware of potential implications of sampling with or without replacement when rarefying 369 

libraries. Libraries rarefied with replacement are observed to have a slightly reduced Shannon 370 

index relative to libraries rarefied without replacement at many library sizes because rare 371 

sequences are excluded more often when sampling with replacement.  372 
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The conservation of larger normalized library sizes allows detection of more diversity 373 

with minimal variation observed between the iterations of rarefaction (Figure 4-A). The largest 374 

considered normalized library size (the sample with the smallest library size has 11,213 375 

sequences) captured the highest Shannon index values, while the Shannon index diminishes for 376 

all samples at lower normalized library sizes. The use of repeated iterations of rarefying allows 377 

variation introduced through subsampling to be represented in the diversity metric, which is 378 

small at larger library sizes. While there was only slight disparity in the Shannon index values 379 

between the largest library size and unnormalized data, this may not always be the case and is 380 

dependent on the sequence variant composition of the samples. Samples dominated by a large 381 

number of low-abundance sequence variants are more likely to have a substantially reduced 382 

Shannon index value at a larger normalized library size. Alternatively, samples dominated by 383 

only a few highly abundant sequence variants will be comparatively robust to rarefying. A plot 384 

of the Shannon index as a function of rarefied library size (Figure 4-B) demonstrates the overall 385 

robustness of the Shannon index of these samples for larger library sizes (e.g., > 5,000 386 

sequences) and the increased variation and diminishing values when proceeding to smaller 387 

rarefied library sizes. When the normalized library size was decreased to 5,000, the Shannon 388 

index is still only slightly reduced by the rarefaction but there is greater variability introduced 389 

from rarefying.  390 

The consistency of the diversity metric when rarefying repeatedly is extremely degraded 391 

when libraries were rarefied to the smallest considered library size of 500 sequences. It illustrates 392 

the potential to reach incorrect conclusions if rarefying is completed only once. When rarefying 393 

repeatedly to a small library size, however, diversity index values that are both highly 394 

inconsistent and suppressed relative to the diversity of the unrarefied data may lead to 395 
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inappropriate claims of identical diversity values between samples (e.g., samples A, B, and C 396 

become indistinguishable). The extreme reduction and introduced variation of the Shannon index 397 

suggests that the selection of smaller rarefied library sizes should be approached with caution 398 

when using alpha diversity metrics, while larger normalized library sizes prevent loss of 399 

precision and reduction of the Shannon index value. However, as previously noted, the reduction 400 

in the value of the Shannon index will be dependent on the sequence variant composition of the 401 

samples.  402 

Previous research evaluating normalization techniques has focused on beta diversity 403 

analysis and differential abundance analysis (Gloor et al., 2017; McMurdie and Holmes, 2014; 404 

Weiss et al., 2017), but the appropriateness of library size normalization techniques for alpha 405 

diversity metrics must be evaluated due to the prerequisite of having equal library sizes for 406 

accurate calculation. Utilization of unnormalized library sizes with alpha diversity metrics may 407 

generate bias due to the potential for samples with larger library sizes to inherently reflect more 408 

of the diversity in the source than a sample with a small library size. The repeated iterations of 409 

rarefying library sizes allow characterization of the variability introduced to sample diversity by 410 

rarefying at any rarefied library size (Figure 4) but does not allow evaluation of uncertainty 411 

about the diversity in the source from which the sample was taken, as is the case for all 412 

normalization-based approaches.  413 

4.3 The Effects of Subsampling Approach and Normalized Library Size Selection on Beta 414 

Diversity Analysis 415 

When samples were repeatedly rarefied to a common normalized library size with and 416 

without replacement, similar amounts of variation in the Bray-Curtis PCA ordinations were 417 

observed between the sampling approaches (Figure 5). This indicates that although rarefying 418 
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with replacement seems potentially erroneous due to the fabrication of count values that are not 419 

representative of actual data, the impact on the variation introduced into the Bray-Curtis 420 

dissimilarity distances is not large and will likely not interfere with the interpretation of results. 421 

However, rarefying without replacement should be encouraged because it is more theoretically 422 

correct to represent possible data if only the smaller library size had been obtained, and it has not 423 

been comprehensively demonstrated that sampling with replacement is a valid approximation for 424 

all types of diversity analysis or library compositions. 425 

When larger normalized library sizes are maintained through rarefaction, there is less 426 

potential variation introduced into beta diversity analyses, including Bray-Curtis dissimilarity 427 

PCA ordinations. For example, in the largest normalized library size possible for these data 428 

(Figure 5A), a minimal amount of variation was observed within each community, indicating 429 

that the preservation of higher sequence counts minimizes the amount of artificial variation 430 

introduced into datasets by rarefaction (including no variation for Sample F because it is not 431 

actually rarefied in this scenario). For this reason, rarefying to the smallest library size of a set of 432 

samples is a sensible guideline. Although, a normalized library size of 5,000 is lower than the 433 

flattening portion of the rarefaction curve for samples A, B, and C (Figure 2), the selection of 434 

this potentially inappropriate normalized library size (Figure 5C) can still accurately reflect the 435 

diversity between samples without excess artificial variation introduced through rarefaction. Due 436 

to the variation introduced to the Bray-Curtis dissimilarity ordinations in the smaller rarefied 437 

library sizes (Figure 5E/G), it is critical to include computational replicates of rarefied libraries 438 

to fully characterize the introduced variation in communities. As discussed above, it has been 439 

suggested that repeatedly rarefying is inappropriate due to the introduction of “added noise”. 440 

However, as demonstrated, the maintenance of larger rarefied library sizes when repeatedly 441 
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rarefying does not impact interpretation of beta-diversity analysis results. Without this 442 

replication, rarefaction to small, normalized library sizes could result in artificial similarity or 443 

dissimilarity identified between samples. 444 

Beta diversity analysis of very small, rarefied library sizes (Figure 6A, B, C) can still 445 

reflect similar clustering patterns observed in larger library sizes but with a much lower 446 

resolution of clusters. Rarefying has previously been shown to be an appropriate normalization 447 

tool for samples with low sequence counts (e.g., <1,000 sequences per sample) by Weiss et al. 448 

(2017), which is promising for datasets containing samples with small initial library sizes or 449 

potentially analyzing subsets of data to explore diversity within specific phyla (e.g., 450 

Cyanobacteria). Caution must be taken to avoid selection of an excessively small, normalized 451 

library size due to the introduction of extreme levels of artificial variation that compromises 452 

accurate depiction of diversity (Figure 6D) and suppresses the contribution of rare variants to 453 

overall diversity. The tradeoff between rarefying to a smaller than advisable library size or 454 

excluding entire samples with small library sizes remains and can possibly be resolved by 455 

analyzing results with all samples and a small, rarefied library size as well as with some omitted 456 

samples and a larger rarefied library size. 457 

Although rarefying has the potential to introduce artificial variation into data used in beta 458 

diversity analyses, these results suggest that rarefying repeatedly does not become problematic 459 

until normalized library sizes are very small (e.g., 500 sequences or less) for the samples 460 

considered. While we saw a degradation of the consistency and value of the alpha diversity 461 

Shannon index at 500 sequences, beta diversity analyses may be more robust to rarefaction and 462 

capable of reflecting qualitative clusters in ordination as previously discussed in Weiss et al. 463 

(2017). The artificial variation introduced to beta diversity analyses by rarefaction could lead to 464 
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erroneous interpretation of results, but the implementation of multiple iterations of rarefying 465 

library sizes allows a full representation of this variation to aid in determining if apparent 466 

similarity or dissimilarity is a chance result of rarefying. 467 

The use of non-normalized data has been shown to be more susceptible to the generation 468 

of artificial clusters in ordinations, and rarefying has been demonstrated to be an effective 469 

normalization technique for beta diversity analyses (Weiss et al., 2017). However, the use of a 470 

single iteration of rarefying does result in the omission of valid data (McMurdie and Holmes, 471 

2014). Repeated iterations of rarefying in this study demonstrated that rarefying repeatedly does 472 

not substantially impact the output and interpretation of beta diversity analyses unless rarefying 473 

to sizes that are inadvisably small to begin with. McMurdie and Holmes (2014) were dismissive 474 

of rarefying repeatedly due to the variability it introduces, but such repetition was not evaluated 475 

in the context of beta-diversity analysis. In the case of differential abundance analysis, the added 476 

variability of rarefying would be statistically inappropriate relative to generalized linear 477 

modelling that can account for varying library sizes. Additionally, repeatedly rarefying allows 478 

for characterization of variation introduced through subsampling while accounting for 479 

discrepancies in library size, supporting the potential utility of the normalization technique for 480 

beta diversity analyses. McKnight et al. (2019) preferred use of proportions in diversity analysis 481 

over rarefying (arguing that both were superior to other normalization approaches). While 482 

proportions normalize the sum of the ASV weights to one for each sample, we note that the 483 

approach does not normalize the library size in terms of sequence counts. This is important 484 

because sample proportions will provide a more precise reflection of the true proportions of 485 

which the set of sequences is believed to be representative in samples with larger libraries than in 486 

samples with smaller libraries. In particular, using proportions of unnormalized sequence count 487 
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libraries in beta diversity analysis overlooks the loss of alpha diversity associated with smaller 488 

library sizes when comparing samples with different library sizes. 489 

4.4 Perspectives on Library Size Normalization 490 

 The increasing popularity and accessibility of amplicon sequencing has enabled the 491 

scientific community to gain access to a wealth of microbial community data that would 492 

otherwise not have been accessible. However, despite amplicon sequencing of taxonomic marker 493 

genes being the gold standard approach for microbial community analysis, the data handling and 494 

statistical analysis is still in the early stages of development. The diversity analyses that the 495 

scientific community desires to perform on amplicon sequencing data require library sizes to be 496 

normalized across samples, which creates the challenge of determining appropriate 497 

normalization techniques. New normalization techniques and tools are constantly being 498 

developed and released to the community with claims that the newest technique is the best and 499 

only solution that should be utilized for analysis, but they may be associated with data handling 500 

limitations, be too specifically tailored to a particular type of analysis or desired property, or not 501 

normalize the library sizes that motivated the need for normalization (McKnight et al., 2018). 502 

For example, the centered-log ratio transformation (Gloor et al., 2016) cannot be used with zero 503 

count data and amplicon sequencing datasets must be augmented with an artificial pseudocount 504 

to apply the normalization technique. The limitations of normalization techniques may affect 505 

downstream analyses, making it critical to understand the implications of the technique chosen.  506 

Further discussion within the scientific community is needed to ensure rigorous interpretation 507 

of amplicon sequencing data without unwarranted bias introduced by the normalization 508 

technique. Approaches to microbiome data analysis that recognize data as samples from a source 509 

population and seek to draw inference about diversity in the source rather than just calculating 510 
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diversity in the (transformed) sample are desirable. Random errors are inherent to sample 511 

collection, handling, processing, amplification, and sequencing and should be reflected in how 512 

resulting data are analyzed. Pending further research on such approaches, rarefying remains 513 

common in current research requiring library size normalization despite potential limitations, 514 

especially for diversity analysis. The implementation of a single iteration of rarefying is 515 

problematic due to the omission of valid data and should not be used for library size 516 

normalization. Conducting repeated iterations of rarefying, however, does not discard valid 517 

sequences and allows for the characterization of variation introduced through random 518 

subsampling in diversity analyses. 519 

Conclusions 520 

� Repeated rarefying (e.g., 1000 times if computationally feasible) statistically describes 521 

possible realizations of the data if the number of sequences read had been limited to the 522 

normalized library size, thus allowing diversity analysis using samples of equal library 523 

size in a way that accounts for the data loss in rarefying. 524 

� Rarefying with or without replacement did not substantially impact the interpretation of 525 

alpha (Shannon index) or beta (Bray-Curtis dissimilarity) diversity analyses considered in 526 

this study, but rarefying without replacement is theoretically more appropriate and will 527 

provide more accurate reflection of sample diversity. 528 

� The use of larger normalized library sizes when rarefying minimizes the amount of 529 

artificial variation introduced into diversity analyses but may necessitate omission of 530 

samples with small library sizes (or analysis at both inclusive low library sizes and 531 

restrictive higher library sizes). 532 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2020.09.09.290049doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.09.290049
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

� Ordination patterns are relatively well preserved down to small, normalized library sizes 533 

with increasing variation shown by repeatedly rarefying, whereas the Shannon index is 534 

very susceptible to being impacted by small, normalized library sizes both in declining 535 

values and variability introduced through rarefaction. 536 

� Even though repeated rarefaction can characterize the error introduced by excluding some 537 

fraction of the sequence variants, rarefying to extremely small sizes (e.g., 100 sequences) 538 

is inappropriate because the substantial introduced variation leads to an inability to 539 

differentiate between sample clusters and suppresses contribution of rare variants to 540 

diversity.  541 

� Further development of strategies (e.g., data handling, library size normalization for 542 

diversity analyses) for ensuring rigorous interpretation of amplicon sequencing data is 543 

required. 544 
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Figure 1 Schematic of general workflow in amplicon sequencing of samples. 
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Figure 2 Rarefaction curves showing the number of unique sequence variants as a function 

of normalized library size for six samples (labelled A – F) of varying diversity and initial 

library size. Selection of unnecessarily small library sizes (I) omits many sequence variants. 

Rarefying to the smallest library size (II) omits fewer sequences and variants. While selection of a 

larger normalized library size (III) would omit even less sequences, it is necessary to omit entire 

samples (e.g., Sample F) that have too few sequences) 
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Figure 3 The mechanics of rarefying with or without replacement for a hypothetical sample 

with a library size of ten composed of five sequence variants (A – E). Rarefying without 

replacement (a) draws a subset from the observed library excluding the complementary 

subset, while rarefying with replacement (b) has the potential to artificially inflate the 

numbers of some sequence variants beyond what was observed. 
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Figure 4 Effect of chosen rarefied library size and sampling with (WR) or without (WOR) 

replacement upon the Shannon Diversity Index. Six microbial communities were rarefied 

repeatedly (A) at specific rarefied library sizes of 11,213 sequences, 5,000 sequences, 1,000 

sequences, and 500 sequences and (B) to evaluate the Shannon Index as a function of rarefied 

library size. 
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Figure 5 Variation in PCA ordinations (using the Bray-Curtis dissimilarity on Hellinger 

transformed rarefied libraries) of six microbial communities repeatedly rarefied with and 

without replacement to varying library sizes. 
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Figure 6 Variation in PCA ordinations (using the Bray-Curtis dissimilarity on 
Hellinger transformed rarefied microbial communities) of six microbial 
communities repeatedly rarefied to very small library sizes of (A) 400, (B) 300, (C) 
200 and (D) 100 sequences. 
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