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Abstract

Renewed interest in dynamic simulation models of biomolecular systems has arisen from
advances in genome-wide measurement and applications of such models in biotechnology and
synthetic biology. In particular, genome-scale models of cellular metabolism beyond the steady
state are required in order to represent transient and dynamic regulatory properties of the system.
Development of such whole-cell models requires new modelling approaches. Here we propose
the energy-based bond graph methodology, which integrates stoichiometric models with thermo-
dynamic principles and kinetic modelling. We demonstrate how the bond graph approach intrin-
sically enforces thermodynamic constraints, provides a modular approach to modelling, and gives
a basis for estimation of model parameters leading to dynamic models of biomolecular systems.
The approach is illustrated using a well-established stoichiometric model of Escherichia coli (E.
coli) and published experimental data.
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1 Introduction

The recent explosion of omics data has generated an interest in developing dynamic whole-cell models
that account for the function of every gene and biomolecule over time. Such models have the potential
to “predict phenotype from genotype” [1–3] and hence to “transform bioscience and medicine” [4].
Critical to understanding the large-scale metabolism within cells is the stoichiometric approach [5–
8], which has had notable successes including the genome-scale reconstruction of the metabolism of
Escherichia coli (E. coli) [9–11] and Neocallimastigomycota Fungus [12].

The stoichiometric approach can give rise to constraint-based models such as Flux Balance Anal-
ysis (FBA)[13], which predict metabolic fluxes at steady state. However, most implementations of
such constraint-based models do not explicitly consider energy. This can lead to mass flows that are
not thermodynamically possible because they violate the second law of thermodynamics. Such non-
physical flows can be detected and eliminated by adding additional thermodynamic constraints, as in
Thermodynamics-based Metabolic Flux Analysis (TFA)[14, 15], Energy Balance Analysis (EBA) and
Expression, Thermodynamics-enabled FLux models (ETFL) [16–20] and loopless FBA [21]. Whereas
constraint-based models provide metabolic fluxes, they generally do not explicitly account for metabo-
lite concentrations, or how fluxes vary over time, both of which are required for dynamic whole-cell
modelling. However, the stoichiometric approach can help to bridge towards dynamic models capa-
ble of satisfying these requirements. In this context, there has been work into developing two types
of large-scale dynamic models: fully detailed mass action stoichiometric simulation (MASS) mod-
els [7, 22, 23] and simplified network models that use non-mass action rate laws such as lin-log laws
or modular rate laws [24, 25]. Although mass-action approaches seem restrictive, we note that models
of enzyme kinetics can be built from elementary mass-action reactions [26].

MASS models are parameterised by reaction rate constants which are subject to thermodynamic
constraints such as the Wegscheider conditions [27] (Wegscheider conditions are a formulation of de-
tailed balance conditions which avoid models which are inconsistent with thermodynamic laws [26,
§ 1.5]). This paper focuses on the mass-action formulation and introduces an alternative to MASS
which explicitly incorporates thermodynamics. Specifically, the approach uses an alternative param-
eterisation related to that of Thermodynamic-Kinetic Modelling (TKM) [27, 28]. TKM explicitly
divides parameters into those associated with capacities and resistances by analogy with electrical sys-
tems; this approach gives thermodynamic consistency without invoking additional constraints such as
the Wegscheider conditions [27, 28]. Mason and Covert[29] developed a similar approach for a non-
mass-action rate law.

Recently, the bond graph approach from engineering [30–33] has been adapted to biochemistry
[34–37]. Bond graphs are close in spirit and application to TKM in that they produce ordinary differ-
ential equations for dynamic simulation [37] and that their parameters satisfy thermodynamic consis-
tency without the need to invoke Wegscheider conditions [34–37]. However, bond graph models are
endowed with several additional features:

1. Bond graphs can be easily generalised to model multi-physics systems and thus readily in-
corporate the physics of electrically charged species into an integrated model combining both
chemical and electrical potential [38–42].

2. Bond graphs are modular [43, 44], a key requirement of any large-scale modelling endeav-
our [45].

3. Bond graph models can be systematically modified to give simpler bond graph models which
remain compatible with thermodynamic laws [37, 46, 47].

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.03.24.436792doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436792
http://creativecommons.org/licenses/by-nc-nd/4.0/


The stoichiometric matrix of a biomolecular network can be derived from the corresponding bond
graph [37, 43]. Similarly, as shown herein, a bond graph model can be constructed from a stoichio-
metric matrix. Thus, the large repository of models of biomolecular systems available in stoichio-
metric form are available as templates for developing bond graph models; we provide a methodology
for this later in the paper. Furthermore, once rate laws such as mass action are added, such templates
provide a basis for complete dynamic models of metabolic systems.

A key challenge in the development of dynamic models is the fitting of parameters to experimen-
tal data, especially when thermodynamic constraints need to be satisfied [48, 49]. For large-scale
biomolecular models such as whole cell models, applying these constraints is particularly challeng-
ing [50]. In this paper, we use the thermodynamically safe parameterisation provided by bond graphs
to resolve this issue. As in the TKM [27, 28] approach, the bond graph approach uses an alternative
parameterisation which satisfies thermodynamic constraints as long as the parameters are positive;
such inequality constraints are easier to handle than non-linear constraints. We illustrate this approach
by generating a dynamic bond graph model of E. coli metabolism, using a well-established stoichio-
metric model [51] as a template and show that the use of thermodynamic parameters can significantly
streamline the process of parameter estimation.

In summary, this paper proposes the fusion of the stoichiometric and bond graph approaches to
modelling biological systems and illustrates its potential for the unification of stoichiometry, thermo-
dynamics, kinetics and data.

§ 2 summarises the bond graph background to the rest of the paper. § 3 shows how bond graph
models can be extracted from stoichiometric information, used to create modular models and anal-
ysed in terms of pathways; the relationship of the approach to Energy Balance Analysis is also
discussed. § 4 applies these concepts to two subsystems within the E. coli core model – a well-
documented [8, 51] and readily-available [52] stoichiometric model of a biomolecular system. § 5
shows how thermodynamically-consistent bond graph parameters can be extracted from experimental
data and gives a dynamic simulation of the parameterised model. § 6 concludes the paper and gives
directions for future work.

2 Bond Graphs

This section gives a brief introduction to the bond graph approach to modelling biomolecular systems
based on the seminal work of Oster et al. [34, 35] as extended by Gawthrop and Crampin [37, 44, 53].

2.1 Basic components

Bond graphs represent the energetic connections between components of a system. The ⇁ symbol is
used to indicate an energetic connection, or ‘bond’, between components; the half-arrow indicates the
direction corresponding to positive energy flow. In the biomolecular context, each bond is associated
with two covariables: chemical potential µ (J mol−1) and flow v (mol s−1). The key point is that
the product of µ and v is power p = µv (W). This ensures that models are consistent with the laws
of thermodynamics, as energy flow is explicitly accounted for. In the context of cellular metabolism,
and in line with the measurement of redox potentials, it is convenient to scale these co-variables by
Faraday’s constant F ≈ 96 485 C mol−1 to give

φ =
1

F
µ (V) f = Fv (A) (1)
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where (J C−1) has been replaced by the more convenient unit volt (V) and (C s−1) has been replaced
by the more convenient unit ampere (A) [38]. As a useful rule-of-thumb, µ (kJ mol−1) can be
converted to φ (mV) by dividing by 106

F ≈ 10.
Bonds transmit, but do not store or dissipate energy. Within this context, the bonds connect four

distinct types of component:

0 & 1 Junctions provide a method of connecting two or more bonds, and therefore creating a net-
work. Analogous to electrical systems, there are two types of junction, denoted 0 and 1 . The
bonds impinging on a 0 junction share a common effort (chemical potential); the bonds im-
pinging on a 1 junction share a common flow. Both 0 and 1 junctions transmit, but do not store
or dissipate energy. As discussed previously [37], the arrangement of bonds and junctions rep-
resents the stoichiometry of the corresponding biomolecular system and thus the relationship
both between reaction and species flows and between species potentials and reaction forward
and reverse potentials. Furthermore, the reverse is also true: the stoichiometric matrix of a
biomolecular system uniquely determines the bond graph, as will be discussed further below.

Ce represents biochemical species. Thus species A is represented by Ce:A with the equations:

xA(t) =

∫ t

0
fA(t′)dt′ + xA(0) (2)

φA = φ	A + φN ln
xA

x	A
= φN lnKAxA (3)

where φN =
RT

F
≈ 26.7 mV at T = 310 K (4)

and KA =
1

x	A
exp

φ	A
φN

(5)

Equation (2) accumulates the flow fA of species A. Equation (3) generates chemical potential
φA in terms of the reference potential φ	A at reference conditions x	A. Ce components thus
store, but do not dissipate, energy. An equivalent parameterisation that we use in this paper is
to express the chemical potential in terms of φN and the species constant KA, as defined in
Equation (5).

Re represents reactions. The flow f associated with each reaction is given by the Marcelin – de
Donder formula [37, 54]:

f = κ

(
exp

Φf

φN
− exp

Φr

φN

)
(6)

where Φf and Φr are the forward and reverse reaction potentials (or affinities), defined as the
sums of the chemical potentials of the reactants and products respectively. If κ is constant, this
represents the mass-action formula.

In general, κ is a function of Φf , Φr and enzyme concentration [37]; for example, a reversible
Michaelis-Menten formulation used in Gawthrop et al. [43] is:

κ =
fmax

Kf + (1− ρ) exp Φf

φN
+ ρ exp Φr

φN

(7)
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where the three constants fmax, Kf and ρ define the kinetics. As discussed elsewhere [26, 37],
enzyme kinetics can be modelled using the pair of reactions with mass-action kinetics

A + E
r1 C (8)

C
r2 B + E

where A, B, E and C are the substrate, product, enzyme and complex of substrate and enzyme
respectively; the bond graph representation is given in Appendix E. Equation (7) arises from
the steady-state analysis of this model [37]. In particular:

κ1 =
κ̄

ρ
; κ2 =

κ̄

1− ρ
where κ̄ =

fmax
Kce0

and Kf =
KC

KE
(9)

KC and KE correspond to Equation (5) for the complex and enzyme respectively and e0 is the
total amount of enzyme (unbound and bound within the complex).

Re components dissipate, but do not store, energy. In general

f = f(Φ, φ) (10)

where Φ = Φf−Φr and φ is a vector containing the chemical potentials of every species. Since
f always has the same sign as Φ, f() is dissipative in Φ for all φ:

fΦ > 0 (11)

The key stoichiometric equations arising from bond graph analysis are [37]:

ẋ = Nf (12)

Φ = −NTφ (13)

where x, f , Φ and φ are the species amounts, reaction fluxes, reaction potentials and species poten-
tials respectively, all represented as vector quantities. N is the stoichiometric matrix of the network.
Combining Equations (12) and (13):

φT ẋ = φTNf = −ΦT f (14)

φT ẋ is the rate of energy into the species (which must be negative or zero for closed systems) and
ΦT f is the rate of energy dissipated by the reactions. Since φT ẋ + ΦT f = 0, it follows that the
network of bonds and junctions transmits, but does not dissipate or store, energy [37].

Moreover, the stoichiometric matrix N can be decomposed as [37]:

N = N r −Nf (15)

where N r corresponds to the positive entries of N and Nf to the negative entries. The forward and
reverse reaction potentials Φf and Φr are given by:

Φf = Nfφ, Φr = N rφ (16)

In other words, the stoichiometric matrixN can be derived from the system bond graph. § 3 shows
that, conversely, the system bond graph can be derived from the stoichiometric matrix N .
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2.2 Chemostats, Flowstats and Pathways

Modularity implies the interconnection of subsystems; thus such subsystems must be thermodynam-
ically open. As discussed previously [38, 44], the notion of a chemostat [55] is useful in creating an
open system from a closed system. The chemostat has a number of interpretations [38]:

1. one or more species are fixed to give a constant concentration [43]; this implies that an appro-
priate external flow is applied to balance the internal flow of the species.

2. as a Ce component with a fixed state.

3. as an external port of a module which allows connection to other modules.

In the context of stoichiometric analysis, the chemostat concept provides a flexible alternative to the
primary and currency exchange reactions [6, 8, 56].

Alternatively, reaction flows can be fixed using the dual concept of flowstats [44], which has a
number of interpretations:

1. as an Re component with a fixed flow.

2. as an external port of a module which allows connection to other modules.

In the context of this paper, we use flowstats to isolate parts of a network by setting the flows of certain
reactions to zero. Such zero flow flowstats can also be interpreted as removing the corresponding
enzyme via gene knockout.

In terms of stoichiometric analysis, the closed system equations (12) and (13) are replaced by:

ẋ = N cdf (17)

Φ = −NTφ (18)

where N cd is created from the stoichiometric matrix N by setting rows corresponding to chemostats
species and columns corresponding to flowstatted reactions to zero [44]. As discussed by Gawthrop
and Crampin [44], system pathways corresponding to Equation (17) are defined by the right-null space
of N cd, that is, the columns of a matrix Kp satisfying the equation N cdKp = 0. At steady state, the
flows through these pathways are defined by:

f = Kpfp (19)

where fp is the pathway flow. It follows from Equation (17) that Equation (19) implies that ẋ = 0.
The pathway stoichiometric matrix Np is defined as [53]:

Np = NKp (20)

In a similar fashion to equation (18), the pathway reaction potentials Φp are given by

Φp = −NT
p φ (21)

In the same way as the stoichiometric matrix N relates reaction flows to species and thus represents
a set of reactions, the pathway stoichiometric matrix Np also represents a set of reactions: these
reactions will be called the pathway reactions.

Pathways can be divided into three mutually exclusive types [56] according to the species corre-
sponding to the non zero elements in the relevant column of the pathway stoichiometric matrix Np:
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Type I The species include primary metabolites; these pathways are of functional interest.

Type II The species include currency metabolites only; these pathways dissipate energy without cre-
ating or consuming primary metabolites. Such pathways are sometimes called futile cycles;
however they have an important role to play in regulating metabolite flow [57–62].

Type III There are no species. These may arise when the same reaction is catalysed by different
isoforms of the same enzyme.

Pathway reactions for type I pathways contain both primary and currency metabolites; pathway reac-
tions for type II pathways contain currency metabolites only; pathway reactions for type III pathways
are empty. The concept of pathways is applied to a simple example in Appendix B and to a biomolec-
ular example (the Pentose Phosphate Pathway) in § 4.1.

3 Bond Graphs Integrate Stoichiometry and Energy

As discussed in the previous section, the stoichiometric matrix can be directly derived from the bond
graph; this section shows that the converse is true and thus bond graphs can be automatically derived
from preexisting stoichiometric representations thereby allowing bond graph energy based analysis
and modularity to be applied to such models.

3.1 Generating a bond graph from a stoichiometric matrix

A bond graph can be constructed from a stoichiometric matrix by using the following procedure:

1. For each species create a Ce component with appropriate name and a 0 junction; connect
a bond from the 0 junction to the Ce component.

2. For each reaction create an Re component with appropriate name and two 1 junctions;
connect a bond from one 1 junction to the forward port of the Re component and a bond
from the reverse port of the Re component to the other 1 junction.

3. For each negative entryNij in the stoichiometric matrix, connect−Nij bonds from the zero
junction connected to the ith species to the the 1 junction connected to the forward port of
the jth reaction.

4. For each positive entry Nij in the stoichiometric matrix, connect Nij bonds from the one
junction connected to the reverse port of the jth reaction to the zero junction connected to
the ith species.

5. If an Michaelis-Menten formulation is required, each Re component is replaced by a bond
graph module (§ 3.2) corresponding to the enzyme catalysed reaction pair (8) and Ap-
pendix E.

For example, the reaction A
r1 2 B has the stoichiometric matrix

N =
(
−1 2

)T (22)
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and the bond graph of Figure 1(a). The reaction B + C
r2 D + E has the stoichiometric matrix

N =
(
−1 −1 1 1

)T (23)

and has the bond graph of Figure 1(b).

0 1

Ce:A

R
e:r1 1 0

Ce:B

(a) A
r1 2 B

1

R
e

:r2 1 0

Ce:D

0

Ce:B

0

Ce:C

0

Ce:E

(b) B + C
r2 D + E

Figure 1: Bond graphs of simple reactions. (a) and (b) are used as modules M1 and M2 in § 3.2.

Bond graphs provide a graphical representation of a system. While this provides an intuitive and
clear visual representation when dealing with small systems such as the ones shown above, such vi-
sualisation becomes cumbersome for large systems. We employ two approaches to overcome this
issue for the large-scale systems considered in this paper: modularity and a non-graphical (or pro-
grammatic) representation. In particular, we use a recent concept of bond graph modularity [38] in
§ 3.2 and the recently developed BondGraphTools package[63] (https://pypi.org/project/
BondGraphTools/) as a non-graphical representation that allows large-scale systems to be con-
structed in a scalable and automated manner. This is discussed further below.

3.2 Modularity

Two related but distinct concepts of modularity [44] are computational modularity, where physi-
cal correctness is retained, and behavioural modularity, where module behaviour (such as ultra-
sensitivity) is retained. Here we discuss computational modularity. In particular, it is shown how
the concept of external flows, as discussed in § 2.2, is key to bond graph modularity.

Modular bond graphs provide a way of decomposing complex biomolecular systems into man-
ageable subsystems [43, 44, 53]. This paper combines the modularity concepts of Neal et. al. [64–66]
with the bond graph approach to give a more flexible approach to modularity. The basic idea is sim-
ple [38] . Modules are self-contained and have no explicit ports, but any species represented by a
Ce component has the potential to become a port available for external connection. Thus, if two
modules share the same species, the corresponding Ce component in each module is replaced by a
port (labelled with the same name), and the species is explicitly represented as a Ce component in the
parent model. This approach allows each module to be individually tested prior to being integrated
into a larger model.

We use the following algorithm to merge bond graph models of stoichiometric networks:
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1. Within each module, each Ce component corresponding to a common species is exposed,
that is, replaced by a port, or external connection.

2. For each common species, create a Ce component connected to a 0 component.

3. Connect all module ports associated with each species to the 0 junction associated with the
species; all instances of Ce components corresponding to each species are thus unified into
the same component.

[B] [B]
0 M2M1

Ce:B

(a) Modular bond graph

0 1

Ce:A

R
e:r1 1 0 1

R
e:r2 1 0

Ce:D

0

0

Ce:C

0

Ce:E

0

Ce:B

M1 M2

[B] [B]

(b) Equivalent bond graph

Figure 2: Modularity. Modules M1 and M2 correspond to Figures 1(a) & 1(b) respectively. The
common species B is exposed as a port in each module and connected to the new Ce:B component
via a 0 junction. (a) shows the compact modular form and (b) contains equivalent bond graph when
the contents of the modules are expanded.

For example, let modules M1 and M2 correspond to Figures 1(a) & 1(b) respectively. The com-
position of these modules requires the common species B to be exposed in both modules. This is il-
lustrated in Figure2, where both modules are connected to the new Ce:B component via a 0 junction.
The composite system contains the two coupled reactions:

A
r1 2 B (24)

C + B
r2 D + E (25)

§ 4 gives examples of modular decomposition of a metabolic system and § 4.2 gives an example of
how such modules can be combined using the methods of this section. The pathway analysis of § 2.2
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can be applied to modules themselves, and to systems built of modules, to give insight into the overall
behaviour of complex systems; this is illustrated in § 4.2.

The concept of modularity can be extended to include common Re (reaction) components [67];
but this concept is not pursued in this paper.

3.3 Energy Balance Analysis (EBA) in a bond graph context

FBA [13] uses the linear equation (19) within a constrained linear optimisation to compute pathway
flows. EBA [16] adds two sorts of nonlinear constraint arising from thermodynamics. This section
shows that the bond graph approach automatically includes the EBA constraint equations by consid-
ering Inequality (11) and Equation (18). In particular:

1. Inequality (11) corresponds to Equation 8 of Beard et al. [16]. This inequality can be re-
expressed as:

Φi = ri(φ)fi where ri(φ) > 0 (26)

ri corresponds to the “flux resistances” on p.83 of Beard and Qian [16].

2. If K is the right nullspace matrix of N , it follows from Equation (18) that

KTΦ = 0 (27)

This corresponds to Equation 7 of Beard et al [16]. Note that K defines the pathways of the
closed system system, with no chemostats.

Moreover, the pathways of the open system as defined by Kcd can be considered by defining
R = diag ri and using Equation (19):

KTRKpfp = 0 (28)

Equation (28) and inequality (26) constrain the pathway flows fp. This is illustrated in Appendix A.

4 Application to the E. coli Core Model

The E. coli Core Model [8, 51] is a well-documented and readily-available stoichiometric model of a
biomolecular system; species, reactions and stoichiometric matrix were extracted from the CobraPy
model: “textbook”. Using the methods of § 3.1, the corresponding bond graph model was created
which, as discussed in the Introduction, automatically satisfies thermodynamic constraints.

To illustrate the concepts developed above, we analyse two subsets of reactions within this model:

1. § 4.1 uses the methods of § 2.2 to examine possible pathways within the system formed from the
combined Glycolysis & Pentose Phosphate pathway (which produces precursors to the synthesis
of nucleotides).

2. § 4.2 uses the modularity approach of § 3.2 to build a modular model of respiration using
Glycolysis, the TCA cycle, the Electron Transport Chain and ATP synthase as modules. Fur-
thermore, the methods of § 2.2 are applied to examine the pathway properties of an individual
module (the TCA cycle) as well as the overall system.
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Figure 3: E. coli Core Model. The extracted reactions corresponding to the Glycolysis, Pentose-
Phosphate Pathways and TCA cycle parts of the model are shown; a complete list of reactions is given
in Appendix D. The diagram was created using Escher [68].
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4.1 Glycolysis & Pentose Phosphate pathway

The combination of the Glycolysis & Pentose Phosphate networks provides a number of different
products from the metabolism of glucose. This flexibility is adopted by proliferating cells, such as
those associated with cancer, to adapt to changing requirements of biomass and energy production
[69, 70].

We construct a stoichiometric model of these pathways, consisting of the upper reactions of gly-
colysis and the pentose phosphate pathway. The full reaction network is given in Appendix C, and a
bond graph is constructed using the methods of § 3.1.

As discussed in the textbooks [61, 71], it is illuminating to pick out individual paths through
the network to see how these may be utilised to provide a variety of products. This is reproduced
here by choosing appropriate chemostats and flowstats (§ 2.2) to give the results listed by Garrett
and Grisham [61] § 22.6d. In each case, the corresponding pathway reaction potential is given. For
consistency with Garrett and Grisham [61] § 22.6d, each pathway starts with Glucose 6-phosphate
(G6P).

We use the following list of chemostats (together with additional chemostats) for the pathway
analysis below: {ADP, ATP, CO2, G6P, H, H2O, NAD, NADH, NADP, NADPH, PI, PYR}. The
pathways are generated using the methods of § 2.2.

1. R5P & NADPH generation

Chemostats: RP5

Flowstats: PGI, TKT2

Pathway: G6PDH2R + PGL + GND + RPI
Reaction: G6P + H2O + 2 NADP CO2 + 2 H + 2 NADPH + R5P

2. R5P generation

Chemostats: RP5

Flowstats: GAPD, G6PDH2R

Pathway: - 5 PGI - PFK - FBA - TPI - 4 RPI + 2 TKT2 + 2 TALA + 2 TKT1 + 4 RPE
Reaction: ADP + H + 6 R5P ATP + 5 G6P

3. NADPH generation

Chemostats: None

Flowstats: GAPD

Pathway: - 5 PGI - PFK - FBA - TPI + 6 G6PDH2R + 6 PGL + 6 GND + 2 RPI + 2 TKT2
+ 2 TALA + 2 TKT1 + 4RPE

Reaction: ADP + G6P + 6 H2O + 12 NADP ATP + 6 CO2 + 11 H + 12 NADPH

In § 5, we use the model of the Glycolysis & Pentose Phosphate pathways as a basis for infer-
ring parameters from experimental data. Once the parameters have been identified (§ 5.4), dynamic
simulations of these pathways can be run. This is shown later in § 5.6.
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4.2 Respiration

To illustrate the utility of using bond graphs for the modular construction of stoichiometric models,
we construct a model of respiration by combining the subsystems of Glycolysis, TCA cycle, Electron
Transport Chain and ATP Synthase. Reactions for each of these subnetworks were extracted from
the CobraPy model; these reactions are listed in Appendix D. For simplicity, reactions PDH and PFL
(converting PYR to ACCOA) and reaction NADTRHD (converting NADP/NADPH to NAD/NADH)
were included in the TCA cycle module. Once these are converted into bond graphs, the algorithm in
§ 3.2 was used to combine these models together into a model of respiration.

4.2.1 Analysis of individual modules

An advantage of considering subsystems as separate modules is that these modules can be analysed
individually. For example, the TCA cycle module can be analysed using the set of chemostats (see
§ 2.2):

{PYR,CO2,ADP,ATP,H2O,NAD,NADH,PI,NADP,NADPH,H,Q8,Q8H2,FOR}

Three pathways result from this analysis:

1. - FRD7 + SUCDI
This is a type III pathway with no overall reaction.

2. CS + ACONTA + ACONTB + ICDHYR + AKGDH + SUCOAS + FRD7 + FUM + MDH
+ PDH
This is a type I pathway with the reaction

ADP + 2 H2O + 3 NAD + NADP + PI + PYR + Q8

ATP + 3 CO2 + 2 H + 3 NADH + NADPH + Q8H2

3. CS + ACONTA + ACONTB + ICDHYR + AKGDH + SUCOAS + FRD7 + FUM + MDH
+ PFL
This is a type I pathway with the reaction

ADP + 2 H2O + 2 NAD + NADP + PI + PYR + Q8

ATP + 2 CO2 + FOR + 2 H + 2 NADH + NADPH + Q8H2

Pathways 2 and 3 utilise the potential of PYR to generate NADH, NADHP, ATP and Q8H2 whilst
releasing CO2 and H.

4.2.2 Analysis of combined network

The bond graph approach provides a method for easily combining stoichiometric models using the
methods of § 3.2. Here we demonstrate this by constructing a model of respiration from the individual
modules Glycolysis, TCA cycle, Electron Transport Chain and ATP Synthase. We begin by first
combining the Glycolysis and TCA modules, as indicated in Figure 4(a). As well as the common
species PYR (pyruvate) explicitly shown, the set of species

{ATP,ADP,PI,H,NAD,NADH,H2O}
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Figure 4: Modularity. (a) The two modules GLY (Glycolysis) and TCA (TCA cycle) each contain
a bond graph representation of the relevant reactions. As discussed in § 3.2, they are combined
into a single module by combining common species; in this case PYR is shown explicitly – other
common species are {ATP, ADP, PI, H, NAD, NADH, H2O}. (b) The three modules GLYTCA
(containing the two modules GLY and TCA), ETC and ATP Synthase are combined by unifying
common species. This is shown for principle common species and emphasises that ETC is powered
by NADH from GLYTCA, ATP Synthase is powered by the external protons HE and both GLYTCA
and ATP Synthase generate ATP from ADP. Common species not explicitly shown are { PI, H2O,
Q8, Q8H2}.

were also declared to be common.
The full model of respiration is then constructed by combining the Glycolysis+TCA cycle module

with the Electron Transport Chain and ATP Synthase modules, as indicated in Figure 4(b). In addition
to the common species explicitly shown

{ATP,ADP,H,HE,NAD,NADH}

the set of species
{PI,H2O,Q8,Q8H2}

were also declared to be common.
To analyse this overall module, the chemostats were chosen to be:

{GLCDE,CO2,O2,ADP,ATP,H2O,PI,H}

Using the methods of § 2.2, the three pathways in this network are

1. PFK + FBP
This is a type II pathway with the overall reaction

ATP + H2O
P1 ADP + PI + H

This Futile Cycle has regulatory implications[62].

2. -FRD7 + SUCDI
This is a type III pathway with no overall reaction.
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3. 2 GLCPTS + 2 PGI + 2 PFK + 2 FBA + 2 TPI + 4 GAPD + 4 PGK - 4 PGM + 4 ENO
+ 2 PYK + 4 PDH + 4 CS + 4 ACONTA + 4 ACONTB + 4 ICDHYR + 4 AKGDH +
4 SUCOAS + 4 FRD7 + 4 FUM + 4 MDH + 4 NADTRHD + 20 NADH16 + 12 CYTBD +
27 ATPS4R
This is a type I pathway with the reaction

2 GLCDE + 12 O2 + 35 ADP + 35 PI + 35 H
P3 12 CO2 + 35 ATP + 47 H2O

Pathway 3 corresponds to the metabolic generation of ATP using the free energy of GLCDE. The ratio
of ATP to GLCDE is 17.5; this is the value quoted by Palsson [8] § 19.2.

5 Dynamic Modelling and Parameter Estimation

Dynamic models of biochemical networks have the potential to aid the understanding of how sub-
processes change over time, and can potentially elucidate important control structures within these
networks [72]. However, due to their nonlinear nature, parameter estimation is one of the most chal-
lenging aspects of developing models of biomolecular systems [73].

Parameter estimation depends on both the form of the model and the type of data available. This
section assumes a bond graph model with the mass-action kinetics of Equation (6) and that the fol-
lowing data are available for a single steady-state condition:

1. Reaction potentials Φ (equivalent to reaction Gibbs free energy).

2. Reaction flows f .

3. Species concentration c.

If data at three or more steady-state conditions were available, more complex kinetics such as the
reversible Michaelis-Menten formulation (7) could be used but this is not pursued in this paper.

In recent times, such data are becoming more readily available; species concentrations can be
obtained from metabolomics data, and tracer experiments involving 13C and 2H have been used to
infer both fluxomics data for reaction flows [74, 75] and thermodynamic data for reaction potentials
[74, 76, 77]. In the following examples, we make use of the dataset obtained by Park et al. [74] to
infer the thermodynamic parameters using a relatively fast quadratic programming (QP) algorithm.

Because bond graph models are thermodynamically consistent, the estimated parameters have
physical meaning and the resultant estimated model, though not necessarily correct, is physically
plausible [47]. Moreover, physical constraints imply parametric constraints thus reducing the param-
eter search space.

5.1 Species potentials

Because of the energetic constraints implied by the bond graph, the reaction potentials Φ are related
to the species potentials φ by Equation (13). Since some reaction potentials may be unavailable, we
rearrange and partition Φ and the stoichiometric matrix N so that

N =
[
N0 N1

]
and Φ =

[
Φ0

Φ1

]
(29)

where Φ0 and Φ1 contain the known and unknown values of Φ respectively.
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Given the measured value of Φ0 and the estimated species potentials φ̂, the estimation error ε is
defined as:

ε = Φ̂0 − Φ0 = −NT
0 φ̂− Φ0 (30)

hence ε2 = φ̂TN0N
T
0 φ̂+ 2ΦT

0 N
T
0 φ+ ΦT

0 Φ0 (31)

where the hat notation denotes estimated quantities. Although Φ1 is unknown, it is subject to the
physical inequality (11). In this case, all of the measured flows are positive, hence inequality (11) can
be combined with Equation (13) and rewritten as:

−NT
1 φ > 0 (32)

Equation (30) and inequality (32) can be embedded in a quadratic program (QP) [78]:

minimise
1

2
φ̂TPφ̂+ qTφ subject to NT

1 φ̂ < 0 (33)

where P = N0N
T
0 + λI and q = N0Φ0 (34)

I is the nφ × nφ unit matrix and λ > 0 a small positive number. In some cases, there are more
species than reactions and so the stoichiometric matrix N has more rows than columns. As a result,
the number of species potentials φ is greater than the number of reaction potentials Φ and so Equation
(13) has no unique solution for φ given Φ. Thus we use the λI term to which is required to turn a
non-unique solution for φ into a minimum norm solution.

Having deduced a set of estimated species potentials φ̂ using the QP, the corresponding reaction
potentials Φ̂0 and Φ̂ can be obtained from Equation (13) rewritten as:

Φ̂0 = −NT
0 φ̂ and Φ̂1 = −NT

1 φ̂ (35)

Once again, Φ̂0 = Φ0 and the other values of Φ can be deduced from (35); because of the inequality
constraint in the QP, these values are positive and thus physically plausible.

QP also handles equality constraints [78]; this provides a potential mechanism for incorporating
known parameters into the procedure.

5.2 Pathway flows

From basic stoichiometric analysis, steady-state flows f can be written in terms of the pathway matrix
Kp and pathway flows fp by Equation (19) repeated here as

f = Kpfp (36)

Note that, as discussed in § 2.2, the pathway matrix Kp is dependent on the choice of chemostats.
In general, Kp has more rows than columns and thus the pathway flow fp is over-determined by the
reaction flows f . Hence, given a set of experimental flows f , an estimate f̂p of fp can be obtained
from the least-squares formula:

(KT
p Kp)f̂p = KT

p f (37)

Note that:

1. (KT
p Kp) is a square np × np matrix where np is the number of pathways.
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2. If some flows are not measured, the corresponding rows of Kp are deleted.

3. The reaction flows (including the missing ones) can be estimated from f̂ = Kpf̂p.

4. From Equation (12), the estimated chemostat flows are given by the non-zero elements of

ˆ̇x = Nf̂ (38)

5.3 Reaction constants

In terms of estimated quantities, the reaction flow of Equation (6) can be rewritten as:

f̂ = κ̂f̂0 where f̂0 = f̂+
0 − f̂

−
0 (39)

f̂+
0 = exp

Φ̂f

φN
; f̂−0 = exp

Φ̂r

φN
and Φ̂f = Nf φ̂; Φ̂r = N rφ̂ (40)

For each reaction, the estimated reaction constant κ̂ is then given by Equation (39).
Similarly, reversible Michaelis-Menten reaction kinetics can be written in terms of estimated

quantities and three estimated parameters f̂max, K̂f and ρ̂ from Equation (7)

f̂ =
f̂maxf̂0

K̂f + (1− ρ̂)f̂+
0 + ρ̂f̂−0

(41)

This can be rearranged as:

f̂max + f̂ ρ̂− f̂

f̂0

K̂f =
f̂

f̂0

f̂+
0 (42)

and can be in rewritten in linear-in-the-parameters form [79] as:

y = Xθ (43)

where X =
(

1 f̂ − f̂

f̂0

)
(44)

θ =
(
fmax ρ Kf

)T (45)

and y =
f̂

f̂0

f̂+
0 (46)

Given an estimate θ̂ of θ, the estimation error ε′ is

ε′ = y −Xθ̂ (47)

Because there are three unknown parameters (f̂max, K̂f and ρ̂), at least three different sets of steady-
state data are required to uniquely determine the parameters; this case is not considered here. Alter-
natively, these unknown parameters can be determined using measured constants from the literature
[29]. Such known parameters can be included using an equality constraint of the form Aecθ̂ = bec
– an example appears in § 5.5. Noting that all elements of θ are positive, θ̂ also has the inequality
constraint θ̂ > 0, the error equation (47) together with the constraints can be embedded quadratic
program (QP) [78]:

minimise
1

2
θ̂TP θ̂ + qT θ̂ subject to θ̂ > 0 and Aecθ̂ = bec (48)

where P = XTX + λI; q = XT y
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I is the nθ × nθ unit matrix and λ > 0 a small number. The parameters of the equivalent bond graph
model can be deduced using Equation (9).

More general reaction kinetics [29] can be incorporated in a straightforward manner but, however,
would require non-linear fitting procedures to determine parameters.

5.4 Dynamical parameters

The parameter K of the species components (Ce) determines the time course of species amounts and
reaction flows when there is a deviation from steady-state. Using Equation (5), this can be determined
from the species potential estimate φ̂ and the amount of species x	 at the steady-state conditions.
Expressing amounts per unit volume, it follows that x	 = c, the species concentration at the steady-
state conditions.

5.5 Parameters for the Glycolysis & Pentose Phosphate model

The bond graph of the Glycolysis & Pentose Phosphate model (§ 4.1) was parameterised to fit E. coli
experimental data [74] using the approach described in this section. Table 2 [74] gives experimentally
measured values of the reaction Gibbs energy ∆G for all of the reactions in the model except for
G6PDH2R and PGL. The known values of ∆G were converted to reaction potentials Φ0 (mV). The
unknown potentials Φ1 were constrained to be greater than 1 mV. The first column of Table 1(c) gives
the experimental values of reaction potential Φ with the unknown values indicated by –; the second
column gives the corresponding estimates Φ̂ (mV). The estimated and known values are identical; of
the two estimated unknown values, that for PGL lies on the constraint – unconstrained optimisation
gives physically impossible negative value.

As discussed in § 2.2, pathways are determined by chemostats. In this case it was assumed that
the set of chemostats was: {ADP, ATP, CO2, G3P, G6P, H, H2O, NADP, NADPH, R5P}. Using the
methods of § 2.2, there were three pathways:

1. PGI + PFK + FBA + TPI

2. G6PDH2R + PGL + GND + RPI

3. - 2 PGI + 2 G6PDH2R + 2 PGL + 2 GND + TKT2 + TALA + TKT1 + 2 RPE

with pathway matrix Kp given by

KT
p =

 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
−2 0 0 0 2 2 2 0 1 1 1 2

 (49)

and corresponding reactions:

ATP + G6P
PPP1 ADP + 2 G3P + H (50)

G6P + H2O + 2 NADP
PPP2 CO2 + 2 H + 2 NADPH + R5P (51)

2 H2O + 4 NADP + R5P
PPP3 2 CO2 + G3P + 4 H + 4 NADPH (52)
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(a) Species parameters
Species φ̂ mV c/c0 K̂

6PGC 29 0.4784 6.2335
ADP -27 0.0704 5.1546
ATP 27 1.2221 2.2539
CO2 -30 0.0095 33.7942
DHAP -10 0.3883 1.7790
E4P -27 0.0062 57.9353
F6P -21 0.3198 1.4140
FDP -8 1.9289 0.3880
G3P -18 0.0344 14.9020
G6P -5 1.0000 0.8377
NADP 30 0.0003 11747.0633
NADPH -30 0.0154 21.0027
R5P 5 0.0999 12.2419
RU5PD 5 0.0142 86.1551
S7P 24 0.1119 21.7513
XU5PD 5 0.0230 51.6829

(b) Chemostat flows
Chemostat flow
ADP 63.12
ATP -63.12
CO2 11.58
G3P 128.03
G6P -71.10
H 86.27
H2O -11.58
NADP -23.16
NADPH 23.16
R5P 6.19

(c) Pathway flows
Pathway f̂p
PPP1 63.12
PPP2 7.98
PPP3 1.80

(d) Reaction flows and Parameters
Reaction Φ mV Φ̂ mV f/f0 f̂/f0 κ̂ κ̂1 κ̂2

PGI 16.48 16.48 60.00 59.52 154.39 66.44 16.61
PFK 68.82 68.82 62.62 63.12 54.85 30.59 7.65
FBA 20.00 20.00 63.43 63.12 160.08 61.59 15.40
TPI 7.98 7.98 62.82 63.12 353.93 133.64 33.41
G6PDH2R – 82.84 – 11.58 4.67 5.14 1.28
PGL – 1.00 – 11.58 291.64 171.06 42.77
GND 114.53 114.53 11.70 11.58 1.27 4.78 1.19
RPI 0.04 0.04 7.87 7.98 4206.98 2785.35 696.34
TKT2 16.38 16.38 0.91 1.80 9.17 2.24 0.56
TALA 54.41 54.41 – 1.80 1.66 0.94 0.23
TKT1 4.04 4.04 2.92 1.80 8.82 6.66 1.67
RPE 0.83 0.83 3.83 3.59 96.07 63.27 15.82

Table 1: Estimated flows and parameters; flows and concentration normalised by f0 and c0 (53).
Missing data indicated by –. (a) Estimated species potentials φ̂ (§ 5.1), normalised concentration and
species constants (§ 5.4). (b) Estimated chemostat flows (§ 5.2). (c) Estimated pathway flows (§ 5.2).
(d) The estimated reaction potentials Φ̂; these are identical to the measured reaction potentials Φ
where known (§ 5.1). The estimated reaction flows f̂ are close to the measured reaction flows where
known (§ 5.2). The estimated mass-action reaction constants κ̂ and the estimated Michaelis-Menten
equivalent parameters κ̂1 and κ̂2 using (9) (§ 5.3) with Kf = 0.1 and ρ = 0.2.
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Data normalisation is important in the context of parameter identification in Systems Biology [80].
Here, the experimental concentration and flow data [74] was normalised with respect to the concen-
tration of G6P and flow of PGI (given in mM/min) by defining:

c0 = cG6P = 7.88 mM f0 = fPGI/60 = 0.992 mM/s t0 =
c0

f0
= 7.95 s (53)

where t0 is the corresponding time unit.
Using the pathway decomposition and the method of § 5.2, the three pathway flows were deduced

to be those of Table 1(d). The estimated reaction flows f̂ are then deduced from Equation (36) and
given in the fifth column of Table 1(c). The chemostat flows are given in Table 1(b). The concentra-
tions given in Table 3 [74] were used to derive the species parameters of Table 1(a).

The reaction constants κ of the mass action formulation are given in Table 1(d) together with
the reaction constants κ1 and κ2 of the Michaelis-Menten formulation derived using the QP of (48).
These parameters are used to perform a dynamical simulation in § 5.6.

5.6 Simulation

The parameters of Table 1(a)&(d) were used with the bond graph model of the Glycolysis & Pentose
Phosphate pathway (§ 4.1) to run simulations. In § 4.1, we derived three pathways within this system;
these are now simulated separately here. In particular, chemostats and flowstats (as defined in § 4.1)
were implemented for the three cases and the initial concentrations were set to those in Table 1(a)
where known and to unit values where unknown.

The simulation was performed separately for two cases: the mass-action formulation using the κ
parameters and the Michaelis-Menten formulation using the κ̂1 and κ̂2 parameters.

Figure 5 shows the ratios ρR5P = fR5P
fG6P

and ρNADPH = fNADPH
fG6P

of the chemostat flows corre-
sponding to the products R5P and NADH to the chemostat flow corresponding to the substrate G6P. At
steady state, these ratios correspond to the stoichiometry of the three pathways of § 2.2. In particular,
pathway i yields both products, pathway ii yields more R5P at the expense of NADPH and pathway
iii yields more NADPH at the expense of R5P. Figures 5(a) and 5(b) correspond to the mass-action
formulation and Figures 5(c) and 5(d) correspond to the Michaelis-Menten formulation.

Because the two-reaction Michaelis-Menten formulation of enzyme catalysed reactions (8) ex-
plicitly includes the enzyme, such models can be used to examine system behaviour as enzyme levels
change.

6 Conclusion

The formulation of dynamic simulation models for large-scale biological systems remains a key chal-
lenge in systems biology. With the advent of genome-scale simulation and whole-cell modelling,
there is increasing recognition of the need for a modular approach in which model components can
be formulated, tested and validated independently, and then seamlessly integrated together to form a
model of the whole system. However, a dynamic modelling framework which is modular and which
can in principle describe the broad range of biochemical and biophysical cellular processes has been
elusive.

Several authors have acknowledged the need for energetic considerations to be integrated into
modelling approaches, both to ensure that models are consistent with basic thermodynamic princi-
ples, and to enable calculation of energy flows and related concepts such as efficiency [67]. Here
we have shown that thermodynamically compliant dynamic models of metabolism can be generated
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Figure 5: Pathway simulation. Ratios (ρ) of product (R5P & NADPH) chemostat flow to substrate
(G6P) chemostat flow, plotted against time normalised by t0 (53), for each of the three pathways
of § 2.2. The results are given for two cases: using the estimated mass-action (MA) parameter κ̂
and using the estimated Michaelis-Menten equivalent parameters (MM) κ̂1 and κ̂2 from Table 1. As
discussed in § 2.2, pathway i yields both products, pathway ii yields more R5P at the expense of
NADPH and pathway iii yields more NADPH at the expense of R5P. In this case both MA and MM
give the same steady-state values but with differing dynamic response.
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using the bond graph modelling approach, with the stoichiometric matrix as the starting point. Bond
graphs, first advocated in the context of biological network thermodynamics by Oster et al. [34],
represent both energy and mass flow through the biochemical network. Bond graphs separate the
system connectivity from energy-dissipating processes (reactions), and thus are a very natural fit to
network-based modelling in systems biology. As a port-based modelling approach, bond graphs are
also inherently modular. Furthermore, application of bond graph modelling principles automatically
endows models with a number of necessary features for large-scale modelling including modularity,
thermodynamically distinguished parameters (wherein system-wide thermodynamic parameters relat-
ing to biochemical species are distinguished from reaction-specific parameters) and hence, as noted
by Mason and Covert [29], improved opportunity for parameter identification from data.

Energy-based modelling of biochemical reaction networks using bond graphs naturally encom-
passes the EBA approach [16], where we have shown that the key equations of EBA are implicit in
the system bond graph. This is a powerful advantage as it means that no additional steps are required
in order to satisfy thermodynamic constraints. Any model formulated as a bond graph implicitly sat-
isfies these constraints; it is not possible to impose, or infer from data, parameters which break these
constraints.

A further benefit for large-scale modelling is that bond graphs naturally lend themselves to model
reduction, for example through generation of reduced-order models using pathway analysis [53, 81]:
any such simplified model will also satisfy the same thermodynamic constraints. This enables a
hierarchical approach to modelling, and it is not necessary to model all aspects of the system at the
same level of detail. Different levels of representation can be used as required, for example reflecting
available knowledge and data about different parts of the system.

As noted in the Introduction, a key challenge in the development of dynamic models is the fitting
of parameters to experimental data. We have shown that both mass-action kinetics and (reversible)
Michaelis-Menten kinetics fall within the bond graph framework and therefore have a thermody-
namically safe parameterisation; moreover, it is shown this parameterisation leads to a linear-in-the
parameters estimation problem. Bond graphs separate the constitutive relations describing the re-
actions from the connectivity of the model; it is therefore possible to incorporate more complex
kinetic schemesc̃itepCor12, including inhibition, allosteric modulation and cooperativity within the
bond graph approach thus retaining thermodynamically safe parameterisation. However, the resultant
parameter estimation problem will not, in general, be linear-in-the parameters and will therefore re-
quire an optimisation approach such as that used by K-FIT [82]. Optimisation approaches such as
K-FIT do not use a set of parameters that is thermodynamically safe by design, hence they need to
derive additional constraints to incorporate thermodynamic consistency. Future work will examine
how the thermodynamically safe parameterisation induced by the bond graph approach can be used to
simplify such optimisation when applied to large systems and data sets.

According to Noor et al. [83] in the context of obtaining biological insights though omics data
integration: “To maximize predictive power and mechanistic insights on the molecular level, ODE
simulations based on physical models of binding and catalysis remain the gold standard.” The illus-
trative example of this paper shows how data involving flows, concentrations and chemical potentials
can be integrated using the physical model structure provided by combining stoichiometric and bond
graph approaches. It is believed that this provides a basis for integrating the larger and more varied
omics data becoming available. Moreover, the physical basis of the approach can be used to indicate
what additional data should be gathered to fully parameterise the model.

Here we have demonstrated that thermodynamically compliant dynamic models can be con-
structed starting from the stoichiometric matrix. The plethora of existing stoichiometric models for
metabolic networks provides a natural starting point for this endeavour. However, while metabolic

23

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.03.24.436792doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.24.436792
http://creativecommons.org/licenses/by-nc-nd/4.0/


models are of central importance in a number of contexts, models of cellular physiology in general,
and whole-cell models in particular, require a framework that can incorporate a much broader range of
cellular processes, feedback and regulation. As a general tool for physically plausible systems mod-
elling, bond graphs can naturally include energy compliant connections to other physical domains
and processes, including transport [84], electrochemical transduction [38, 39], membrane potential
dynamics [41], mechanochemical transduction and photosynthesis. Furthermore, through incorpora-
tion of control-theoretic concepts, enzyme modulation and feedback control can be represented in a
coherent manner [62]. There remain however several key domains of cellular biology where to our
knowledge there are as yet no examples of bond graph modelling, including transcription and trans-
lation [20, 85, 86]. These will need to be demonstrated in order to provide a complete road map for
construction of modular and thermodynamically compliant whole-cell models using bond graphs.

Data Accessibility

The figures and tables in this paper were generated using the Jupyter notebooks and Python code
available at https://github.com/gawthrop/GawPanCra21.
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A EBA examples

These examples refer to § 3.3 and drawn from Beard et al [16].

A.1 Example: Parallel reactions

0

Re:r1

Re:r2

0

C:A C:B

(a) Example: Parallel reaction.

C:C 0

Re:r3

0

C:A

Re:r1

Re:r2 0 C:B

(b) Example: three-reaction cycle.

Figure 6: Bond graphs corresponding to examples from Beard et al [16] (1 junctions are not shown
for clarity)). (a) Beard et al [16, Fig. 2], (b) Beard et al [16, Fig. 3]

Beard et al [16] motivate EBA using the example of two resistors in parallel. Figure 6(a) shows
the bond graph of the analogous reaction system: the species A and B are joined by two reactions:

A
r1 B (54)

A
r2 B (55)

The stoichiometric matrix is:

N =

(
−1 −1
1 1

)
(56)

and the null space matrix K is

K =

(
−1
1

)
(57)

corresponding to the pathway: −r1 + r2.
Setting A and B as chemostats:

N cd =

(
0 0
0 0

)
(58)

Kp =

(
1 0
0 1

)
(59)

Equation (28) then becomes:
−r1v1 + r2v2 = 0 (60)

As ri > 0, it follows that v1 and v2 must either be zero or have the same sign.
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A.2 Example: three-reaction cycle

Beard et al [16] give the example of a three-reaction cycle. Figure 6(b) shows the corresponding bond
graph. The species A, B and C are joined by three reactions:

A
r1 B (61)

B
r2 C (62)

C
r3 A (63)

The stoichiometric matrix is:

N =

−1 0 1
1 −1 0
0 1 −1

 (64)

and the null space matrix K is

K =

1
1
1

 (65)

corresponding to the pathway: r1 + r2 + r3.
Setting A and B as chemostats:

N cd =

0 0 0
0 0 0
0 1 −1

 (66)

Kp =

1 0
0 1
0 1

 (67)

Equation (28) then becomes:

r1v1 + r2v2 + r3v2 = r1v1 + (r2 + r3) v2 = 0 (68)

As ri > 0, it follows that v1 and v2 must either be zero or have the opposite sign.
Alternatively, setting A, B and C as chemostats:

N cd =

0 0 0
0 0 0
0 0 0

 (69)

Kp =

1 0 0
0 1 0
0 0 1

 (70)

Equation (28) then becomes:

r1v1 + r2v2 + r3v3 = 0 (71)

As ri > 0, there are three possibilities: all flows are zero; one of the three pathway flows must have
one sign and the other two flows the opposite sign; or one flow is zero and the other two have opposite
signs.
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B Pathways: Illustrative example

This example refers to § 2.2. Noor [19] gives a simple illustrative example of the three types of

0

00 1

Ce:A Ce:B

Ce:D

R
e

:r
1

Re:r4

R
e

:r
3

Re:r5

1

Re:r2

0

Ce:ADP

Ce:C

Re:r6

Ce:E

Ce:ATP

(a) Bond graph

1 1

1

R
e:P3 1 0

Ce:E

0

Ce:A

0

Ce:ATP

0

Ce:ADP

R
e:P1

(b) Pathway bond graph

Figure 7: Bond graphs for illustrative example [19]

pathway; Figure 7(a) gives the corresponding bond graph. the reactions are:

A
r1 B (72)

ATP + B
r2 ADP + C (73)

C
r3 D (74)

D
r4 A (75)

A
r5 C (76)

C
r6 E (77)

The there are seven species and six reactions giving states x and flows v:

x =



xA
xADP
xATP
xB
xC
xD
xE


v =



vr1
vr2
vr3
vr4
vr5
vr6

 (78)

The stoichiometric matrix is:

N =



−1 0 0 1 −1 0
0 1 0 0 0 0
0 −1 0 0 0 0
1 −1 0 0 0 0
0 1 −1 0 1 −1
0 0 1 −1 0 0
0 0 0 0 0 1


(79)
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Setting A, E, ATP and ADP as chemostats,N cd is constructed by setting the corresponding rows of
N to zero. The corresponding null space is three dimensional and corresponds to the three pathways:

1. r1 + r2 + r3 + r4

2. r3 + r4 + r5

3. r1 + r2 + r6

Using (20), the pathway stoichiometric matrix Np is:

Np =



0 0 −1
1 0 1
−1 0 −1
0 0 0
0 0 0
0 0 0
0 0 1


(80)

The three pathway reactions are:

ATP
P1 ADP (81)
P2 (82)

A + ATP
P3 ADP + E (83)

Pathway reaction P1 corresponds to a type II pathway, pathway reaction P2 to a type III pathway and
pathway reaction P3 to a type I pathway where A is converted to E driven by the conversion of ATP to
ADP. The example is extended by assigning a set of nominal chemical potentials φ� to the species:
φ�A = 1, φATP = 0, φADP = 3, φ�B = 1, φ�C = 1, φ�D = 1, φ�E = 0. The pathway reaction
potentials are then computed using (21) as ΦP1 = −2, ΦP2 = 0, ΦP3 = −1. As the potential
for each pathway only depends on the species appearing in the pathway reactions, the potential of
non-chemostatted species are irrelevant for this computation. In fact the potentials of the species will
correspond to the steady-state values of concentrations of the non-chemostatted species arising from
the flow patterns corresponding to the chemostat potentials [87]. The pathway bond graph appears in
Figure 7(b).

C Glycolysis & Pentose Phosphate Pathways

This section contains the reactions used in § 4.1 to generate the three pathways arising from the upper
reactions of glycolysis and the pentose phosphate pathway. The reactions are extracted as discussed
in § 4.
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The reactions are:

G6P PGI F6P (84)

ATP + F6P PFK ADP + FDP + H (85)

FDP FBA DHAP + G3P (86)

DHAP TPI G3P (87)

G6P + NADP
G6PDH2R

6PGL + H + NADPH (88)

6PGL + H2O PGL
6PGC + H (89)

6PGC + NADP GND CO2 + NADPH + RU5PD (90)

RU5PD RPI R5P (91)

E4P + XU5PD
TKT2 F6P + G3P (92)

G3P + S7P TALA E4P + F6P (93)

R5P + XU5PD
TKT1 G3P + S7P (94)

RU5PD RPE XU5PD (95)

D Modular representation of Metabolism: Reactions

This section contains the reactions used in § 4.2 which illustrates the utility of using bond graphs for
the modular construction of stoichiometric models by constructing a model of respiration by combin-
ing the modular subsystems: Glycolysis, TCA cycle, Electron Transport Chain and ATP Synthase.

The reaction CYTBD (containing 1
2O2) was multiplied by 2 to give integer stoichiometry and, for

clarity, the reactions RPI, PGK, PGM, SUCOAS and FRD7 were reversed to give the conventional
direction.
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D.1 Glycolysis

The reactions extracted are:

GLCDE + PEP GLCPTS G6P + PYR (96)

G6P PGI F6P (97)

ATP + F6P PFK ADP + FDP + H (98)

FDP + H2O FBP F6P + PI (99)

FDP FBA DHAP + G3P (100)

DHAP TPI G3P (101)

G3P + NAD + PI GAPD
13DPG + H + NADH (102)

13DPG + ADP PGK
3PG + ATP (103)

3PG PGM
2PG (104)

2PG ENO H2O + PEP (105)

ADP + H + PEP PYK ATP + PYR (106)

D.2 TCA cycle

As well as the TCA cycle itself, this module includes:

1. the pyruvate (PYR) connection reactions: PDH and PFL and

2. the NAD/NADP interconversion reaction NADTRHD.

The reactions extracted are:

ACCOA + H2O + OAA CS CIT + COA + H (107)

CIT ACONTA ACON + H2O (108)

ACON + H2O ACONTB ICIT (109)

ICIT + NADP ICDHYR AKG + CO2 + NADPH (110)

AKG + COA + NAD AKGDH CO2 + NADH + SUCCOA (111)

ADP + PI + SUCCOA SUCOAS ATP + COA + SUCC (112)

Q8 + SUCC
FRD7 FUM + Q8H2 (113)

Q8 + SUCC SUCDI FUM + Q8H2 (114)

FUM + H2O FUM MALL (115)

MALL + NAD MDH H + NADH + OAA (116)

NAD + NADPH NADTRHD NADH + NADP (117)

COA + NAD + PYR PDH ACCOA + CO2 + NADH (118)

COA + PYR PFL ACCOA + FOR (119)
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D.3 Electron Transport Chain

The reactions extracted are:

4 H + NADH + Q8
NADH16 3 HE + NAD + Q8H2 (120)

4 H + O2 + 2 Q8H2
CYTBD 2 H2O + 4 HE + 2 Q8 (121)

D.4 ATP Synthase

The reaction extracted is:

ADP + 4 HE + PI
ATPS4R ATP + 3 H + H2O (122)

E Enzyme-catalysed Reaction
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Figure 8: Bond graph representation of an Enzyme-catalysed Reaction
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