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Supplemental Materials: Natural selection and the advantage of recombination [1]
and companion publications [2, 47].

S1. COVARIANCE, THE MEASURE OF RECOMBINANT ADVANTAGE

Classical discrete-time definitions

Using standard notation and definitions, we let wi denote the mean number of o↵spring that the ith individual con-
tributes to the next generation, and w̄ = 1

N

PN
i=1 wi, the grand mean number of o↵spring taken across all individuals

in the population. The relative fitness of the ith individual is simply:

wi

w̄
(S1)

We emphasize here that this definition of relative fitness is in discrete time, where the discrete time interval is a
generation. While it makes biological sense and is the most commonly-used definition of relative fitness, techni-
cally speaking it implicitly makes the questionable assumption of synchronous reproduction, which can introduce error.

We now suppose that each individual has two genes, having genic fitnesses x and y. In the absence of epistasis, the
relative fitness of the ith individual is:

xiyi
xy

(S2)

If a recombinant is produced that carries the x allele from the ith individual and the y allele from the jth individual,
the relative fitness of the recombinant will be:

xiyj
xy

(S3)

If a recombinant is produced that carries the x allele from the ith individual and the y allele from a randomly chosen
individual in the population, then on average, the relative fitness of the recombinant will be:

xi
1
N

PN
j=1 yj

xy
(S4)

Following the same logic, if a recombinant is produced from two randomly-chosen parents, then on average, the relative
fitness of the recombinant will be:

w̄r =
1
N

PN
i=1 xi

1
N

PN
j=1 yj

xy
N!1
����!

E[x]E[y]
E[xy]

(S5)

The standard discrete-time definition of selective advantage is mean relative fitness after one generation minus one.
By this definition, the mean selective advantage of recombinants is:

s̄r = w̄r � 1 =
E[x]E[y]

E[xy]
� 1 =

�Cov(x, y)

w̄
(S6)

where w̄ = E[xy], the mean fitness of the population.

Continuous time

Elsewhere, we have shown that time-integrated recombinant selective advantage evolves as:

Z t

0
sr(u)du = C0(t, 0) + C0(0, t)� C0(t, t)

where C0(', ✓) is the cgf of the initial fitness distribution.
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Average recombinant advantage over the course of its first generation of growth is therefore:

s̄r =

Z 1

0
sr(u)du = C0(1, 0) + C0(0, 1)� C0(1, 1)

= ln
E[eX ]E[eY ]
E[eX+Y ]

⇡ � �XY

Figure S1 shows the approximation in the last step to be extremely accurate. We believe the reason this approximation
is so accurate is that the Jensen gap for numerator and denominator cancel each other out:

Jensen’s inequality in two dimensions gives lnE[eX ]E[eY ] = E[X]E[Y ] + JG1 and lnE[eX+Y ] = E[XY ] +
JG2, where JG1 and JG2 are Jensen gaps one and two. If JG1 ⇡ JG2 then lnE[eX ]E[eY ] �
lnE[eX+Y ] ⇡ E[X]E[Y ] � E[XY ] = � �XY . Figure S1 reveals that JG1 and JG2 are indeed ex-
tremely close and thus e↵ectively cancel each other out.
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FIG. S1. Mean selective advantage of recombinants over their first generation of growth is extremely well approximated by
minus the covariance (��XY ). Dots plot values based on 10, 000 points drawn from a bivariate normal distribution with
zero means and standard deviations varying between zero and one. Quantities were standardized to fit on the same plot by
multiplying by k = (�X�Y )�1. The thin line plots the y = x line.

S2. EVOLUTIONARY MODELS

One-locus model with selection and mutation

Let ut(x) denote probability density in fitness x at time t (i.e.,
R
x ut(x) = 1 for all t) for an evolving population.

Dropping the subscript t, we have that, under selection and mutation, u evolves as:

@tu(x) = (x� x̄)u(x) + U

Z

�
u(x� �)g(�)� Uu(x)

where U is genomic mutation rate, and g(�) is probability density for fitness changes incurred by mutation, i.e., g(�)
is the “distribution of fitness e↵ects” of newly-arising mutations, or DFE.

Let M(') denote the moment-generating function (mgf ) for u(x), i.e., M(') = Eu[e'X ] and let G(') denote the
mgf for the DFE, i.e., G(') = E[e'x]. The transformed equation is:

@tM(') = @'M(')� @'M(0)M(') + UM(')(G(')� 1).

Over the time interval in question (assumed to be short on evolutionary time scales), we will suppose the DFE
is invariant such that G(') is a constant function. We define cumulant-generating function (cgf ) C(') = lnM(');
noting that @'C(') = (@'M('))/M('), and @tC(') = (@tM('))/M(') we find that the cgf evolves as:

@tC(') = @'C(')� @'C(0) + U(G(')� 1).
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This equation is a variant of the transport equation and, when boundary condition C(0) = 0 8 t is applied, it has
solution:

Ct(') = C0('+ t)� C0(t) + U

Z t

0
(G('+ �)�G(�))d� (S7)

where the subscripts are now necessary again: Ct(') is the cgf of the fitness distribution ut(x) at time t. We note
that the evolution of a population can thus be projected into the future based only on the present fitness distribution
(i.e., at t = 0).

Two-locus model with selection and mutation

We now suppose that there are two “genes” that determine fitness, such that total fitness is determined by their
sum. Letting fitness contributions of the two genes be denoted by x and y, respectively, the total fitness is then
simply x+ y. The extension of the previous one-dimensional pde is therefore immediate:

Let ut(x, y) denote probability density in fitness contributions x and y at time t for an evolving population. Dropping
the subscripts again, under selection and mutation, u evolves as:

@tu(x, y) = (x+ y � x̄� ȳ)u(x, y)

+ U

Z

�,�
u(x� �, y � �)g(�,�)� Uu(x, y)

where again U is genomic mutation rate, and g(�,�) is again the “distribution of fitness e↵ects” of newly-arising
mutations, or DFE, only now it is a bivariate distribution.

Let M(', ✓) denote the mgf for u(x, y), i.e., M(', ✓) = Eu[e'X+✓Y ] and let G(', ✓) denote the mgf for the DFE, i.e.,
G(', ✓) = Eg[e'X+✓Y ]. Again, over the time interval in question (assumed to be short on evolutionary time scales), we
will suppose the DFE is invariant such that G(', ✓) is a constant function. As before, defining cgf C(', ✓) = lnM(', ✓),
we have:

@tC(', ✓) = @'C(', ✓) + @✓C(', ✓)� @'C(0, 0)� @✓C(0, 0)

+ U(G(', ✓)� 1). (S8)

This equation is a two-dimensional variant of the transport equation and has more possible solution forms than the
one-dimensional case, namely, solutions can be of the form: C(t + ', ✓ � '), C(t + ✓,' � ✓), or C(t + ', t + ✓). The
consistent solution is the last of these. When boundary condition C(0, 0) = 0 8 t is applied, it has solution:

Ct(', ✓) = C0('+ t, ✓ + t)� C0(t, t) (S9)

+ U

Z t

0
(G('+ �, ✓ + �)�G(�, �))d�

where the subscripts have again become necessary. We again note that the evolution of a population can thus be
projected into the future based only on the present fitness distribution (i.e., at t = 0).

Two-locus model with selection, mutation and drift

For our first few steps, we follow the logic outlined in Ewens’ book [S48], section 4.10. We use the same notation
as in that reference, with the exception of his use of the variable x which we replace with q, because we will later use
X as we have before, to denote the fitness contribution of one of the two genes. We define the expectation of some
arbitrary function g(q), to be:

E[g(q)] =
Z

g(q)f(q;p, t)dq

where f(q;p, t) is a probability density of a di↵usion process in q with initial frequencies p.
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Ewens [S48] (p.154, eq.4.83) gives the rate of change of the expectation of g(q):

@

@t
E[g(q)] = E

X
ai(q)

@g(q)

@qi
+

1

2

X
bi(q)

@2g(q)

@q2i
+
XX

cij(q)
@2g(q)

@qi@qj

�
(S10)

We now define the function g(q) to be:

g(q) = g(q1, q2, ..., qn) = Log

 
nX

i=1

qie
'Xi+✓Yi

!
= C̃(', ✓) (S11)

where, adhering to our previous notation, the Xi and Yi are fitness contributions of the two genes in question, as
before, and qi denotes the frequency of individuals with total fitness Zi = Xi + Yi.

The first term on the right-hand side of (S10) is the selection term, with:

ai(q)dt+O(�t) = E[�qi] = qi(Zi � E[Z])

and the second two terms are drift terms, with:

bi(q)dt+O(�t) = Var[�qi] = qi(1� qi)/n

and

cij(q)dt+O(�t) = Cov[�qi, �qj ] = �qiqj/n

Plugging these definitions into Eq. (S10), we have:
First term (selection):

X

i

ai(q)
@g(q)

@qi
=

P
i qi(Xi + Yi)e'Xi+✓Yi

P
i qie

'Xi+✓Yi
�

X

i

qi(Xi + Yi)

= C̃
(1,0)
0 (', ✓) + C̃

(0,1)
0 (', ✓)� C̃

(1,0)
0 (0, 0)� C̃

(0,1)
0 (0, 0)

as before, where C̃0(✓,�) = C̃(✓,�, 0) is the cumulant-generating function associated with random variables X and Y
at time zero, as defined above in (S11).

Second term (drift 1):

1

2

X

i

bi(q)
@2g(q)

@q2i
= �

1

2

1
n

P
i qi(1� qi)e2'Xi+2✓Yi

(
P

i qie
'Xi+✓Yi)2

Third term (drift 2):

X

i

X

j>i

cij(q)
@2g(q)

@qi@qj

=
�

1
n

P
i

P
j>i qiqje

'(Xi+Xj)+✓(Yi+Yj)

(
P

i qie
'Xi+✓Yi)2

The two drift terms have a common denominator so the numerators can simply be added. When added, it can be
rearranged so that the sum of the two drift terms is:

1
2

�P
qie'Xi+✓Yi

�2
�

1
2qie

2'Xi+2✓Yi

(
P

qie'Xi+✓Yi)2

=
1

2n

M̃(', ✓)2 � M̃(2', 2✓)

M̃(', ✓)2
,

where M̃(', ✓) =
P

i qie
'Xi+✓Yi , the moment-generating function associated with random variables X and Y . And

of course we have that M̃(', ✓) = eC̃(',✓), so that the drift term may be rewritten as:

1

2n

⇣
1� eC̃(2',2✓)�2C̃(',✓)

⌘
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The CGF equation now becomes:

@

@t
E[g(q)] =

@

@t
E[C̃(', ✓)] = E


C̃
(1,0)(', ✓) + C̃

(0,1)(', ✓)� C̃
(1,0)(0, 0)� C̃

(0,1)(0, 0) +
1

2n

⇣
1� eC̃(2',2✓)�2C̃(',✓)

⌘�

(S12)
Dropping the tildes and the expectations to reduce clutter, we can now write the full evolutionary model that
incorporates selection, mutation, recombination (main text) and drift:

@

@t
C(', ✓) = C

(1,0)(', ✓)+C
(0,1)(', ✓)�C

(1,0)(0, 0)�C
(0,1)(0, 0)+R(eC(',0)+C(0,✓)�C(',✓)

�1)+
1

2n

⇣
1� eC(2',2✓)�2C(',✓)

⌘

(S13)
where R is recombination rate.

We suspect this equation can no longer be solved because of the non-local arguments in the drift term (the 2' and
2✓), but we can immediately see how drift a↵ects the covariance by taking derivatives with respect to ' and ✓ and
setting these equal to zero:

@t�XY (t) = 1,2(t) + 2,1(t)�
1

n
�XY (t)

where i,j(t) is the (i, j)th joint cumulant of X and Y at time t, and we recall �XY (t) = 1,1(t). This shows that
drift will tend to weakly push covariance towards zero from either side.

Now writing out the full equation for covariance dynamics, with selection, mutation, drift and recombination, we
have:

@t�XY (t) = 1,2(t) + 2,1(t) + Um1,1 � (R+
1

n
)�XY (t)

where m1,1 = E(�X�Y ) and �X and �Y are changes in fitness due to mutation; i.e., m1,1 is the first joint moment
of the DFE; and R is recombination rate.

In Ewen’s book [S48], n is interpreted as the number of alleles plus one: n = K � 1, where K is the number of
alleles. And if you start with an asexual population in which all individuals have di↵erent fitnesses, then in e↵ect
you have K = N alleles, where N is population size, so that n = N � 1 ⇡ N .

The foregoing developments allow us to study the e↵ects of drift in isolation:

@t�XY (t) = �
1

n
�XY (t) ,

giving rise to the prediction that under drift only,

�XY (t) = �XY (0)e
�t/n . (S14)

We compare these predictions with simulations in Fig S2. Simulations were individual-based and stochastic; they
started with a population that was heterogeneous in with �XY (0) = �0.025, and proceeded with no selection and no
mutation. Results of the simulations support the interpretation of n as N .

S3. ONE GENERATION OF SELECTIVE SORTING

We recall that �XY = 1,1, �2
X = 2,0, and �2

Y = 0,2. We are interested in the changes in these quantities,
especially in the change in 1,1 over the course of a single generation. These results are expressed most compactly in
terms of cumulants, so we use the cumulant notation, recalling that i,j is the (i, j)th cumulant in X and Y .

Change in covariance over time interval (t, t+ �t) can be written as follows:

1,1(t+ �t) = 1,1(t) + �t0
1,1(t) +

1

2
�t200

1,1(t) +O(�t3) + ...

We define total change in covariance between t = 0 and time t = �t to be:

�1,1 = 1,1(�t)� 1,1(0)

= �t0
1,1(0) +

1

2
�t200

1,1(0) +O(�t3) + ... (S15)
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FIG. S2. Covariance dynamics under drift only. Solid curve plots the predicted dynamics given by Eq (S14) and assuming
n = N ; points plot the averages of 50 simulations. The initial state of the population was a set of 5000 (X,Y ) pairs (N = 5000)
drawn at random from a bivariate normal distribution with �XY (0) = �0.025.

We will see that:

0
1,1(0) = NG1 +D (S16)

00
1,1(0) = NG2 +G (S17)

where G, NG and D refer to “gaussian”, “non-gaussian” and “drift” components, respectively. We note that Eq (S16)
has no gaussian component; likewise, (S17) has no drift component. Gaussian component are functions of cumulants
i,j where i+ j  2; non-gaussian components are functions of cumulants i,j where i+ j > 2.

To de-clutter the notation here, in what follows we let i,j = i,j(0). The components come directly from Eq (S12);
they are:

D = � kN1,1

G = � 2kN
�
42

1,1 + 31,1(2,0 + 0,2) + 22,00,2

�

NG1 = 1,2 + 2,1

NG2 = 1,3 + 22,2 + 1,3

where kN = N�1
N2 . Letting �t = 1, i.e., over the course of a single generation, we have:

�1,1 = D +NG1 +
1

2
G+

1

2
NG2 ,

which very accurately predicts the change in covariance when compared to stochastic simulations.
We note the explicit dependence of D and G on population size N , which suggests these components can be

significant in small populations but become negligible in large populations. In large populations, it is the non-
gaussian components that determine the change in covariance. We also note that D is a linear function in 1,1 with
slope �kN and passing through the origin.

Gaussian component, G, is a concave parabolic function in 1,1 with maximum value:

Ĝ = � kN

✓
42,00,2 �

9

8
(2,0 + 0,2)

◆

occurring at:

̂1,1 = �
3

8
(2,0 + 0,2)

If we suppose the variances in X and Y are equal (i.e., �2
X = 2,0 = 0,2 = �2

Y ), the foregoing maybe rewritten as

maximum: Ĝ = 1
2kN�4

X occurring at: ̂1,1 = �̂XY = �
3
4�

2
X In this case of equal variances, the maximum should

thus occur 3/4 of the way between 0 and the minimum value for covariance (in this case, the minimum value is
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FIG. S3. Schematic plot of change in covariance due to drift (D, in red) and drift plus the gaussian component of fitness
(G+D, in blue) as a function of initial covariance. Three key features are: 1) Drift alone (red) is linear and symmetric passing
through the origin and with an average value of zero; put di↵erently, drift by itself has no net e↵ect on the covariance. 2)
Drift plus the gaussian component of fitness is unconditionally negative for independent X and Y (i.e., for initial covariance
of zero); because the drift component is zero in this case, it is the gaussian component of fitness by itself that creates negative
covariance. 3) On average, the gaussian component of fitness is negative; put di↵erently, there is a net tendency to decrease
covariance.

��X�Y = ��2
X). This can be seen in our simulations and in the schematic plot in Fig S3 by the fact that the G+D

curve rises slightly above the D-only curve toward the negative end of the 1,1 domain and is otherwise concave,
becoming increasingly smaller than D as 1,1 increases.

Of special interest is the fact that that the intercept of G is unconditionally negative; i.e., when 1,1 = 0, we have:

G(0) = �4kN2,00,2 = �4kN�2
X�2

Y

Add this to the fact that the intercept of D is zero, and we have that when 1,1 = 0:

G(0) +D(0) = �4kN�2
X�2

Y  0 (S18)

Non-gaussian component NG1 = 1,2 + 2,1 may be rewritten as:

NG1 =
1

3
(3(X + Y )� 3(X)� 3(Y ))

i.e., it is the discrepancy between the skewness of the sum and the sum of the skewnesses of X and Y .

RECOMBINANT ADVANTAGE WITH EPISTASIS

Corollary 8. For any real number ⇠, let us consider a fitness function of the form �⇠(x, y) = aX + bY + ⇠g(X,Y ),
where a, b > 0 and g is a function independent of ⇠. Let Z(⇠) = �⇠(X2, Y2)��⇠(X1, Y1). Assume that for some " > 0,

E

"
sup
|⇠|<"

|�X�Y |

|Z(⇠)|

#
< 1, (S19)

and that P(�X�Y = 0) < 1. Then, there is "0 2 (0, "), such that for all ⇠ 2 (�"0, "0), we have

E

�X�Y

|Z(⇠)|

�
< 0.

Proof. Condition (S19) implies that the function h : (�", ") ! R defined via

h(⇠) = E

�X�Y

|Z(⇠)|

�

is continuous. Moreover, since P(�X�Y = 0) < 1, proceeding as in the proof of Proposition ??, we obtain that
h(0) < 0. Hence, by continuity of h, we infer that there is "0 2 (0, ") such that h is negative in (�"0, "0), which
concludes the proof.
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Let us now focus our attention on the fitness function �⇠(X,Y ) = aX + bY + ⇠XY with a, b > 0 and ⇠ 2 R. As
before, let Z(⇠) = �⇠(X2, Y2) � �⇠(X1, Y1) = (a + ⇠Y1)�X + (b + ⇠X2)�Y . The case where the random variables
(|�X�Y |/|Z(⇠)|)⇠2(�",") are uniformly integrable (i.e. condition (S19) is satisfied) is covered already by Corollary 8.
As a counterpart, the next result considers the case where the expectation of |�X�Y |/|Z(⇠)| is infinite, and provides
a simple condition to assure that the expectation of �X�Y /|Z(⇠)| is negative (in fact, equal to �1).

Corollary 9. Assume that the distribution of (Xi, Yi) has finite support, i.e. there is K > 0 such that P(Xi 2

[�K,K], Yi 2 [�K,K]) = 1 and that |⇠| < (a ^ b)/K, where a ^ b denotes the minimum between a and b. If we have

E

|�X�Y |

|Z(⇠)|

�
= 1, (S20)

then

E

�X�Y

|Z(⇠)|

�
= �1.

Proof: Note first that, if |⇠| < (a ^ b)/K, then P( a+ ⇠Y1 � a� |⇠K|, b+ ⇠X2 � b� |⇠K|) = 1, and hence

E

�X�Y 1�X�Y >0

|Z(⇠)|

�
= E


�X�Y 1�X�Y >0

|(a+ ⇠Y1)�X + (b+ ⇠X2)�Y |

�

= E


�X�Y 1�X�Y >0

|(a+ ⇠Y1)�X|+ |(b+ ⇠X2)�Y |

�


2

(a ^ b)� |⇠K|
E


|�X�Y |

|�X|+ |�Y |

�


1

(a ^ b)� |⇠K|
E
hp

|�X�Y |

i


K

a ^ b
< 1.

Therefore, condition (S20) implies that

E

|�X�Y |1�X�Y <0

|Z(⇠)|

�
= 1,

and thus,

E

�X�Y

|Z(⇠)|

�
= E


�X�Y 1�X�Y >0

|Z(⇠)|

�
� E


|�X�Y |1�X�Y <0

|Z(⇠)|

�
= �1,

achieving the proof. ⇤

ASYMPTOTIC MODIFIER FREQUENCY WITH EPISTASIS

Here, we assess the sensitivity to epistasis of our theoretical predictions for asymptotic modifier frequency. To this
end, we performed stochastic simulations with epistasis and compared the final modifier frequency with the asymptotic
predictions given by Eqs (30) and (31). Results of these simulations are plotted in Fig S4. This figure shows that
asymptotic modifier frequency is little-a↵ected by epistasis.

COVARIANCE DYNAMICS IN A METAPOPULATION: SIMULATIONS

Detailed metapopulation simulations in which natural selection was modeled explicitly in a finite population are
plotted in Fig ??. Initially, each deme of the metapopulation is assigned n distinct genotypes. Natural selection then
acts on this variation for 100 generations (the first bout of selection), at which time gaussian noise (mutation) was
injected to initialize the next bout of selection, and the process was repeated to mimic several bouts of selection.
Figure S5 reveals that within-deme (within-population) covariance becomes negative in the first bout of selection,
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FIG. S4. E↵ect of epistasis on asymptotic modifier frequency. Open circles plot means of 500 stochastic simulations. Blue and
orange lines plot theoretical predictions given by Eq (30) for 2 and 10 genotypes, respectively. Simulations had population size
5000.
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FIG. S5. Covariance and correlation dynamics in a metapopulation. Simulated metapopulations of size N = 500 begin with all
individuals being assigned unique genic fitness pairs, (X,Y ), drawn at random from a common bivariate normal distribution
with correlation coe�cient 0.9, means �0.1 and variances 0.2. Every 100 generations, uncorrelated gaussian noise was injected
as follows: X 0 = X+Q and Y 0 = Y +Q, where Q ⇠ N (�.1, .1). Plotted is a) mean covariance and b) mean correlation, where
means were computed from 2000 simulations.

despite starting with a correlation coe�cient close to +1, as the theory in our companion paper [S47] predicts. Across-
deme covariance also starts close to +1; it is reduced in the first bout of selection but does not become negative until
the third bout of selection.
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