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Abstract 

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural 
organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal 
encodes specific properties of the underlying diffusion process. In the last two decades, 
several signal representations have been proposed to fit the dMRI signal and decode such 
properties. Most methods, however, are tested and developed on a limited amount of data, 
and their applicability to other acquisition schemes remains unknown. With this work, we 
aimed to shed light on the generalizability of existing dMRI signal representations to different 
diffusion encoding parameters and brain tissue types. To this end, we organized a community 
challenge - named MEMENTO, making available the same datasets for fair comparisons across 
algorithms and techniques. We considered two state-of-the-art diffusion datasets, including 
single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique 
diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data 
(DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data 
sampled in 5 different voxels was openly distributed, and the challenge participants were 
asked to predict the remaining part of the data. After one year, eight participant teams 
submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, 
the variance of the prediction error and the Bayesian information criteria. Most predictions 
predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE 
data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE 
remarkably well, with the exception of low and very strong diffusion weightings. The 
prediction of DDE and DODE data seemed more challenging, likely because none of the 
submissions explicitly accounted for diffusion time and frequency. Next to the choice of the 
model, decisions on fit procedure and hyperparameters play a major role in the prediction 
performance, highlighting the importance of optimizing and reporting such choices. This work 
is a community effort to highlight strength and limitations of the field at representing dMRI 
acquired with trending encoding schemes, gaining insights into how different models 
generalize to different tissue types and fiber configurations over a large range of diffusion 
encodings. 
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Introduction 

Diffusion Magnetic Resonance Imaging (dMRI) is a powerful tool to investigate 
microstructural properties of biologic tissues in-vivo (A. L. Alexander et al. 2007; J. D. Tournier, 
Mori, and Leemans 2011) with applications in neuroimaging studying brain development 
(Ouyang et al. 2019), plasticity (Blumenfeld-Katzir et al. 2011), aging (Baker et al. 2014), as 
well as changes upon disease for diagnostic and monitoring purposes in various conditions 
such as Alzheimer’s disease (Doan et al. 2017; Weston et al. 2015), multiple sclerosis (Inglese 
and Bester 2010; De Santis et al. 2019), Parkinson’s disease (Atkinson-Clement et al. 2017), 
brain tumours (Costabile et al. 2019), etc. The signal measured in dMRI is sensitized to the 
microscopic motion of water molecules, which is hindered and restricted by the presence of 
biologic membranes, thus carrying information about the cellular organization. Over the last 
decade, an increasing number of techniques have been proposed in the literature to describe 
the dMRI signal and provide biomarkers of tissue microstructure and have been recently 
complemented with various machine learning approaches.(D. C. Alexander et al. 2017; Ghosh, 
Ianus, and Alexander 2018; D. S. Novikov et al. 2019; Poulin et al. 2019; Ravi et al. 2019) 
 
The standard acquisition strategy for dMRI data is single diffusion encoding (SDE), which 
employs a pair of diffusion weighting gradients with identical areas, usually embedded before 
and after the refocusing pulse in a spin echo preparation, a sequence widely known also as 
pulsed gradient spin-echo (Stejskal and Tanner 1965). The SDE sequences are characterized 
by the gradient strength (G), duration (δ), time interval between the onset of the two 
gradients (Δ) and gradient orientation (�̂�). The scalar parameters (G, δ, Δ) are usually 
combined to describe the diffusion weighting of the sequence, also referred to as the b-value. 
For SDE sequences, b = γ2G2δ2(Δ- δ/3), where γ is the gyromagnetic ratio. In the majority of 
SDE acquisitions δ and Δ are fixed and G is varied to change the b-value, although varying the 
gradient duration and diffusion time can provide additional orthogonal measurements (D. S. 
Novikov et al. 2019). Over the last decade, diffusion sequences which further vary the 
gradient waveform within one measurement, such as double diffusion encoding (DDE) (Mitra 
1995; Henriques et al. 2020) or b-tensor encoding approaches (Lasic et al. 2014; C. F. Westin 
et al. 2016), have been gaining interest as they can further improve the specificity of the 
measurements towards the underlying tissue microstructure. Other approaches replace the 
pulsed gradients with oscillating gradient waveforms to probe diffusion on a range of 
(shorter) time scales (Does, Parsons, and Gore 2003; Burcaw, Fieremans, and Novikov 2015), 
measurements which can also be performed with different gradient orientations in a double 
oscillating diffusion encoding (DODE) fashion (Ianus et al. 2017, 2018). While the majority of 
recent dMRI studies employ SDE sequences, such advanced acquisitions are steadily gaining 
popularity. 
 
The most widely used dMRI technique for brain imaging in the clinic is diffusion tensor 
imaging (DTI)(Basser, Mattiello, and LeBihan 1994), which assumes that water diffusion in the 
underlying tissue can be described by a Gaussian anisotropic process. As minimum 
requirements, the tensor parameters can be estimated from SDE sequences with a single b-
value (usually about 1000 s/mm2) and at least 6 non-collinear directions in addition to non-
diffusion weighted data (b = 0 s/mm2). Although simple and robust, DTI cannot describe the 
signal decay in correspondence of higher b-values (e.g., above about 1500 s/mm2 in the living 
brain) and cannot distinguish between multiple fibre populations, for instance in areas of 
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crossing fibres (B. Jeurissen et al. 2013). After DTI, a plethora of techniques have been 
introduced to capture the dMRI signal decay over a wider range of parameter values (D. C. 
Alexander et al. 2017; D. S. Novikov et al. 2019).  
 
dMRI models can generally be regarded as biophysical models, signal representations or 
somewhere in between (Ghosh, Ianus, and Alexander 2018; Ileana O. Jelescu and Budde 
2017). Biophysical models usually employ multiple water compartments to describe the dMRI 
signal in the tissue in order to capture microscopic metrics such as intracellular signal fraction, 
cell size, shape etc (Stanisz et al. 1997; Jespersen et al. 2007; Y. Assaf et al. 2008; Daniel C. 
Alexander 2008; E. Fieremans et al. 2013; Palombo et al. 2020; Panagiotaki et al. 2012; Fan et 
al. 2020; Zhang et al. 2012). Several biophysical models have been proposed in the literature 
and vary in terms of the number of compartments, diffusion model (hindered/restricted), 
number of fibre populations, fibre orientation distributions, etc. Signal representations on the 
other hand, usually provide a statistical description to capture the signal decay without 
explicitly modelling the underlying tissue composition (Yablonskiy, Bretthorst, and Ackerman 
2003; J. H. Jensen et al. 2005; Ozarslan et al. 2009; Els Fieremans, Jensen, and Helpern 2011; 
Steven, Zhuo, and Melhem 2014; Ozarslan et al. 2013). Next to these two main families, there 
are also hybrid approaches that, for instance, aim to characterize the fibre orientation 
distribution without explicitly modelling the fibre composition (J. D. Tournier et al. 2008; Ben 
Jeurissen et al. 2014), or use a statistical model for different compartments (Scherrer et al. 
2016; Pasternak et al. 2009; De Luca, Bertoldo, and Froeling 2017), which can be defined a-
priori or driven from the data (Keil et al. 2017; De Luca et al. 2018). Besides these “classical” 
approaches to model dMRI, the last couple of years have witnessed a vast increase in the 
number of machine learning techniques applied to dMRI to predict signal decay (Golkov et al. 
2016; Grussu et al. 2020), fibre orientations (Poulin et al. 2019; Nath, Schilling, et al. 2019) or 
the underlying tissue parameters (Nedjati-Gilani et al. 2017).   
 
The choice of dMRI technique depends on many factors, such as the purpose of the 
experiment, the amount and quality of the data, the number and strength of b-values, angular 
resolution, etc, and generally no consensus has been reached on what a state-of-the-art 
diffusion experiment should include. Nevertheless, for a given acquisition, comparing 
diffusion models can provide valuable information about which approaches best describe the 
signal and can be generalized to predict measurements outside the initial range. In the 
literature, there have been various studies which aimed to compare brain tissue models in 
terms of goodness of fit and signal prediction, with an emphasis on white matter (WM) 
(Panagiotaki et al. 2012; U. Ferizi et al. 2015; I. O. Jelescu et al. 2014; Rokem et al. 2015) and 
less on gray matter (GM)(Yaniv Assaf 2019). However, such studies usually focused on a 
certain group of models, for instance multi-compartment biophysical models were 
investigated in (Panagiotaki et al. 2012; U. Ferizi et al. 2015), while (Wang et al. 2017) looked 
in more detail at signal representations.  
 
Open challenges play an important role to gain a better understanding of how various models 
capture the dMRI signal decay, as they put forward rich datasets and well-defined tasks and 
usually receive submissions from across the modelling landscapes (Uran Ferizi et al. 2017; 
Schilling et al. 2019; Pizzolato et al. 2020). The last diffusion microstructure challenge which 
included a comprehensive dMRI acquisition (Uran Ferizi et al. 2017) was organized in 2015 
and focused on modelling the dMRI signal acquired on the Connectome scanner for two ROIs 
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in white matter: genu of the Corpus Callosum with mostly aligned fibres and fornix with a 
more complex fibre configuration. The challenge included a rich dataset acquired with many 
combinations of gradient strengths, durations and diffusion times and the goal was to predict 
unseen shells with parameter values within the range used for the provided data. Since the 
end of this challenge, many novel approaches have been proposed, including a booming 
application of machine learning techniques for data fitting and prediction (Golkov et al. 2016; 
Nedjati-Gilani et al. 2017; Nath, Schilling, et al. 2019; Ravi et al. 2019; Poulin et al. 2019). 
Moreover, previous challenges (Uran Ferizi et al. 2017; Schilling et al. 2019; Pizzolato et al. 
2020) included only diffusion data acquired with standard SDE sequences, and do not provide 
any insight into the different approaches available to analyse advanced sequences such as 
DDE. 
 
In this challenge we set to evaluate the ability of different dMRI modeling approaches to 
capture the dMRI signal contrast from state-of-the-art acquisitions performed with SDE, 
including shells with an order of magnitude higher angular resolution compared to previous 
challenges (Uran Ferizi et al. 2017; Schilling et al. 2019; Pizzolato et al. 2020), as well as DDE 
and DODE data. Further, we aim to investigate the relationship between the goodness of fit 
and tissue type, acquisition parameters, and diffusion sensitization. Finally, this challenge acts 
as a benchmark database for the evaluation of future models focusing on healthy tissue as 
the full datasets are made available (https://github.com/PROVIDI-Lab/MEMENTO.git). 
     

Methods 

Section 2.1 presents an overview of the data that was used in the MEMENTO challenge and 

of the reasoning behind the selection of specific brain locations. A description of the methods 

used in the received submissions is reported in section 2.2, whereas section 2.3 illustrates the 

analyses we performed on the collected signal predictions.  

Challenge data 

MRI acquisition 

The main aim of the MEMENTO challenge was to investigate how well existing models can 

represent the dMRI signal collected with i) different gradient encoding schemes, and ii) from 

different tissue types. 

To investigate how the existing models can predict data sampled with different diffusion 

sensitization, we selected two datasets containing extensively sampled dMRI brain data with 

4 encoding schemes: multi-shell SDE (SDE-MS), SDE with gradients sampled in a cartesian grid 

(SDE-GRID), DDE and DODE. The SDE acquisitions were performed in a healthy volunteer with 

a 3T scanner as part of the MASSIVE datasets (Froeling et al. 2017a), a collection of 18 MRI 

sessions containing unique dMRI data performed with a 3T scanner (Philips Healthcare, The 

Netherlands) with voxel-size 2.5mm3 isotropic, echo time TE=100ms and repetition time TR 

between 7 and 7.5s. The DDE and DODE data were sampled from an ex-vivo mouse brain 

imaged with a 16.4T scanner (Bruker) with imaging resolution 0.12x0.12x0.7mm3, TE=52ms, 

TR=3s (Ianus et al. 2018). The diffusion parameters of the acquired data are reported in Table 
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1 and Table 2. To establish the signal to noise ratio (SNR) of the data, we considered the 

datapoints collected at b = 0 s/mm2, removed eventual outliers and defined the average SNR 

as the ratio between the average non-weighted value and its standard deviation. A point was 

defined as an outlier when its value was outside the confidence interval defined by the 

median value ± 2 times the robust standard deviation of the data (see (Chang, Jones, and 

Pierpaoli 2005)). The SNR of the 5 selected signals at b = 0 s/mm2 was 15 ± 3 for SDE-MS, 16 

± 3 for SDE-GRID, 76 ± 37 for DDE and 66 ± 28 for DODE. 

Table 1 - A description of the SDE encoding acquired as part of the MASSIVE data, and their subdivision in training 
and evaluation data. No data points of SDE-MS at b = 4000 s/mm2 and SDE-GRID at b > 7600 s/mm2 were 
provided for training. The ratio between training and evaluation data was about 1:3 for SDE-MS and 3:5 for SDE-
GRID. 

Diffusion Encoding Number of directions Training  Evaluation 

SDE-MS data of a healthy volunteer acquired at 3T in 18 sessions (13 shells) 

b = 0 s/mm2 430 20 410 

b = 5 s/mm2 30  8 22 

b = 10 s/mm2 30  7 23 

b = 25 s/mm2 40  10 30 

b = 40 s/mm2 40  10 30 

b = 60 s/mm2 20 5 15 

b = 80 s/mm2 20 5 15 

b = 140 s/mm2 20 5 15 

b = 250 s/mm2 30 8 22 

b = 500 s/mm2 250 62 188 

b = 1000 s/mm2 500 125 375 

b = 2000 s/mm2 500 125 375 

b = 3000 s/mm2 500 125 375 

b = 4000 s/mm2 600 0 600 

Total 3010 515 2495 

SDE-GRID data of a healthy volunteer acquired at 3T in 18 sessions  

b = 0 s/mm2 430 20 410 
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b = 141-563 s/mm2 58 22 36 

b = 750-938 s/mm2 54 22 32 

b = 1125-1875 s/mm2 170 72 98 

b = 2016-2766 s/mm2 248 102 146 

b = 3000-3938 s/mm2 314 129 185 

b = 4125-4875 s/mm2 168 68 100 

b = 5016-6891 s/mm2 196 65 131 

b = 7687-9000 s/mm2 32 0 32 

Total 1670 500 1170 

 

Table 2 - The table describes the subdivision in training and evaluation data of the unique combinations of 
diffusion weighting b and diffusion time (Δ) / oscillation frequency (f) for the DDE and DODE data, respectively. 
In the DDE training set, the data acquired with Δ = 5ms was provided with the exception of the largest diffusion 

weighting (b = 4000 s/mm2), and no data acquired with Δ = 10ms was provided for training. The mixing time 

for DDE sequences was 18.3ms. For DODE, the data points acquired with the three lower oscillation frequencies 
(66, 100, 133 Hz) were provided with the exception of b = 4000 s/mm2, and no data acquired with f = 166 and 

200 Hz was provided for training. The separation time between gradient waveforms was 5ms. For DDE and 

DODE data, the sequence description included information about gradient strengths, directions, timing 
parameters as well as the elements of the B-matrix. 

Diffusion Encoding Number of directions Training  Evaluation 

DDE data from a mouse brain ex-vivo acquired at 16.4T  

Δ=5ms, b = 0 s/mm2 40 32 8 

Δ=5ms, b = 1000 s/mm2 72 72 0 

Δ=5ms, b = 1750 s/mm2 72 72 0 

Δ=5ms, b = 2500 s/mm2 72 72 0 

Δ=5ms, b = 3250 s/mm2 72 72 0 

Δ=5ms, b = 4000 s/mm2 72 0 72 

Δ=10ms, b = 0 s/mm2 40 0 40 

Δ=10ms, b = 1000 s/mm2 72 0 72 

Δ=10ms, b = 1750 s/mm2 72 0 72 
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Δ=10ms, b = 2500 s/mm2 72 0 72 

Δ=10ms, b = 3250 s/mm2 72 0 72 

Δ=10ms, b = 4000 s/mm2 72 0 72 

Total 800 320 480 

DODE data from a mouse brain ex-vivo acquired at 16.4T 

f = 66, 100, 133Hz 
b = 0 s/mm2 

3x40 3x32 3x8 

f = 66, 100, 133Hz 
b = 1000 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 1750 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 2500 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 3250 s/mm2 

3x72 3x72 0 

f = 66, 100, 133Hz 
b = 4000 s/mm2 

3x72 0 3x72 

f = 166, 200Hz 
b = 0 s/mm2 

2x40 0 2x40 

f = 166, 200Hz 
b = 1000 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 1750 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 2500 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 3250 s/mm2 

2x72 0 2x72 

f = 166, 200Hz 
b = 4000 s/mm2 

2x72 0 2x72 

Total 2000 960 1040 

 

Signals selection 

Five signals were selected for each dataset from brain voxels exhibiting different 

microstructural organization. For the human MASSIVE dataset, the voxels aimed to include 
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WM signals with an increasing number of crossing fiber configurations from 1 to 3, deep gray 

matter (DGM) and cortical gray matter (CGM) and the selection was based on visual 

inspection of the fiber orientation distribution (FOD). The FOD was derived with constrained 

spherical deconvolution (J.-D. Tournier, Calamante, and Connelly 2007) of data at b = 0, 3000 

s/mm2 (500 directions) using a recursively calibrated response function(Tax et al. 2014)  

approach implemented in ExploreDTI. Given the relatively large imaging resolution of the 

MASSIVE dataset, 2.5mm3 isotropic, care was taken in selecting voxels not located at tissue 

interfaces, also using the FOD as guidance. For the mouse brain, the five voxels were placed 

in white matter tracts with different microstructures and based on visual comparison with an 

anatomical atlas, as the number of collected gradient orientations per diffusion weighting was 

insufficient to reliably estimate the FOD. Specifically, the five voxels were placed in medial 

corpus callosum, lateral corpus callosum, internal capsule, a fanning region of the internal 

capsule and the fimbria, respectively. An illustration of the locations and tissue types of the 

selected voxels is shown in Figure 1. 

 

 
 

Figure 1: The locations of the 5 voxels selected for the SDE (top) and DDE/DODE data (bottom).  The SDE data 
are sampled from a human brain scanned at 3T with imaging resolution 2.5mm3 isotropic, and is part of the 
MASSIVE dataset. The 5 locations were chosen in 5 different tissue types, such as white matter (WM) with 
increasing fiber complexity (signals 1-3, as exemplified by the shown fiber orientation distribution), deep gray 
matter (DGM) and cortical gray matter (CGM).  DDE and DODE were sampled in a mouse brain at 16.4T with 
imaging resolution 0.12x0.12x0.7mm3. The selected signals are all taken from WM locations with well-
established differences in fiber organization, as shown by the red dots overlaid on the fractional anisotropy 
map. 
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Training and evaluation data 

The 20 selected measurement sets (5 signal locations x 4 diffusion encodings) were 

subdivided in training and evaluation data. The challenge participants were provided with the 

training data and the corresponding diffusion encoding information, and asked to predict the 

evaluation data. The proportion of training and evaluation data was not constant among data 

encodings. For SDE, the training data consisted of about 500 gradient directions uniformly 

subsampled from all available data except for the largest diffusion weightings, which 

corresponds to about 17% of SDE-MS, and 30% of SDE-GRID. . For DDE and DODE, we provided 

a larger amount of training data to take into account the need to model an additional 

encoding dimension (e.g., time and frequency), respectively 40% and 48%.  To evaluate the 

ability of the tested models to predict unseen data points, all the data corresponding to 

specific diffusion weightings was removed from the training data, as reported in Table 1 and 

Table 2. 

Signal predictions 

We received initial submissions from 9 teams, but 2 of the 9 teams did not provide valid 

submissions and were not included in this analysis. The remaining 7 teams submitted a total 

of 80 valid signal predictions that were considered in the subsequent analyses. Of these, 31 

submissions predicted the SDE-MS signals (37%), 16 the SDE-GRID signals (19%), 15 the DDE 

signals (18%) and 18 the DODE signals (22%). When a model was applied more than once to 

predict a given set of signals, only the submissions corresponding to the best and worst 

prediction were analyzed, to simplify the presentation and interpretation of the results. The 

final selection of predictions included in this analysis is reported in Table 3. When multiple 

predictions with a given model were submitted, the best and worst predictions were 

identified by adding the labels “_best” and “_worst” to the model name. 

To follow, we present an overview of the submissions we received grouped in four different 

categories. 

 

Table 3: The valid signal predictions submitted to the MEMENTO challenge. For each method, we report the 
acronym and the main reference, the “category”, special notes on the fit procedure, and the data it has been 
applied to. The following predictions were subdivided in the following categories: tensor-based (TENS), multi-
compartment model (MCM), parametric representation (PAR), deep learning-based (DL). 

Model 

name 

Category Notes SDE-MS SDE-GRID DDE DODE 

DTI (Basser, 
Mattiello, and 
LeBihan 1994) 

TENS Linear-Least 
Squares 

X X X X 

DKI (J. H. 
Jensen et al. 

2005) 

TENS Weighted-Least 
Squares 

X X X X 
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DKI+Offset 
(Morez et al. 

2020) 

TENS Constrained 
Non-Linear fit 

X X X   

DTD-cov (C. F. 
Westin et al. 

2016) 

TENS Constrained 
Non-Linear fit 

    X X 

DTD-cov (C. F. 
Westin et al. 

2016) + Offset 

TENS Constrained 
Non-Linear fit 

    X X 

Ball&Stick 
(Behrens et al. 

2003) 

MCM  Implemented in 
Dmipy (Fick, 

Wassermann, 
and Deriche 

2019) 

X       

Ball&Racket 
(Sotiropoulos, 
Behrens, and 
Jbabdi 2012)  

MCM Implemented in 
Dmipy  (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

NODDI-Watson 
(Zhang et al. 

2012) 

MCM Implemented in 
Dmipy  (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

NODDI -
Bingham (Tariq 

et al. 2016) 

MCM Implemented in 
Dmipy  (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

SMT (Kaden et 
al. 2016) 

MCM Implemented in 
Dmipy   (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

NODDI-SMT MCM Implemented in 
Dmipy   (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

MCMDI (Kaden 
et al. 2016) 

MCM Implemented in 
Dmipy   (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

ActiveAx (D. C. 
Alexander et al. 

2010) 

MCM Implemented in 
Dmipy   (Fick, 
Wassermann, 
and Deriche 

2019) 

X       

SHORE 
(Ozarslan et al. 

2009) 

PAR From 
DeepSHORE 

(Nath, Lyu, et 
al. 2019) 

X X X X 

MAP-MRI 
 (Fick et al. 

2016) 

PAR Implemented in 
Dmipy   (Fick, 
Wassermann, 

X       
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and Deriche 
2019) 

MAP-MRI+Reg 
(Fick et al. 

2016) 

PAR Implemented in 
Dipy 

(Garyfallidis et 
al. 2014) 

X X     

NeuralNet DL Perceptron 1 
Layer 50 nodes 

X X X X 

NeuralNet+Rein
f (Williams 

1992) 

DL Perceptron 7 
Layers 

optimized with 
NAS (Zoph and 

Le 2016) 

X X X X 

 

Tensor and beyond  

Diffusion tensor imaging (DTI, Basser et al. 1994) is one of the most common quantification 

methods for dMRI data acquired with at least one diffusion-weighting and 6+ gradient 

directions. DTI is based on the three-dimensional generalization of the seminal works of 

Stejskal and Tanner (Stejskal and Tanner 1965), and assumes the diffusion process to be 

Gaussian (i.e., not restricted). In the living brain, such assumption is typically satisfied when 

collecting dMRI data with diffusion weightings in the range b = 800-1200 s/mm2. While DTI 

typically does not accurately characterize complex diffusion environments where, for 

example, multiple diffusion mode (e.g., tissue diffusion vs blood pseudo-diffusion (Le Bihan 

et al. 1988)) or “crossing-fibers” co-exist (Wedeen et al. 2005), it is one of the most common 

dMRI signal representations in clinical application, especially thanks to its sensitivity to 

microstructural changes in health and pathology. Keeping in mind all of the above, the DTI 

method was applied in this work to SDE-MS, DDE and DODE data to serve as baseline 

reference using a weighted-least-squares fit.  

In 2005, Jensen and colleagues introduced the diffusion kurtosis imaging (DKI) method (J. H. 

Jensen et al. 2005), an extension of DTI that allows to account for and quantify the amount of 

non-Gaussian diffusion that is observed at stronger diffusion weightings (e.g., b > 1400 s/mm2 

in the living brain). The DKI model requires the collection of at least 21 unique measurements, 

including 2 non-zero diffusion-weightings and 15+ unique gradient directions, and allows to 

quantify the amount of excess kurtosis of the diffusion process. While DKI is suitable for dMRI 

data acquired with a stronger diffusion weighting than DTI, nevertheless, there is a theoretical 

maximum to the diffusion weighting that can be fit (J. H. Jensen et al. 2005; Jens H. Jensen 

and Helpern 2010), and most brain applications use a maximum b-value equal to b = 3000 

s/mm2. Despite these theoretical limits, DKI was fit to all data included in this work using a 

constrained non-linear least-squares fit enforcing positivity in diffusion and kurtosis metrics 

and a monotonic decay of the signal. When fitting data acquired with strong diffusion 

weighting, it might be beneficial to take into account the presence of a minimum signal offset 

due to Rician noise in the measurements (Gudbjartsson and Patz 1995; Basu, Fletcher, and 

Whitaker 2006). One of the submissions considered in this work extended the DKI method 
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with an offset term to account for such effect (DKI+Offset)(Morez et al. 2020). This method 

was fit to SDE data by extending the classic DKI model with an additional degrees of freedom 

(22 + 1 = 23 free parameters), and to DDE and DODE data by extending a fourth order 

covariance tensor  (28 + 1 = 29 free parameters) (C.-F. Westin et al. 2016).  

Multicompartment models 

Multi-compartment models are a family of methods that allow to model the dMRI signal by 

means of biophysical features (Panagiotaki et al. 2012; Ileana O. Jelescu and Budde 2017). 

The assumption behind these models is that the dMRI signal acquired in a voxel can be 

described as the linear combination of the signal profiles of each component that is present 

in a specific voxel. 

All the submissions we received based on multicompartment models were computed with 

custom implementations of previously introduced methods with the “Diffusion 

Microstructure Imaging in Python” toolbox (dmipy). The submissions considered only SDE 

data, and were based on three basic components: the intra-axonal compartment was 

modelled as a stick or a cylinder, whereas the extra-axonal anisotropic compartment was 

modelled as a zeppelin (axially symmetric tensor) and the cerebrospinal fluid contribution 

modelled as isotropic diffusion (sphere). Depending on the specific implemented model, the 

anisotropic compartments were optionally convolved with a Watson or a Bingham 

distribution to account for fiber orientation dispersion. A summary of the multicompartment 

models that were submitted and the components they are based on is shown in Table 4. 

 

Table 4: An overview of the diffusion models used to represent the individual components of the considered 
multicompartment models. 

Model name Intra-axonal 

component 

Extra-Axonal 

component 

Isotropic 

component 

Orientation 

dispersion 

ActiveAx Cylinder Zeppelin Sphere NA 

Ball&Stick Stick NA Sphere NA 

Ball&Racket Stick NA Sphere Bingham 

MCMDI Stick Zeppelin NA NA 

NODDI-Watson Stick Zeppelin Sphere Watson 

NODDI-Bingham Stick Zeppelin Sphere Bingham 

SMT Zeppelin NA NA NA 
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SMT-NODDI Stick Zeppelin Sphere Watson 

 

For all the above mentioned models, the parallel diffusivity of the anisotropic compartments 

was set to 1.7x10-3mm2/s, whereas the diffusivity of the isotropic compartment was set to 

3x10-3mm2/s, as previously suggested (Zhang et al. 2012; Kaden et al. 2016; Behrens et al. 

2003; Sotiropoulos et al. 2012). The perpendicular diffusivity of the anisotropic compartments 

was linked to the parallel diffusivity via the tortuosity constraint (Szafer, Zhong, and Gore 

1995; Zhang et al. 2012). 

 

Parametric representations 

This family of methods focuses on expressing the dMRI signal as a function of mathematical 

signal basis without biophysical hypotheses. A popular signal representation is the simple 

harmonic oscillator reconstruction (SHORE)(Ozarslan et al. 2009). The SHORE basis has some 

degrees of freedom such as the order and a scaling factor. The SHORE method was applied to 

predict all the 4 provided data types (SDE-MS, SDE-GRID, DDE, DODE) in combination with a 

BFGS fit (Nath, Lyu, et al. 2019) that can be utilized to achieve the best fit of the scaling 

parameter. The same method was used for all 4 types of data with harmonics of orders 6, 8 

and 12.  

 

MAP-MRI is a signal representation-based technique that expresses the diffusion signal in q-

space and parametrizes its Fourier transform –the mean apparent propagator (MAP)– in 

terms of a series involving products of three Hermite functions, thus generalizing the 1D-

SHORE technique to three dimensions. Unlike in 3D-SHORE, an anisotropic scaling parameter 

is employed in MAP-MRI, making it an extension of DTI for representing the signal at large q-

values. In this challenge, we received submissions from two different teams based on a 

Laplacian regularized version of MAP-MRI. Both submissions (MAP-MRI+Reg) predicted the 

unseen data points using penalized least squares and SHORE basis of order 8.  

 
Neural networks 

Convolutional neural networks (NeuralNet) are increasingly being used for tasks such as 

quantification and signal representation. In this case, the output of the networks 

corresponded to the dMRI signal.  

The first family of submissions that we received is based on feed-forward networks with a 

single hidden layer of 50 neurons and sigmoid activation functions.  These networks were 

trained on 80% of the measurements and validated on 20% by minimizing the mean squared 

error of the predictions with the AdamW algorithm. For the learning phase, a learning rate of 

0.005 and 20000 epochs were used. To predict the SDE signals, the normalized components 

of the gradient (3 values) and the b-value were provided as inputs. For the DDE and DODE 
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acquisitions, the gradient strength, the normalized components of the two gradients (6 

values), the b-value, and the components of the b-matrix (6 values) were concatenated into 

one input vector of length 14. The training and prediction phase were repeated independently 

for each of the individual signal and data types.  

The second family of submissions we received was based on neural networks with 

reinforcement learning (NN+Reinf) (Zoph and Le 2016; Williams 1992). A neural architecture 

search (NAS) was implemented to search the optimal 7-layer feed-forward model with ReLU 

activations for dMRI signal prediction given the acquisition parameters. The search space of 

NAS is the number of nodes in each of the seven layers in the set [8, 16, 32, 64, and 128].  and 

fit the training data better. And the number of neurons in each of the seven layers belongs to 

[8, 16, 32, 64, and 128]. For training, the initial learning rate was set to 0.01, and the adam 

optimizer was used.  

Data analysis 

The data analyses were performed separately for SDE-MS, SDE-GRID, DDE and DODE. For each 

encoding type and signal, we evaluated the min-max interval of all predictions, and their 25th 

to 75th percentile confidence interval. For each signal, we determined the best prediction as 

the one achieving the lowest mean squared residuals (MSE), and visually investigated the 

residuals. As the MSE only represents one of the possible metrics that can capture the 

goodness of the signal prediction, we also determined the variance of the residuals and the 

bayesian information criteria (BIC) associated with the prediction of each individual signal. 

These results can be found in the supplementary material Table S2 and S3. 

Subsequently, the distribution of the residuals of each model were investigated by means of 

boxplots. At this stage, the residuals from all the 5 voxels were considered together. A ranking 

of all considered models was derived according to increasing MSE, then the best prediction 

model was established per encoding type. The residuals of the best prediction model were 

investigated as a function of the b-value, diffusion time (DDE only) and encoding frequency 

(DODE only), to understand whether all diffusion encodings were predicted with comparable 

accuracy and precision. In the subsequent analysis, the 5 voxels were studied separately. 

Specifically for the SDE-MS data, an additional analysis was performed to evaluate how the 

best model predicted the directional dependent information of the shell acquired at b = 

4000s/mm2. To this end, the measured data and the best signal prediction were projected on 

the unit sphere using spherical harmonics of order 12, then the prediction error was 

evaluated. The diffusion tensor imaging model was included in this step for reference. 

Results 

Signal representation of SDE-MS data 

The geometric average of the SDE-MS signals and an overview of the predictions is shown in 

Figure 2. In general, both the average and the best fitting method predicted the average signal 
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decay without apparent biases, with the exception of the average fit of the low diffusion 

weightings of signals 3 and 5.  

 
 

Figure 2 Signal decay as a function of the b-value of the averaged SDE-MS data over different directions, for the 

unprovided measurements. The black dots represent the unprovided data, the red shaded area represents the 

min-max of the submissions, the blue error bars represent the 25-75 percentile, the solid red curve represents 

the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots illustrate 

the predictions of the different signals.    

On average, the confidence interval of the submissions (blue error bar) is centered on the 

geometric average of the data for diffusion-weightings 400 < b < 4000 s/mm2 for all 5 signals. 

The prediction of data at b = 4000 s/mm2 (which was not provided in the training data) was 

overall accurate in WM (signals 1-3), but showed a small and consistent over-estimation in 

DGM and GM. The signal measured at low diffusion weightings (i.e. b < 200 s/mm2) was on 
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average accurately predicted in the WM voxel containing up to 2 crossing fibers and in deep 

gray matter, but not in the complex WM-configuration (Signal 3) and in cortical GM (Signal 5). 

The min-max range of the predictions highlights that data at b = 2000 s/mm2 is predicted on 

average with the lowest uncertainty, whereas the largest spread is observed at b < 200 s/mm2 

and b = 4000 s/mm2. The best predicting models for signals 1-5 are SHORE, MAP-MRI+Reg, 

MAP-MRI+Reg, Ball&Racket and NeuralNet, respectively.  

 

Figure 3 shows the average residuals of all tested signal predictions when considering the 5 

provided signals together. The predictions of the first 7 methods were remarkably accurate, 

as shown by the tight confidence interval of the residuals of about 0.03 of the measured data, 

which occasionally reached values up to 0.1. MAP-MRI provided the best overall signal 

prediction with average MSE 0.00236 ± 0.00035 (Supplementary Material Table S1) . When 

comparing the residuals of this prediction to those from the remaining models, we found that 

only NeuralNet provided equally distributed residuals (sign test, p<0.05). When looking at the 

average residuals of each signal individually (colored dots in the boxplots of Figure 3), a 

tendency towards a better prediction of WM signals as compared to CGM and DGM was 

observed.  

 

Figure 3: Left) Boxplots of the normalized residuals (gray dots) of each prediction of SDE-MS data, when pooling 
together all 5 signals. Right) The normalized residuals of the best prediction (MAP-MRI) over individual diffusion 
weightings. The red asterisks on the left panel indicate predictions significantly different from the best 
prediction, whereas those on the right indicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. 

 

To understand how the fit of the best prediction method (MAP-MRI) varied as a function of 

the diffusion-weighting, we evaluated the value of its average residuals for all 5 signals 

together for each shell independently. In general, the average residuals of most shells were 

close to zero, but a significant overestimation for b-shells 60 <= b <= 250 s/mm2 was observed 
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(one sample t-test, p < 0.05). The average prediction error was on average less than 0.05 for 

all shells, but errors up to about 0.2 can be observed for the non-weighted data and the 

unprovided shell at b = 4000 s/mm2. 

Having established that model MAP-MRI provided the best average fit, we set to investigate 

how this method could predict the angular information of the unprovided shell at b = 4000 

s/mm2, and included a prediction with DTI and the average prediction of all methods for 

reference. This angular resolution analysis is shown in Figure 4.  

 
 
Figure 4: 3D visualisation of the fiber orientation distribution (FOD), a projection on the unit sphere of the 

measured signal, of the signal predictions with DTI and with the best prediction model as well as of the residuals 

determined with DTI, average of all models and with the overall best predicting model for the unprovided SDE-

MS data at b = 4000 s/mm2 

All methods could well-predict on average the donut-shaped 3D representation of WM-1, and 

the average residuals of this signal are smaller than those of the best fitting method. The DTI 

prediction of WM-1 well captured the overall shape of the signal, but also showed large errors 

in specific directions, likely due to unaccounted signal restrictions at this diffusion weighting. 

The best prediction was much better than the average prediction as well as the DTI one in the 

more complex configurations WM-2 and WM-3. In the WM-signals, the largest angular errors 

were observed in directions parallel and perpendicular to the main diffusion directions 
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derived with CSD, as expected. In DGM and CGM, all methods performed overall equally well 

and the residuals had an almost isotropic distribution.  

Signal representation of SDE-GRID data 

Figure 5 reports the average signal predictions for SDE-GRID after binning closely spaced 

diffusion-weightings to enhance clarity. In general, the SDE-GRID was well predicted by most 

submissions, as highlighted by the tight min-max and confidence intervals. Larger prediction 

variance can be observed at low (b < 1000 s/mm2) and large diffusion weightings (b > 6000 

s/mm2) than in the intermediate range. The best predictions of signals 1 and 2 were achieved 

with DKI+Offset, whereas MAP-MRI+Reg provided the best prediction of signals 3-5 and the 

best overall prediction with MSE 0.00260 ± 0.00043 (Supplementary Table S1).  

 

 
Figure 5. Signal decay as a function of b-value of the averaged SDE-GRID data over different directions, for the 
unprovided measurements. The diffusion weightings were rounded to the closest multiple of 100 before 
averaging to enhance clarity. The black dots represent the unprovided data, the red shaded area represents 
the min-max of the submissions, the blue error bars represent the 25-75 percentile, the solid red curve 
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represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots 
illustrate the fits of the different signals.    

 

The boxplots of residuals of the SDE-GRID predictions ranked by MSE are reported in Figure 

6. The first 7 submissions predicted the signals accurately, without visible biases both at 

average level as well as in specific tissue-types, and most prediction errors were in the range 

of ±0.03 with values occasionally up to 0.1, similar to what was previously observed for SDE-

MS. When considering all predictions together, MAP-MRI+Reg provided the best overall 

prediction, but predictions with DKI+Offset and NeuralNet can be considered comparable 

according to a signed rank test. When analyzing the average prediction residuals of MAP-

MRI+Reg for the binned diffusion weightings, it is appreciable that most data was well 

predicted without biases and errors below 0.05, with the exception of b <= 800 s/mm2, b 

around 3000 s/mm2 and b > 6000 s/mm2. 

 

 
 

Figure 6: Left) boxplots of the normalized residuals (gray dots) of each prediction of SDE-MS data, when pooling 
together all 5 signals. Right) The normalized residuals of the best prediction (MAP-MRI+Reg) over individual 
diffusion weightings. The red asterisks on the left panel indicate predictions significantly different from the 
best prediction, whereas those on the right indicate that residuals at a specific diffusion weighting show a 
significantly non-zero mean. 

 

Signal representation of DDE and DODE data 

Figure 7 shows the best and average signal predictions of the unseen DDE and DODE data for 

the 5 different voxels. Figure 8 presents the normalized residuals for the different 

submissions, averaged over voxels, b-values and diffusion times/frequencies while Figure 9 

shows the normalized residuals for the best fitting model as a function of the b-value.  
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For DDE we see that the prediction of the directionally averaged signal is well aligned with 

the measured data with the DTD-cov+Offset providing the best prediction with MSE 0.00072 

± 0.00023 (Supplementary Table S1). Nevertheless, other methods such as DKI, SHORE and 

neural networks also performed reasonably well in providing unbiased predictions, but with 

visibly larger errors. In general, we see that the prediction of the higher b-values (> 2500 

s/mm2) is better than the prediction of the lower b-values (< 2500 s/mm2).  For DODE data, 

the best prediction comes from NeuralNet-best with MSE 0.00070 ± 0.00036, whereas the 

majority of the submissions overestimate the signal, especially for b-values larger than 1750 

s/mm2.  For both DDE and DODE, the predictions show similar trends in the 5 different white 

matter voxels. For the DODE data, both frequencies also show similar trends of the predicted 

signal. 
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Figure 7 The first three columns show the signal decay as a function of b-value of the geometrically averaged 
DDE and DODE data over different directions, for the unprovided measurements. The fourth column shows the 
geometric average of the signal measured at b = 4000 s/mm2 for different diffusion times Δ (DDE) and 
oscillation frequencies f (DODE). The black dots represent the unprovided data, the red shaded area represents 
the min-max of the submissions, the blue error bars represent the 25-75 percentile, the solid red curve 
represents the best fit and the red circles represent the residuals of the best fitting model. The 5 different plots 
illustrate the fits of the different signals.    
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Figure 8: The boxplots of the normalized residuals (gray dots) of the DDE (left) and DODE (right) predictions. 
The red asterisks on the panels indicate predictions significantly different from the best prediction. The first 5 
DDE predictions perform reasonably well as shown by the value of most residuals being well-below 0.1, 
although a trend towards the overestimation of the signal could generally be observed. 

 

 

Figure 9 - Right) The normalized residuals of the best prediction of DDE (DTD-cov+Offset) and DODE (NeuralNet-
best) over individual diffusion weightings. The red asterisks indicate that residuals at a specific diffusion 
weighting show a significantly non-zero mean. With DDE data, this was observed only for b-values between 
1800 and 3300 s/mm2, whereas no biases were observed for DODE. 
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Discussion 

We have evaluated the generalizability of existing dMRI methods at predicting diffusion-

weighted data measured with SDE-MS, SDE-GRID, DDE and DODE by analyzing 80 submissions 

to the MEMENTO challenge from 7 different teams. In general, our analysis suggests that 

models predicting SDE-MS and SDE-GRID data generalized the easiest to unseen diffusion 

encodings, whereas the prediction of DDE and DODE seems more challenging. Within the 

domain of SDE, the worst prediction was observed in correspondence of low and very strong 

diffusion weightings. 

Trends in SDE data predictions 

The large majority of the analyzed submissions predicted SDE data, with a considerable 

preference for SDE-MS over SDE-GRID, which also reflects the overall larger number of studies 

which employ shell data. When looking at SDE-MS, we can observe that the majority of 

submissions could well predict the global signal decay, and 14 out of 18 predictions had a 

median error smaller than 0.04. Of these, however, only 7 had an interquartile range (25th-

75th percentile) of the residuals smaller than 0.05 in absolute value, which suggests how the 

prediction of the isotropic component of the signal decay (which captures the average decay 

of a given diffusion weighting) is an easier task than the prediction of the anisotropic 

component. Interestingly, the 7 predictions with the lowest MSE can account for complex 

fiber configurations such as 2+ crossing fibers, whereas predictions with single-fiber based 

methods result in higher MSE. Looking at the angular analysis reported in Figure 4, it becomes 

clear that MAP-MRI provides the best prediction of both SDE-MS and SDE-GRID by well 

representing the signal in voxels with complex fiber configurations (WM-2, WM-3) as well as 

in DGM, whereas the prediction error in voxels with a single fiber population (WM-1) or 

almost isotropic diffusion (CGM) is worse than the average submission.  

A second aspect regarding the analysis of SDE data is the dependence of the prediction 

accuracy and precision on the diffusion weighting and on the specific tissue type. Our results 

suggest that current dMRI methods can well represent and predict dMRI data with commonly 

used diffusion weightings. Indeed, we observed that most submissions could predict SDE data 

remarkably well within the range of commonly employed diffusion weightings (e.g., 1000 <= 

b <= 4000 s/mm2), whereas the prediction of low (b < 800 s/mm2) and strong (b > 6000 

s/mm2) diffusion weightings was generally less accurate. While the latter might originate from 

Rician-related biases, it might also highlight the limited specificity of existing models to 

genuine components such as perfusion contributions at low diffusion weightings (Le Bihan et 

al. 1988; Pasternak et al. 2009) and WM-restriction at strong diffusion weightings (Cohen and 

Assaf 2002). In this context, a trend towards a worse prediction of the DGM and CGM signals 

as compared to WM signals emerges with SDE-MS and, to a lesser extent, with SDE-GRID. This 

seems to be mostly driven by the inaccurate prediction of the signal measured at low diffusion 

weightings where the sensitivity to blood pseudo-diffusion is maximal, which once again 
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suggests a lack specificity at taking into account specific properties of the GM like its higher 

perfusion as compared to WM (Ahlgren et al. 2016). This holds also for the best prediction 

(MAP-MRI) as shown by the significant overestimation of the signal at b < 250s/mm2, where 

the contribution of pseudo-diffusion effects becomes non-negligible. A bias in the prediction 

of SDE-GRID with MAP-MRI is also revealed for b > 6000 s/mm2. While this effect might be 

partially explained by Rician noise, the observation that its effect is larger in WM than GM, 

and that it grows in magnitude with fiber complexity being the largest for WM-3, suggests the 

presence of a genuine unaccounted trend in the signal. Interestingly, smaller errors are 

observed for the prediction of SDE-GRID than of SDE-MS on average, and even methods 

providing visibly biased SDE-MS predictions such as SHORE-worst, performed well at 

predicting SDE-GRID. This might be explained by the larger range of unique diffusion 

weightings included in SDE-GRID providing less redundant information than many 

measurements in few shells, or to the larger minimum diffusion weighting included in SDE-

GRID (b = 141 s/mm2) as compared to SDE-MS (b = 10 s/mm2).  

Trends in DDE and DODE data predictions 

The prediction of DDE and DODE data seems more challenging than that of SDE. Indeed, the 

signal measured with DDE and DODE is encoded with additional dimensions as compared to 

SDE, namely parallel and orthogonal gradient orientations within one measurement, leading 

to linear and planar b-tensors, respectively, as well as different diffusion times and oscillation 

frequencies. In the challenge design, this aspect was stressed by requiring the prediction of 

unseen diffusion-weightings and gradient directions for 1 completely unseen diffusion time 

(DDE) and 2 unseen oscillation frequencies (DODE) provided a training set encoded with a 

different diffusion time and 3 different oscillation frequencies, which is arguably a harder task 

than the prediction of SDE data. The first take home message from the analysis of the DDE 

and DODE predictions is the need to take into account the additional encoding dimension, 

which is in line with our expectations given that the previous analysis of the data showed a 

clear diffusion time/frequency dependence over this parameter range (e.g. Fig. 9 in (Ianus et 

al. 2018)). For models which do not account for diffusion time / frequency (e.g. DTI / DKI / 

DTD, etc), we expect the predictions for the unseen DDE with Δ = 10 ms to be the same as the 

model prediction for the provided DDE data with Δ = 5 ms. Since for DDE only one diffusion 

time was provided, the neural networks could not learn the effect of this parameter, so in 

practice none of the submissions could account for diffusion time. For the unseen DDE data 

with Δ = 10 ms, the best model from the current pool of submissions is DTD-cov+Offset, which 

nevertheless resulted in a small bias between the measurements and the predictions. The 

prediction errors of the directionally averaged signal provided by the best model are larger 

for intermediate b-values (e.g., b = 1800 – 3300 s/mm2) than for the highest b-value of 4000 

s/mm2. This might be the case because the effect of diffusion time on the signal over this 

parameter range becomes smaller at higher b-value, for instance due to a smaller 

contribution of extracellular space. 
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For DODE data, multiple frequencies were provided for training. The best DODE predictions 

were achieved with methods able to account for the frequency implicitly, such as in the case 

of neural networks, whereas most submissions overestimated the measured signal. 

Interestingly, the error increases on average with the oscillation frequency, and even the best 

prediction, NeuralNet-best, could not predict well the data at b = 4000 s/mm2 for f=200Hz. 

All submissions but one achieved a 25th to 75th percentile error below 0.1, but 8 out of 10 

submissions exhibited a consistent median error of about 0.04. Altogether, this suggests in 

our opinion that we currently do not fully understand how to properly model the effect of 

frequency, and highlights the need for further research in the optimal modelling of DODE 

data. 

Deep learning-based methods 

The application of machine learning and deep learning is currently booming across all science 

fields dealing with large data. MRI and dMRI are no exception, and in this very own challenge 

we have received 32 submissions based on deep learning methods next to established signal 

representations and biophysical models, which represents 40% of the total submissions. 

Interestingly, neural network-based methods provided accurate predictions for different 

diffusion encodings, achieving the 2nd best prediction for SDE-MS, the 3rd best prediction for 

SDE-GRID and DDE, and the best prediction of DODE data. The latter performance is 

remarkable, because NeuralNet-best and NeuralNet-worst provided the only two unbiased 

DODE predictions, showing ability to learn the relation between the diffusion signal and its 

encoding parameters, including the oscillation frequency, without the need for explicit 

modelling. These results certainly showcase the potential of these methods, and support their 

applicability as excellent interpolators, able to learn data features from a rich dataset and to 

provide good predictions of unseen data - within the boundaries of their training set. Most 

deep-learning based methods do not quantify metrics that can be used to extract properties 

of in-vivo tissues, and are thus unlikely to spread into clinical use at the current moment. 

Nevertheless, their good prediction performance make them favorable for tasks where a 

direct manipulation of the signal is required, such as denoising, artefact removal or even data 

augmentation, and their application in combination with classic methods might prove 

advantageous to enhance the quality of the results or to shorten acquisition time.  

Importance of hyperparameters and user choices 

Our analysis highlights how user choices and hyperparameters can remarkably affect the 

prediction accuracy. The SHORE method, for example, achieved both one of the best 

predictions of SDE-MS data as well as the worst, with an average error difference between 

the two of about 8%. Similarly, the addition of a degree of freedom to DKI or DTD-cov (i.e., 

+Offset) appreciably improved its accuracy. DKI+Offset, for example, predicted the SDE-MS 

and DDE data with an average prediction error 10% and 92% smaller than DKI, respectively. 

Large variability in the prediction performance was also observed for neural networks 

methods, which flexibility in design allows the implementation of very diverse architectures 
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with performance strongly influenced by the optimization of hyperparameters. Altogether, 

we believe that this highlights the importance of not only reporting the specific method used 

for data analysis, but also to explain the choice of its hyperparameters and, where possible, 

to share its implementation to maximize the comparability of results obtained in different 

studies. Next to user settings and hyperparameters, model assumptions are an important 

factor that might limit the generalizability of a prediction method. This is especially the case 

for multi-compartment models based on physiological assumptions, including fixing the intra-

cellular diffusivity to literature values or using tortuosity principles to constraint the cellular 

fraction, as recently suggested (Lampinen et al. 2019; Henriques et al. 2019). 

Link to previous challenges 

Various dMRI challenges have been organized in the past (Ferizi et al. 2017; Schilling et al. 

2019; Pizzolato et al. 2020), with a focus on different data aspects. For instance the ones 

described by Schilling et al. 2019 focused on tractography, while others have focused on data 

prediction, including diffusion measurements at multiple echo times (Ferizi et al. 2017) as well 

as inversion times (Pizzolato et al. 2020). In terms of challenge requirements, the one 

organized by (Ferizi et al. 2017) is the most similar to the current one, as it also evaluated the 

submissions based on the prediction of unseen SDE data shells.  

Nevertheless, the majority of models submitted to the SDE part of this challenge do not 

overlap with the models included in the previous challenge, making a direct comparison 

difficult. One notable exception is MAP-MRI, which performed very well for the current SDE 

datasets, but not for the one considered by (Ferizi et al. 2017) which included multiple 

diffusion and echo times. In that case, models which accounted for multiple compartments 

with different T2 properties provided better estimates, an effect not considered here. In 

addition to the development of more models and signal representations, the current work 

investigates generalizability over a wider range of diffusion weightings, angular directions, 

and diffusion times.  

 
Limitations 
 
Some limitations of this study should be acknowledged for a more comprehensive 

interpretation of the presented results.  

Data limitations: Firstly, the SDE-MS/SDE-GRID and DDE/DODE data have been acquired in 

very different settings. The SDE data were acquired as part of the MASSIVE data (Froeling et 

al. 2017b) and represent an unique collection of thousands of unique diffusion measurements 

in an in-vivo human brain at 3T, but were spreaded in 18 acquisition sessions - which might 

introduce additional variability in the data - and are characterized by an overall modest SNR 

at b = 0s/mm2 (~15). Conversely, the DDE/DODE data were acquired in an ex-vivo mouse brain 

with a state-of-the-art 16.4T scanner, and characterized by very high SNR. Consequently, the 

generalizability of our results to DDE/DODE data acquired in in-vivo humans at 3T requires 

thus further research. While we expect our findings to generalize to individuals with similar 

characteristics, e.g., healthy adult humans (SDE) and mice (DDE/DODE), some results might 
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be driven by the unique characteristics of these brains, and will likely not extrapolate well in 

presence of pathology, as well as in infants and elderlies. 

Data selection: A further element of variability in the comparison of the two datasets is 

introduced by the different criteria used for the selection of the signals: on the SDE data, we 

sampled signals from WM voxels with different configurations (1 to 3 fibers), but also included 

GM voxels, which allowed us to investigate tissue-specific performance. As a consequence of 

this choice, any submissions regarding SDE-MS and SDE-GRID needed to perform well in both 

WM and GM to achieve a good score. Differently, all signals sampled from the DDE/DODE 

datasets were located in WM and offer a more thorough overview of the prediction 

performances across different fiber configurations - including regions with known fiber 

fanning - but no insights into their applicability to GM. For all of the above, the prediction 

performance obtained by the submissions on SDE and DDE/DODE should not be directly 

compared. In the selection of the voxels, we attempted to avoid tissue interfaces in order to 

minimize partial volume effects between different tissue types, but these cannot be ruled out 

and are expected to be more detrimental for methods not explicitly dealing with partial 

volume effects. Nevertheless, we argue that some extent of partial volume is ubiquitous in 

brain dMRI applications, and that taking it into account is likely part of the challenge to 

accurately model the dMRI signal.  

Challenge evaluation: As a community challenge, we chose to calculate a single metric (the 

mean squared error) in order to determine a “winning” algorithm. Other choices of the score 

criteria were possible, and would likely result in a different ranking. For example, according 

to modelling theory it would seem more appropriate to investigate a goodness of fit criteria 

as the Bayesian information criteria rather than considering the signal residuals alone, to 

penalize signal overfitting (Supplementary Material Table S2 and S3). However, it is arguable 

that these kinds of metrics are not suitable to characterize methods based on machine 

learning / deep learning where thousands to millions of parameters are fitted, and that the 

mean squared error captures, in its simplicity and limitation, the basic ability to predict an 

unseen signal. Nevertheless, doing well in the current challenge does not automatically 

guarantee that these algorithms are the most appropriate models in all cases. Here, we have 

focused on the ability to explain (i.e. predict) the signal over a wide range of diffusion 

weightings, diffusion times, and frequencies. Furthermore, some modelling approaches in 

this study may be suitable only for a subset of the wide range of acquisitions in this database, 

and may be more/less sensitive at different areas of the diffusion sensitization space. Tensor-

based models such as DTI and DKI, for example, are known to well fit data in the range b = 

800-1200 s/mm2 and b = 1000-3000 s/mm2, respectively. Unsurprisingly, in this challenge we 

indeed observe very large residuals for the DTI model at b < 500 s/mm2 and b > 2000 s/mm2, 

and for the DKI model at b < 800 s/mm2 and b > 5800 s/mm2, respectively, which penalize the 

final scoring of these methods. Another aspect that might influence the evaluation is the pre-

processing of the data, which is well-established to have a major impact on the subsequent 

data analysis. To rule out its potential confounding effect on our results, we have provided 
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the participants with standardized - already pre-processed data, but the inclusion of 

additional pre-processing steps (i.e., denoising, Gibbs ringing correction, outliers 

replacement, etc.) might have resulted in different prediction performance and “winners”.   

Lack of validation: The ability of a method to accurately predict unseen data offers a measure 

of fidelity to the underlying tissue microstructure, but it is by no means a substitute for 

validation efforts that compare signal models to the actual biological tissue structure 

obtained through orthogonal measurements such as, for example, high-resolution 

microscopy. Thus, we argue that the appropriateness and specificity of the tested methods 

cannot be adequately captured by signal fitting alone, and requires external validation, which 

is particularly critical in the case of biophysical multicompartment models. In addition to 

empirically assessing data, future work should continually strive to validate these measures 

against orthogonal information through simulations, physical phantoms, and animal models 

of tissue microstructure in order to paint the complete picture of the models successes and 

abilities.  

What is a good model? 

As described in past challenges (Panagiotaki et al. 2012; U. Ferizi et al. 2015; Ileana O. Jelescu 

et al. 2020) and in reviews (Ileana O. Jelescu et al. 2020; Dmitry S. Novikov, Kiselev, and 

Jespersen 2018), a good model or signal representation must well-capture trends in the signal 

(explain seen signal and predict unseen signal), and also have stability and robustness of fit 

(Ileana O. Jelescu et al. 2016), for the appropriate signal regime. 

On the other hand, a good model fit to the data, and ability to predict unseen data, does not 

guarantee that the estimated model parameters have a sensible physiological meaning. 

Similarly, a visually appealing map of quantitative indices also does not equate to a “good 

model”. While the “best” model is the one that well-explains the underlying physiology that 

the signal is sensitive to (within the experimental design), the process of converging on the 

most-appropriate model is complex, and examining the generalizability of the model to 

various diffusion sensitizations is only one step in that process. This specific step lends insight 

into the information uncovered and captured in the signal, and successes and limitations of 

various attempts to describe the signal.  

Conclusions 

We have reported the results of a community effort to investigate the generalizability of 

existing methods at predicting unseen diffusion MRI signals collected over a large range of 

diffusion encodings. Our results highlight that existing models perform well at predicting SDE 

data in white matter and, to a lesser extent, in grey matter. Conversely, future work is needed 

to better understand and model the information content of DDE and DODE data. Next to the 

method choice, hyperparameters play a key role in the generalizability of fit methods, 

highlighting the importance of their optimization, and of reporting their values to support 

reproducibility. These challenge results serve not only as a snapshot of the current status quo 
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in the field, but also as an openly available benchmark to support the development of novel 

methods. 
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Appendix 

Tensor-based models 

● DTI: The diffusion tensor imaging method was fitted with a linear least squares 
procedure to determine the diffusion tensor (6 parameters) and the average non-
weighted signal (1 parameter). 

● DKI: The diffusion kurtosis imaging extends the DTI method to account for restricted 
diffusion. It was fitted with a weighted least squares procedure using ExploreDTI to 
determine 22 parameters: 6 for the diffusion tensor, 15 for the kurtosis tensor and the 
non-weighted signal. No additional constraints were considered in this fit. 

● DKI+Offset: The DKI model was extended to accommodate an additional degree of 
freedom modelling a positive constant bias in the signal due to, for example, Rician 
noise. The 23 free parameters of this model were fitted with a non-linear least squares 
procedure implemented in MATLAB, constraining a monotonic signal decay and 
enforcing both the diffusion and kurtosis tensor to be positive definite. 

● DTD-cov: The diffusion tensor distribution (DTD) method describes the diffusion signal 
as the sum of a distribution of microscopic tensors. The 28 parameters of the fourth 
order covariance tensor method were fitted to the data with a non-linear least squares 
procedure implemented in MATLAB, constraining a monotonic signal decay and 
enforcing both the diffusion and kurtosis tensor to be positive definite. 

● DTD-cov+Offset: The DTD-cov method was extended with one additional degree of 
freedom modelling a positive constant bias in the signal due to, for example, Rician 
noise. The 29 free parameters of this model were fit with a non-linear least squares 
procedure implemented in MATLAB, constraining a monotonic signal decay and 
enforcing both the diffusion and kurtosis tensor to be positived definite. 

Multi-compartment models 

● Ball&Stick: originally proposed from Behrens and colleagues, this model consists of 
two compartments: a stick (impermeable cylinder with zero radius) to model 
anisotropic restricted intra-cellular diffusion, and a ball to model isotropic hindered 
extra-cellular diffusion. The model was implemented in Python using the Dmipy 
package, and its 4 parameters fitted to the data using a two stages procedure 
consisting of an initial grid search, followed by a constrained non-linear fit procedure 
based on a limited-memory quasi-Newton method. 

● Ball&Racket: this model is an extension of the Ball&Stick that explicitly takes into 
account fanning configurations. The 7 parameters of the model were fitted to the data 
using the same procedure described for the Ball&Stick model. 

● NODDI-Watson: originally introduce from Zhang et al., this model accounts for intra-
cellular diffusion modelled as a tensor convolved with a Watson distribution to 
account for axonal dispersion, an extracellular compartment modelled with a 
Zeppelin, and an isotropic free water component to account for partial volume with 
the cerebrospinal fluid. The volumes of the intracellular and extracellular 
compartments are linked with a tortuosity principle, and the parallel diffusivity of the 
tensor is set to 1.7x10-3mm2/s. The 5 parameters of the model were fitted to the data 
using the same procedure described for the Ball&Stick model. 

● NODDI-Bingham: this model extends the NODDI-Watson model to account for 
asymmetric fiber dispersion using a Bingham distribution. The 7 parameters of the 
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model were fitted to the data using the same procedure described for the Ball&Stick 
model. 

● SMT: The spherical mean technique (SMT) model provides estimates of neurite 
density and of the intrinsic tissue diffusivity unconfounded by fibre crossings and 
orientation dispersion. The 51 parameters of the model were fitted to the data using 
the same procedure described for the Ball&Stick model. 

● NODDI-SMT: This is a reformulation of the NODDI-Watson model using the SMT 
technique. The 50 parameters of the model were fitted to the data using the same 
procedure described for the Ball&Stick model. 

● MCMDI: this model describes intra-cellular diffusion with a stick, and extra-cellular 
diffusion with a Zeppelin. The SMT technique is used to achieve invariance to fibre 
crossing and orientation dispersion. The 50 parameters of the model were fitted to 
the data using the same procedure described for the Ball&Stick model. 

● ActiveAx: introduced from Dyrby and colleagues, this model describes intra-cellular 
diffusion as a cylinder with finite radius, extracellular diffusion as a zeppelin, and 
accounts for isotropic contamination due to cerebrospinal fluid. The 7 parameters of 
the model were fitted to the data using the same procedure described for the 
Ball&Stick model. 

 

Parametric representations 

● SHORE: The method is based on the original simple harmonic oscillator reconstruction 
(SHORE) [1]. SHORE with optimized reconstruction was tested at different orders of 6, 
8 and up to 12. However, the best results or lower errors were determined to be at 
either order 6 or 8. The 50 parameters of the model were fitted to the data using a 
linear least-squares approach. 

● MAP-MRI: Mean Apparent Propagator Magnetic Resonance Imaging (MAP-MRI) is a 
linear representation of the diffusion signal that uses a 3D generalization of the SHORE 
basis. The 95 parameters of the method were fitted using a penalized least-squares 
procedure with generalized cross validation implemented in Dmipy.  

● MAP-MRI+Reg: This submission used the Laplacian-regularized MAP-MRI method of 
order 8 implemented in the Dipy software library with no positivity constraint in the 
propagator and a regularization weight of 0.47 to fit the 95 free parameters of the 
method. 

Deep-learning methods 

● NeuralNet: A fully connected neural network with a single hidden layer of 50 neurons 
and using sigmoid activation functions was trained to predict the unprovided signal 
amplitudes for each measurement independently. The 50 parameters of the network 
were optimized based on the mean squared error of the predictions using the ADAM 
algorithm with a learning rate of 0.005 over 20000 epochs. For SDE-MS and SDE-GRID 
the normalized components of the gradient (3 values) and the b-value were provided 
as inputs to the network. For the DDE and DODE acquisitions, the gradient strength, 
the normalized components of the two gradients (6 values), the b-value, and the 
components of the b-matrix (6 values) were concatenated into one input vector of 
length 14.  
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● NeuralNet+Reinf: A fully connected neural network with reinforcement learning. The 
authors adopted a neural architecture search (NAS) to identify the optimal 7-layer 
perceptron model for dMRI signal prediction with either 8. 16, 32, 64 or 128 nodes 
per layer. The free parameters of the network ranged between 56 and 896, and their 
values was optimized with the ADAM method using an initial learning rate equal to 
0.01 and 200 training epochs.  

 

Table A1: The valid signal predictions submitted to the MEMENTO challenge. For each method, we report the 
acronym and the main reference, the “category”, special notes on the fit procedure, and the data it has been 
applied to. The following predictions were subdivided in the following categories: tensor-based (TENS), multi-
compartment model (MCM), parametric representation (PAR), deep learning-based (DL). 

Model name Category Implementation 

details 

Computation 

time 

[voxel] 

Number of 

free 

parameters 

Noise 

assumptions 

Optimization 

algorithm 

DTI (Basser, 
Mattiello, and 
LeBihan 1994) 

TENS - < 1s 7 Gaussian Linear Least 
Squares 

DKI (J. H. Jensen et 
al. 2005) 

TENS Implemented in 
ExploreDTI  

< 1s 22 Gaussian Weighted Least 
Squares 

DKI+Offset (Morez 
et al. 2020) 

TENS Monotonic signal 
decay, positive 
definite tensor 

< 1s 23 Rician Non-linear 
least-squares 

DTD-cov (C. F. 
Westin et al. 2016) 

TENS Monotonic signal 
decay, positive 
definite tensor 

< 1s 28 Gaussian Non-linear 
least-squares 

DTD-cov (C. F. 
Westin et al. 2016) 

+ Offset 

TENS Monotonic signal 
decay, positive 
definite tensor 

< 1s 29 Rician Non-linear 
least-squares 

Ball&Stick 
(Behrens et al. 

2003) 

MCM  Implemented in 
Dmipy (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 4 Gaussian Constrained 
non-linear 

least-squares 

Ball&Racket 
(Sotiropoulos, 
Behrens, and 
Jbabdi 2012)  

MCM Implemented in 
Dmipy  (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 7 Gaussian Constrained 
non-linear 

least-squares 

NODDI-Watson 
(Zhang et al. 2012) 

MCM Implemented in 
Dmipy  (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 5 Gaussian Constrained 
non-linear 

least-squares 

NODDI-Bingham 
(Tariq et al. 2016) 

MCM Implemented in 
Dmipy  (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 7 Gaussian Constrained 
non-linear 

least-squares 

SMT (Kaden et al. 
2016) 

MCM Implemented in 
Dmipy   (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 51 Gaussian Constrained 
non-linear 

least-squares 

NODDI-SMT MCM Implemented in 
Dmipy   (Fick, 

< 1s 50 Gaussian Constrained 
non-linear 

least-squares 
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Wassermann, and 
Deriche 2019) 

MCMDI (Kaden et 
al. 2016) 

MCM Implemented in 
Dmipy   (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 50 Gaussian Constrained 
non-linear 

least-squares 

ActiveAx (D. C. 
Alexander et al. 

2010) 

MCM Implemented in 
Dmipy   (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 7 Gaussian Constrained 
non-linear 

least-squares 

SHORE (Ozarslan 
et al. 2009) 

PAR From DeepSHORE 
(Nath, Lyu, et al. 

2019) 

< 1s 50 Gaussian Regularized 
least squares 

MAP-MRI  
(Fick et al. 2016) 

PAR Implemented in 
Dmipy   (Fick, 

Wassermann, and 
Deriche 2019) 

< 1s 95 Gaussian Regularized 
least squares 

MAP-MRI+Reg 
(Fick et al. 2016) 

PAR Implemented in 
Dipy (Garyfallidis 

et al. 2014) 

33s 95 Gaussian Regularized 
least squares 

NeuralNet DL Perceptron 1 
Layer 50 nodes 

Training: ~ 70s, 
Prediction: <1s 

Signal 
dependent 

Gaussian Adam 

NeuralNet+Reinf 
(Williams 1992) 

DL Perceptron 7 
Layers optimized 
with NAS (Zoph 

and Le 2016) 

NA Up to 896 Gaussian Adam 
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