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Abstract 31 

A better understanding of how climate affects growth in tree species is essential for improved 32 

predictions of forest dynamics under climate change. Long-term climate averages (mean climate) 33 

and short-term deviations from these averages (anomalies) both influence tree growth, but the rarity 34 

of long-term data integrating climatic gradients with tree censuses has so far limited our 35 

understanding of their respective role, especially in tropical systems. Here, we combined 49 years 36 

of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to 37 

examine how tree growth responds to both climate means and anomalies, and how species 38 

functional traits mediate these tree growth responses to climate. We showed that short-term, 39 

anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced 40 

tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. 41 

In addition, species traits related to water use and photosynthesis partly explained differences in 42 

growth sensitivity to both long-term and short-term climate variations. Our study demonstrates that 43 

both climate means and anomalies shape tree growth in tropical forests, and that species traits can 44 

be leveraged to understand these demographic responses to climate change, offering a promising 45 

way forward to forecast tropical forest dynamics under different climate trajectories. 46 

 47 

Keywords: tropical forest ecology, demography, tree vital rates, functional traits, climate change, 48 

vapour pressure deficit (VPD), climate anomalies, water use efficiency, photosynthesis, permanent 49 

plots 50 
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Introduction 52 

Tropical forests are key contributors to global carbon sequestration (Pan et al. 2011; Needham et 53 

al. 2018), but climate change may reduce this important ecosystem service by suppressing tree 54 

growth or increasing mortality risk, particularly in warmer and drier tropical forests (Brodribb et 55 

al. 2020; Sullivan et al. 2020). Hence it is important to understand how climate influences tree 56 

growth, both through long-term local averages (hereafter, “mean climate”, often calculated over a 57 

period of 30 years) and short-term deviations from these averages (hereafter, anomalies, estimated 58 

as the difference from a 30-year baseline average for a particular place and time (Rifai et al. 2018, 59 

2019). Long-term mean climate can constrain the ways species achieve different growth rates in 60 

different locations through their effect on tree physiological processes (Rifai et al. 2018; Green et 61 

al. 2019; Sullivan et al. 2020). On the other hand, climate change manifests in particular as 62 

increases in the magnitude of anomalies and frequency of ‘extreme weather events’ (i.e. extreme 63 

anomalies) (Jentsch et al. 2007; Malhi et al. 2009; Harris et al. 2018), which can alter growth rates 64 

at the scale of weeks, months, and years (Mendivelso et al. 2014; Rifai et al. 2018, 2019; Sanginés 65 

de Cárcer et al. 2018; Yuan et al. 2019; Grossiord et al. 2020). So far, most studies on the impact 66 

of anthropogenic climate change on species and community growth rates have focused either on 67 

mean climate or extreme climatic events (e.g. Phillips et al. 2009; Fadrique et al. 2018; Aguirre-68 

Gutiérrez et al. 2019). However, predicting tropical forest dynamics requires disentangling the 69 

relative effects of long-term mean climate and the continuum of small to large climate anomalies 70 

on tree growth (Harris et al. 2018).  71 

How species differences influence tree growth response to mean climate and climate anomalies 72 

remains unclear. Functional traits (sensu Violle et al., 2007) can capture species differences in 73 

ecological strategies and allocation tradeoffs to growth, survival and reproduction (Westoby et al. 74 

2002; McGill et al. 2006). Trait-based approaches offer a path towards a more mechanistic 75 

understanding of species differences in tree growth response to climate drivers (Wagner et al. 2014; 76 
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Uriarte et al. 2016; Brodribb et al. 2020; Laughlin et al. 2020). Specifically, the ‘fast-slow’ plant 77 

economics spectrum links fast-growing and slow-growing species to acquisitive and conservative 78 

trait values, respectively (Reich 2014). As high growth rates may come with a cost of lower stress-79 

tolerance (Reich 2014; Gibert et al. 2016), acquisitive strategies could increase growth sensitivity 80 

to climate anomalies, while conservative strategies could attenuate it. Physiological traits directly 81 

related to photosynthesis and water use efficiency are good candidates to reflect the effects of light- 82 

and water-related climate variables on tree growth and forest dynamics (Wagner et al. 2014; 83 

Brodribb et al. 2020; Powers et al. 2020; Rowland et al. 2021). 84 

Uncoupling mean climate and climate anomalies as drivers of tree growth and understanding the 85 

functional basis for differences in species growth responses to climate requires detailed long-term 86 

inventories stretching along climatic gradients, coupled with information on species traits. 87 

However, most studies have focused on a single site (Condit et al. 2017), growth-climate relations 88 

(Rifai et al. 2018), growth-trait relations (Poorter et al. 2008; Paine et al. 2015; Gibert et al. 2016; 89 

Gray et al. 2019) or trait-environment relationships along climatic gradients (Aguirre-Gutiérrez et 90 

al. 2019; Rosas et al. 2019), with few studies combining all these aspects (Fyllas et al. 2017). Here, 91 

we take advantage of a unique 49-year dataset of regularly-censused tropical tree growth (two to 92 

five year-intervals) spanning 509 species across 23 plots covering an elevation gradient of 1300 m 93 

and encompassing a broad range of climatic conditions, in North Queensland (Wet Tropics of 94 

Australia). We use 15 morphological, chemical and physiological traits related to leaf, wood and 95 

maximum size collected within the plot network for 75 dominant species to test how these traits 96 

mediate species growth responses to climate drivers. We couple the multi-year census data with 97 

the detailed plant traits dataset in Bayesian hierarchical models to relate tree growth, species traits, 98 

forest plots, and climatic data (Fig. 1). We examine the effects of both mean climate and climate 99 

anomalies on interannual tree growth variation, both within and across species, and evaluate the 100 

role of functional traits in capturing species differences in growth sensitivity. We also test whether 101 
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the effects of climate anomalies on plot-level growth rate variation depend upon long-term mean 102 

climate. Specifically, we ask:  103 

i) How do mean climate and climate anomalies determine interannual variation in tree growth rates, 104 

and what are the main climatic drivers?  105 

ii) Are drier and warmer forests more sensitive to positive anomalies in temperature and water 106 

stress?   107 

iii) Can functional traits explain interspecific differences in growth sensitivities to climate? 108 

 109 

Materials and Methods 110 

Study sites and demographic data 111 

Individual tree annual absolute growth rates were calculated for 12,853 trees in 23 permanent forest 112 

plots of tropical rainforest located in northern Queensland, Australia, between 12°44' S to 21°15' 113 

S and 143°15' E to 148°33' E, and encompassing an elevation gradient between 15 and 1200 m 114 

a.s.l. and a period of 49 years (Fig. 1a; Table S1) (20 CSIRO long-term plots (Bradford et al. 2014), 115 

and three more recent plots; see Supplementary Methods S1). Regular cyclonic disturbance 116 

contributes to the dynamics of the forests (Murphy et al. 2013). They cover a wide range of mean 117 

annual temperatures (19°C to 26.1°C), precipitations (1213 to 3563 mm), solar radiation (17.8 to 118 

19.4 Mj m-2 day-1) and vapour pressure deficit (6.5 to 11.8 hPa) (Table S1). At plot establishment, 119 

all trees with stems ≥ 10 cm diameter at breast height (DBH) were mapped, identified to species 120 

level and measured for diameter. The 20 long-term plots were re-measured every two years for ten 121 

years, and then at three- to four-year intervals, with diameter, recruits and deaths recorded, 122 

summing up to 11 to 17 censuses per plot. The remaining three plots were established between 123 

2001 and 2012 and resampled one to three times (Table S1).   124 

All available censuses were used to calculate individual annualised absolute growth rate (AGR) 125 

based on DBH at date 1 and 2 (t1 and t2), as:  126 
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𝐴𝐺𝑅 = 
𝐷𝐵𝐻𝑡2 − 𝐷𝐵𝐻𝑡1
(𝑛𝑏 𝑑𝑎𝑦𝑠)𝑡2−𝑡1

        (1) 127 

Abnormal AGR values were removed following (Condit et al. 2004) (see Supplementary Methods 128 

S1). Pteridophytes and palms species were excluded from the analyses due to their lack of 129 

secondary growth. 130 

Climate data 131 

The effect of climate on growth was studied through four climate variables encompassing a wide 132 

range of variability across the plots and relevant for tree growth (see details in Supplementary 133 

Methods S1): mean temperature (Tmean), solar radiation (SRAD), vapour pressure deficit (VPD), 134 

and maximum climatological water deficit (MCWD; a proxy of the annual accumulated water 135 

stress over the drier season, estimated from climate data as the cumulative deficit between 136 

precipitation and evapotranspiration, hence better capturing the seasonality of precipitation and 137 

potential soil water deficit than precipitation itself (Aragão et al. 2007; Malhi et al. 2009, 2015) 138 

(Table S1, Table S3a).  139 

Climate data collection is detailed in the Supplementary Methods S1 and summarised here. 140 

Monthly climatic variables were obtained for the period 1970 to 2018 for each plot from 141 

ANUClimate v.2.0 (Hutchinson et al. 2014). The monthly actual evapotranspiration (aet) was 142 

derived from TerraClimate (Abatzoglou et al. 2018). The aet was used in combination with rainfall 143 

to calculate the monthly climatological water deficit (CWD). The CWD was reset to zero at the 144 

wettest month of the year and had an upper bound at 1000 mm. It was used to calculate monthly 145 

MCWD through a rolling maximum over the previous 12 months.  146 

In each forest plot, a monthly 30-year historical mean and standard deviation were calculated over 147 

the 1981-2010 period for Tmean, SRAD, VPD, and MCWD (Table S1). On this basis, we 148 

calculated in each plot the monthly anomalies for each variable (i.e. monthly 30-year mean μ 149 
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subtracted from monthly value) and divided them by their location-specific 30-year monthly 150 

standard deviation σ, yielding standardised anomalies (Aragão et al. 2007; Rifai et al. 2018):  151 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑠𝑡𝑑𝑘,𝑡 =
(𝑋𝑘,𝑡 − 𝜇𝑘)

𝜎𝑘
        (2) 152 

where Xk, t is the climate variable value in plot k at time t (i.e. year and month), and μk and σk are 153 

the monthly 30-year mean and standard deviation of the corresponding plot’s location. 154 

Standardised anomalies are expressed in units of standard deviation from monthly means over 155 

1981-2010. This allows the comparison of plots differing not only in their historical means but also 156 

in the long-term variation range around them, that is, an important element to detect anomaly 157 

effects on tree growth across different mean climates.  158 

To build the climate covariates for the tree growth models, the monthly 30-year mean and 159 

standardised anomaly variables were averaged over the months between consecutive censuses (two 160 

to five years). For MCWD, the maximum over the growth periods between two censuses was used 161 

instead of the weighted mean. The eight resulting interannual averaged variables were used as 162 

predictors to model tree growth (see Data analysis). Correlations among these variables, stand 163 

structure and elevation are presented in Table S3a and the Supplementary Methods S1.   164 

    Stand structure 165 

As stand structure can vary between plots, we include its effect on tree growth through total plot 166 

basal area. Plot basal area (m²/ha) was calculated at each census, with expectations that increasing 167 

basal area would have a general negative effect on tree growth (Sánchez-Salguero et al. 2015; 168 

Muledi et al. 2020). 169 

Functional traits 170 

Between July and September 2015, we measured 15 traits of 75 dominant, canopy tree species in 171 

eight plots along the gradient (Table 1; Table S1 and S2 for plot and species details). Species were 172 

chosen to sample those that made up 80% of the standing biomass. Trait data collection and 173 
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measurement are detailed in Supplementary Methods S1. We measured leaf, wood and maximum 174 

size traits that relate to light, water and nutrient use (Table 1, see Table S3b for pairwise trait 175 

correlations, and Fig. S1 for trait distribution along the elevation gradient). Traits were measured 176 

on three individuals per species, and included photosynthesis and stomatal conductance at a 177 

reference CO2 concentration of 400 µmol mol-1 and irradiance of 1500 µmol photons m-2 s-1 (Asat 178 

and gsat), dark respiration (Rd) at the same CO2 concentration, the CO2-saturated photosynthesis 179 

and stomatal conductance (Amax and gmax), measured at 1200 µmol mol-1 CO2. The one-point 180 

method (De Kauwe et al. 2016) was used to estimate maximum carboxylation rate (Vcmax) for 181 

each individual from net photosynthesis measured at 400 µmol mol-1 CO2, and maximum light-182 

driven electron flux (Jmax) from net photosynthesis measured at 1200 µmol mol-1 CO2 183 

(Bloomfield et al. 2018). We also measured leaf stable carbon isotope ratio (δ13C), nutrient 184 

concentration, and leaf area, leaf mass per area (LMA), leaf thickness, wood density (from 185 

branches, after bark removal). All traits were averaged at the species level for tree growth analyses. 186 

Data analysis 187 

We addressed our questions through three sets of Bayesian multilevel models (M1 to M3; details 188 

in Supplementary Methods S1).  189 

M1: Tree growth response to climate means and anomalies, and species differences in their 190 

sensitivities to climate  191 

In M1, we used 12,853 individuals from all 509 species to test the effects of climate on tree growth, 192 

and to investigate tradeoffs among species between intrinsic growth rate and growth sensitivity to 193 

climate covariates. We built a two-level hierarchical Bayesian model of AGR, where the hierarchy 194 

included an upper level of response (hereafter grand coefficients or effects, affecting AGR across 195 

species) above a lower, species-level response. The higher level modelled AGR responses to 196 

covariates via hyperparameters (i.e. statistical distributions from which species-level intercepts and 197 

slope coefficients arose), while the lower level captured species-specific growth sensitivities to 198 
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model covariates, and species-level intercepts (hereafter intrinsic AGR) captured unexplained 199 

growth variation across individuals, growth periods, and plots.  200 

More specifically, we modelled individual log(AGR) as a species-specific function of (i) initial 201 

tree size (approximated by log(DBH) at the beginning of a growth period), (ii) the local 30-year 202 

mean of a climate variable, (iii) the anomalies of the same climate variable averaged over the 203 

studied growth period, and (iv) stand structure (approximated by plot basal area at the beginning 204 

of a growth period), using varying slopes (also known as random slopes) and a covariance matrix 205 

to estimate correlations among species-specific AGR sensitivities to the covariates, as:  206 

log(𝐴𝐺𝑅 𝑖,𝑗,𝑘,𝑡)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 𝑖,𝑗,𝑘,𝑡 , 𝜎𝑅)                (3.1)        [Likelihood] 207 

𝜇𝑖,𝑗,𝑘,𝑡 = 𝛼𝑗 + 𝛽1𝑗 × log(𝐷𝐵𝐻𝑖,𝑡) + 𝛽2𝑗 ×  𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘 + 𝛽3𝑗 ×  𝑐𝑙𝑖𝑚𝐴𝑛𝑜𝑚𝑘,𝑡 + 𝛽4𝑗 ×  𝐵𝐴𝑘,𝑡 +208 

                  𝛾𝑘  +  𝛿𝑡  +  𝜆𝑖                                          (3.2)         [Linear model] 209 

                                                                                                           210 

(

𝛼𝑗
𝛽1𝑗
⋮
𝛽4𝑗

) ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (

𝛼0
𝛽1,0
⋮
𝛽4,0

 , 𝑆)                           (3.3)      [Adaptive priors for species-level param.] 211 

𝑆 =  (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)  𝑅 (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)    (3.4)      [Construction of covariance matrix] 212 

𝑅 = 

(

 
 

1 𝜌𝛼𝑗, 𝛽1𝑗
𝜌𝛽1𝑗 ,𝛼𝑗

1

⋮
𝜌𝛽4𝑗,𝛼𝑗

⋮
𝜌𝛽4𝑗,𝛽1𝑗

  

𝜌𝛼𝑗,𝛽…𝑗 𝜌𝛼𝑗,𝛽4𝑗
𝜌𝛽1𝑗,𝛽…𝑗 𝜌𝛽1𝑗,𝛽4𝑗
⋮

𝜌𝛽4𝑗,𝛽…𝑗

⋮
1

)

 
 
       (3.5)     [Correlation matrix of species-level params.] 213 

𝛾𝑘  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾)                                                   (3.6)      [Adaptive priors for the k plots] 214 

𝛿𝑡  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿)                                                    (3.7)      [Adaptive priors for the t time periods] 215 

𝜆𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜆)                                                    (3.8)      [Adaptive priors for the i individuals] 216 

𝛼0, 𝛽1−4,0  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)                                       (3.9)      [Priors for grand intercept and slopes] 217 

𝜎𝛼 , 𝜎𝛽1−4 , 𝜎𝛾, 𝜎𝛿 , 𝜎𝜆, 𝜎𝑅 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)      (3.10)    [Priors for standard deviation params.] 218 
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𝑅 ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2)                                                          (3.11)    [Prior for correlation matrix] 219 

where αj characterises the intrinsic AGR of species j and β1j, β2j, β3j and β4j characterise the AGR 220 

response of species j to tree size, mean climate (1981-2010), standardised climate anomalies and 221 

plot basal area in plot k for time interval t. The parameter α0 represents the grand intercept, and the 222 

parameters β1-4, 0 are the grand slopes of model covariates whose posterior distributions represent 223 

the effect of mean climate and climate anomaly on AGR across species.  224 

The matrix of fitted correlation coefficients among species-level intercepts and slopes (αj, β1j, β2j, 225 

β3j and β4j) allows evaluating correlations among species intrinsic growth rate (intercepts αj) and 226 

species AGR sensitivity to model covariates (β1-4j). For instance, a model with a negative ραj, β3j 227 

parameter and a negative β3,0 slope would indicate that species with higher intrinsic growth rate 228 

(αj) tend to have higher sensitivity (i.e. more negative slopes) to climate anomalies. Using 229 

covariance matrix to pull information across species-level intercepts and slopes through the 230 

multinormal distribution improves the accuracy of posterior likelihood estimates both across and 231 

within species (hierarchical levels 1 and 2, respectively) while limiting risks of overfitting through 232 

adaptive regularising priors, or partial pooling (e.g. McElreath 2020).  233 

Parameters γk, δt, λi are varying intercepts capturing the residual variation in expected individual 234 

AGR occurring among forest plots, time periods between consecutive censuses (characterised by 235 

the years beginning and ending a given census period), and individual stems, respectively. This 236 

model was run separately for each of the four climate variables (Tmean, SRAD, VPD, and MCWD) 237 

to manage model complexity (representing a total of four M1 models). 238 

M2: Trait-mediated species-level tree growth response to climate  239 

Models M2 have the same hierarchical structure as M1, but additionally include the role of species 240 

traits in AGR response to climate. We thus used a subset of 5,191 individuals from the 75 species 241 

with trait data. In M2, the species-level intercept and slopes are modelled as depending from 242 
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species mean trait value such that both species-specific intrinsic AGR and AGR sensitivity to 243 

covariates can be influenced (either accentuated or lessened) by species traits (Rüger et al. 2012; 244 

Uriarte et al. 2016; Fortunel et al. 2018) as: 245 

log(𝐴𝐺𝑅 𝑖,𝑗,𝑘,𝑡)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 𝑖,𝑗,𝑘,𝑡 , 𝜎𝑅)                  (4.1)      [Likelihood] 246 

𝜇𝑖,𝑗,𝑘,𝑡 = 𝛼𝑗 + 𝛽1𝑗 × log(𝐷𝐵𝐻𝑖,𝑡) + 𝛽2𝑗 ×  𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘 + 𝛽3𝑗 ×  𝑐𝑙𝑖𝑚𝐴𝑛𝑜𝑚𝑘,𝑡 + 𝛽4𝑗 ×  𝐵𝐴𝑘,𝑡 +247 

                  𝛾𝑘  +  𝛿𝑡  +  𝜆𝑖                                           (4.2)       [Linear model – level 1] 248 

𝛼𝑗 = 𝛼0 + 𝛼1 × log(𝑇𝑟𝑎𝑖𝑡𝑗)                                  (4.3)     [Linear model – level 2] 249 

𝛽2−4𝑗 = 𝛽2−4,0 + 𝛽2−4,1 × log(𝑇𝑟𝑎𝑖𝑡𝑗)              (4.4)     [Linear model – level 2]          250 

(

𝛼𝑗
𝛽1𝑗
⋮
𝛽4𝑗

) ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (

𝛼0
𝛽1,0
⋮
𝛽4,0

 , 𝑆)                          (4.5)      [Adaptive priors for species-level param.] 251 

𝑆 =  (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)  𝑅 (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)    (4.6)  [Construction of covariance matrix] 252 

𝑅 = 

(

 
 

1 𝜌𝛼𝑗, 𝛽1𝑗
𝜌𝛽1𝑗 ,𝛼𝑗

1

⋮
𝜌𝛽4𝑗,𝛼𝑗

⋮
𝜌𝛽4𝑗,𝛽1𝑗

  

𝜌𝛼𝑗,𝛽…𝑗 𝜌𝛼𝑗,𝛽4𝑗
𝜌𝛽1𝑗,𝛽…𝑗 𝜌𝛽1𝑗,𝛽4𝑗
⋮

𝜌𝛽4𝑗,𝛽…𝑗

⋮
1

)

 
 
       (4.7)     [Correlation matrix of species-level params.] 253 

where eqs. 4.1, 4.2, 4.5-4.7 are the same as eqs. 3.1-3.5 of M1, while species-level intercepts and 254 

slopes are mediated by species mean trait value (eqs. 4.3-4.4; detailed equations and priors in 255 

Supplementary Methods S1). Parameter α1 is the species-level departure from the grand intercept 256 

(α0) for an increase of one standard deviation in the log(trait Tj) value of species j (direct effect of 257 

trait on AGR), while β2-4, 1 are the departures from the grand slope of the corresponding model 258 

covariates for an increase of one standard deviation in the log(trait Tj) value of species j (trait 259 

mediation of AGR response to climate and stand structure; see Supplementary Methods S1 for 260 

ecological interpretations of trait coefficient signs). We did not include the role of species traits in 261 

AGR response to tree size because some traits can change through tree ontogeny (Fortunel et al. 262 
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2020) and our trait data does not encompass species tree size ranges. M2 models were run 263 

separately for each of the four climate variables and for each of the 15 functional traits to manage 264 

model complexity (representing a total of 60 M2 models). 265 

In both M1 and M2 models, we standardised the response variable log(AGR) and all covariates – 266 

but climate anomalies – to mean zero and unit standard deviation, to allow relative importance 267 

comparisons between covariates through slope coefficients (Schielzeth 2010), and to ease plausible 268 

weakly-informative prior assignment to the parameters (McElreath 2020) (see Supplementary 269 

Methods S1). We did not standardise averaged monthly anomalies to maintain their interpretability 270 

as deviations from long-term means in terms of plot-specific units of standard deviation (see eq. 2; 271 

i.e. mean anomaly covariate slope coefficients are not directly comparable to other covariate mean 272 

slopes).  273 

M3: Plot-level tree growth response to climate anomalies and interaction with mean climate  274 

M3 models evaluate plot-level growth response to climate anomalies, and whether it varies 275 

depending on local mean climates (e.g. whether plot-level AGR sensitivity to VPD anomalies is 276 

higher in drier sites). We focused on the tree growth at the plot level, and modelled the expected 277 

log(AGR) as a linear function of mean climate and climate anomalies. We used a similar Bayesian 278 

hierarchical model as described for M2, where plot-specific average AGR depended on climate 279 

anomalies, whose effect on AGR itself depended on the plot mean climate, as:  280 

log(𝐴𝐺𝑅 𝑖,𝑗,𝑘,𝑡)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 𝑖,𝑗,𝑘,𝑡 , 𝜎𝑅)            (5.1)           [Likelihood] 281 

𝜇𝑖,𝑗,𝑘,𝑡 = 𝛼𝑘 + 𝛽1𝑘 ×  𝑐𝑙𝑖𝑚𝐴𝑛𝑜𝑚𝑘,𝑡 +  𝛾𝑗  +  𝛿𝑡  +  𝜆𝑖       (5.2)     [Linear model – level 1] 282 

𝛼𝑘 = 𝛼0 + 𝛼1 ×𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘                            (5.3)         [Linear model – level 2] 283 

𝛽1𝑘 = 𝛽1,0 + 𝛽1,1 ×𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘                      (5.4)         [Linear model – level 2]                                                                                                 284 

(
𝛼𝑘
𝛽1𝑘
) ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (

𝛼0
𝛽1,0

 , 𝑆)                          (5.5)           [Adaptive priors for plot-level params.] 285 
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𝑆 =  (
𝜎𝛼 0
0 𝜎𝛽1

)  𝑅 (
𝜎𝛼 0
0 𝜎𝛽1

)                           (5.6)           [Construction of covariance matrix] 286 

𝑅 = (
1 𝜌𝛼,𝛽1

𝜌𝛼,𝛽1 1
)                                             (5.7)          [Correlation matrix of plot-level params.] 287 

where αk is the average growth rate in plot k, and β1k characterises the growth response of plot k to 288 

standardised climate anomalies for time interval t. α0 is the mean intercept value (i.e. mean absolute 289 

growth rate) across plots, and α1 is the departure from the grand mean for one unit increase in mean 290 

climate (see detailed equations and priors in Supplementary Methods S1). β1,0 is the grand slope of 291 

climate anomalies, and β1,1 is the departure from this grand mean for a one unit increase in mean 292 

climate (mediation of the effect of anomalies on growth by the plot mean climate). Parameters γj, 293 

δt, λi are varying intercepts for species, census periods, and individual stems, respectively.  294 

We run M3 models only for two climate variables (VPD and SRAD), as we found they were the 295 

most important climate variables for tree growth in M1 and M2 models (see Results). 296 

Standardisation of variables was carried out as for M1. 297 

Trends in climate over time  298 

To explore the implications of the effects of climate anomalies on tree growth, we built a separate 299 

set of hierarchical Bayesian models to test for linear temporal trends in mean annual climate 300 

variables between 1971 and 2019. We used varying year slopes per plots to allow plot-specific 301 

trends (model details in Supplementary Methods S1). We also run the models for the period 2000 302 

to 2019 for comparison with recent analyses suggesting an increasing rate of VPD increase over 303 

time since the late nineties (Yuan et al. 2019). Annual mean temperature and VPD increased of 304 

0.015 °C and 0.02 hPa per year between 1971 and 2019 (R² = 0.97 and 0.84, respectively, Table 305 

S4; illustration in Fig. 1b) and of 0.038 °C and 0.045 hPa per year between 2000 and 2019 (R² = 306 

0.98 and 0.81, respectively, Table S4). There was no general temporal trend for MCWD or SRAD 307 

(Fig. 1c). 308 
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Analysis of model outcomes  309 

All model parameter posteriors were summarised through their median and 95%-highest posterior 310 

density interval (HPDI) (i.e. the narrowest posterior interval encompassing 95% of the probability 311 

mass, corresponding to the coefficient values most consistent with the data; (McElreath 2020)). 312 

Model covariates were considered important at two high levels of confidence, when their 313 

coefficient had a posterior probability of over 95% or 90% of being either positive or negative 314 

(HPDI not encompassing zero).  315 

The goodness-of-fit of the models was assessed through the squared Pearson correlation between 316 

the observed AGR and the AGR predicted by the fitted model (R2). M1 and M2 models had high 317 

explanatory power, with R² of 0.46 and 0.52 on average, respectively. M3 models, with VPD and 318 

SRAD as climate variables, had an R² of 0.67 and 0.63, respectively. 319 

Bayesian updating of parameters was performed via the No-U-Turn Sampler (NUTS) in Stan 320 

(Carpenter et al. 2017), using three chains and 3000 steps (1500 warmings). All models mixed well 321 

and converged (Rhat within < 0.01 of 1). Models were run in the R environment (Team 2020) using 322 

the packages ‘brms’ (Bürkner 2017), ‘tidybayes’ (Kay 2020) and ‘tidyverse’ (Wickham et al. 323 

2019).  324 

 325 

Results  326 

Contribution of climate means and anomalies to tree growth  327 

The main climate drivers affecting tree growth across species were the climate means and 328 

anomalies in Tmean, SRAD and VPD (Fig. 2, Fig. S3, Table S5). Tree growth was higher in 329 

forests with higher mean Tmean, SRAD and VPD (β2j: 0.17 [0.08, 0.26], 0.05 [0.02, 0.08], and 330 

0.09 [0.02, 0.17], respectively; median and 95%-HPDI; unless otherwise stated, all intervals are 331 

95%-HPDI). However, tree growth was reduced when forests experienced positive anomalies in 332 
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temperature, SRAD, and VPD (β3j: -0.12 [-0.17, -0.07], -0.34 [-0.42, -0.26], and -0.13 [-0.19, -333 

0.06], respectively). Contrary to our expectation, anomalies in MCWD had no clear effect on tree 334 

growth across species (Fig. 2; Fig. S2; Table S5). Tree growth sensitivity to climate, stand 335 

structure and tree size varied widely among species (illustration in Fig. S3). Similar results were 336 

obtained from the M2 models (subset of 75 species with trait data) (Fig. S5a-d, Table S5), though 337 

we no longer detected the effects of temperature anomalies and VPD and solar radiation means in 338 

this reduced dataset. 339 

Coordinated tree growth sensitivities to climate means and anomalies 340 

Using the fitted matrix of correlations among species-level intercepts and slopes from the M1 341 

models (matrix R, see eq. 3.5) allowed testing whether fast- and slow-growing species, and species 342 

growing better at opposite extremes of the range of mean climates showed different sensitivities to 343 

climate anomalies. Fast-growing species (i.e. with high intrinsic AGR) were more sensitive than 344 

slow-growing species to the negative effects of both VPD anomalies and plot basal area on tree 345 

growth (Fig. 3c and Fig. S4; ρ = -0.36 [-0.48, -0.23] and ρ = -0.29 [-0.41, -0.17], respectively). 346 

Species that grew better in cloudier forests (i.e. lower SRAD) tended to show steeper growth 347 

decreases when experiencing positive anomalies in solar radiation (Fig. 3b; ρ = 0.17, [0.01, 0.33]). 348 

Species that grew faster in drier forests (i.e. higher VPD) were more negatively affected by positive 349 

VPD anomalies (Fig. 3a; ρ = -0.15 [-0.29, 0.00]). Finally, species most negatively affected by 350 

positive anomalies in VPD also experienced stronger growth decrease in denser forests (high basal 351 

area) (Fig. 3d; ρ = 0.27 [0.14, 0.40]). 352 

 Drier rainforests are more sensitive to VPD anomalies 353 

M3 models highlighted clear interactions between the effects of climate anomalies and mean 354 

climate for VPD (β1,1: -0.26 [-0.39, -0.13]; see eqs. 3), and to a lesser extent for solar radiation (β1,1: 355 

-0.09 [-0.18, -0.01], 90%-HPDI; Table S5). Drier tropical rainforests showed steeper decrease in 356 
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plot-level growth to positive VPD anomalies (Fig. 4a; Table S5). Cloudier forests exhibited 357 

stronger decrease in plot-level growth with positive SRAD anomalies (Fig. 4b; Table S5).  358 

 Functional traits influence species intrinsic tree growth and their response to climate 359 

drivers 360 

Based on M2 models, species intrinsic growth increased with dark respiration rate (Rd), DBHmax, 361 

leaf P content, Asat, Vcmax, leaf δ13C and LMA. (Fig. 5; Fig. S5e; details in Table S5). Species 362 

traits also mediated the effects of climate and forest structure on tree growth, either by accentuating 363 

them (species with high values of the trait respond more strongly) or by attenuating them (species 364 

with low values of the trait are more sensitive) (Fig. 5; details in Fig. S6 and Table S5). Leaf δ13C 365 

and P content exacerbated the negative effects of positive anomalies in SRAD on tree growth, while 366 

Amax, gmax, gsat and Jmax attenuated them (Fig. 5; Fig. S6f, Table S5). The negative effects of 367 

anomalies in VPD on tree growth were exacerbated in species with high leaf δ13C, DBHmax, leaf P, 368 

and LMA, further confirming that VPD anomalies had the most negative effects on fast-growing 369 

species (Fig. 3c), but also those with low gmax or leaf area (Fig. 5; Fig. S6g). Tree growth was less 370 

reduced by denser forest environments (high plot basal areas) in species with high wood density, 371 

low Rd and low leaf δ13C (Fig. 5; Fig. S6i-l).  372 

 373 

Discussion  374 

In this study, we disentangled the influences of mean climate and climate anomalies on interannual 375 

tree growth and defined how species functional traits mediated climate effects by combining 49 376 

years of demographic data, functional traits and climatic data along a climatic gradient in 23 377 

tropical rainforests of Australia.  378 

   What are the important climatic drivers for tree growth? 379 

Solar radiation (SRAD) and atmospheric water demand (VPD) anomalies were the two overarching 380 

climatic drivers of tree growth across pre-existing climatic conditions and species in our study. 381 
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These two variables were also the main drivers of seasonal stand-level net primary productivity in 382 

aseasonal forests across the tropics (Rifai et al. 2018), and increasing VPD due to anthropogenic 383 

climate change has repeatedly been shown to impact tree growth, biomass and vegetation health 384 

(Sanginés de Cárcer et al. 2018; Rifai et al. 2019; Yuan et al. 2019). The pervasive negative effect 385 

of VPD anomalies on tree growth in our study is consistent with expectations from stomatal 386 

conductance models (Grossiord et al. 2020), with stomatal closure and ensuing restriction of CO2 387 

assimilation rate triggered by VPD values exceeding the climate mean and usual variation range. 388 

This negative effect of VPD is expected to be amplified by SRAD anomalies, as VPD depends on 389 

leaf temperature, which itself increases with SRAD (Grossiord et al. 2020). The negative influence 390 

of SRAD anomalies on tree growth may be additive to that of VPD anomalies, as previously shown 391 

(Rifai et al. 2018, 2019; Krause & Winter 2020). Furthermore, positive SRAD anomalies did not 392 

enhance tree growth but reduced it, as would be expected if its effect was VPD-related. However, 393 

the effect of SRAD anomalies on tree growth was probably more than a mere reflection of VPD, 394 

as anomalies in SRAD and VPD were only moderately correlated (r = 0.33, Table S3a). Excess or 395 

fluctuating light, and changes in light quantity and quality are other potential mechanisms 396 

underlying SRAD anomaly effects, as these can be direct physiological stressors (Krause & Winter 397 

2020; Roeber et al. 2020), or indirectly influence the response to other abiotic or biotic stresses 398 

(Roeber et al. 2020). 399 

The strong effect of VPD anomalies compared to the undetectable effect of MCWD anomalies 400 

suggests that VPD may limit tree growth before soil water becomes limiting, further confirming 401 

previous results in temperate and tropical forests (Choat et al. 2012; Novick et al. 2016; Konings 402 

et al. 2017; Rifai et al. 2018; Sanginés de Cárcer et al. 2018). This is a key result, given the 403 

generalised tree growth decrease potentially driven by increasing VPD anomalies, as VPD has been 404 

strongly increasing in the tropics due to anthropogenic climate change (Rifai et al. 2019). Yuan et 405 

al. (Yuan et al. 2019) highlighted a particularly-strong increasing VPD trend at the global scale 406 
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beginning in the late 1990’s (0.017 hPa / yr). Modelling VPD anomalies through time from 2000 407 

to 2019 in our dataset, we detected a 3.8-fold stronger VPD increase rate across all plots (0.045 408 

hPa / yr, 90%-HPDI: 0.019, 0.066; R² = 0.80; details in Table S4; e.g. Fig. 1b). This trend itself 409 

was stronger than the 1971-2019 trend in our dataset (0.020 hPa / yr; R² = 0.84; Table S4), 410 

indicating a sharper-than-previously-thought VPD increase in the past two decades. This rapid 411 

increase of VPD anomalies through time combined with the generalised ensuing decrease in tree 412 

growth and growth sensitivity variability to VPD among species (Fig. S3; Table S5) suggests that 413 

tropical forest composition and functions may be strongly altered by ongoing climate change, 414 

especially by VPD. It is worth noting that soil water deficit also depends on evapotranspiration 415 

estimates accuracy and variables unaccounted for, here (e.g. soil water retention capacity, 416 

topography), so that the importance of soil-related water stresses should be interpreted with 417 

caution. 418 

In spite of the suppressing effects of increasing anomalies in SRAD, VPD, and Tmean, average 419 

growth rates were higher in warmer and sunnier forests (i.e. higher long-term means), across 420 

species (Fig. 2) and within many species (Table S5). While long-term Tmean was highly correlated 421 

with elevation (r = -0.95; Table S3a), mean solar radiation was not correlated with neither elevation 422 

nor the other climate variables (Table S3a). This suggests that these forests are in general energy-423 

limited along the elevation gradient (faster growth in lowland forests), and light-limited across the 424 

gradient, supporting previous results along an Amazon-Andes elevation gradient (Fyllas et al. 425 

2017). Our gradient of mean climates encompassed 7 to 51% of the global-scale climate space of 426 

tropical forests, but did not encompass their driest and warmest conditions (see Fig. S7). Future 427 

studies will need to cover a broader range of climate values to test how generalisable the 428 

relationships that we detected are for tropical forests worldwide. 429 
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 Tradeoffs in tree growth responses to climate  430 

We showed that two aspects allowed understanding the broad range of species differences in 431 

growth response to VPD anomalies: the long-term mean VPD where species grew better, and the 432 

contrast between slow- and fast-growing species (Fig. 3a, c). The models including plot-specific 433 

responses to climate anomalies additionally showed that forest growth sensitivity to VPD 434 

anomalies was stronger in drier forests, mostly at the higher end of the VPD range (Fig. 4a). This 435 

result could be driven by higher levels of obligate or facultative deciduousness, as even the wettest 436 

rainforests have seasonal peaks in leaffall (Edwards et al. 2018) and the drier the forest the earlier 437 

the leaffall peak and the shorter the growing season. Our results support recent findings indicating 438 

that drier forests could be more sensitive to increasing VPD anomalies (Aguirre-Gutiérrez et al. 439 

2020; Powers et al. 2020), which would here translate into drier rainforests already being under 440 

water stress and therefore closer to a threshold of further growth decrease than moist rainforests. 441 

This effect may not be linear and will need to be further tested with more plots encompassing 442 

diverse water-stress conditions.  443 

Similarly, Sullivan et al. (2020) recently showed that warmer forests may be closer to a temperature 444 

threshold beyond which woody productivity would decrease. In our study, this would translate into 445 

expectations that forests and species adapted to warmer conditions would respond more negatively 446 

to further temperature increases. Our results are consistent with this expectation but suggest that 447 

the temperature effect manifests itself indirectly through VPD.  448 

Species that grew faster in cloudier forests showed the strongest growth reduction due to positive 449 

SRAD anomalies (Fig. 3b). This may reflect species differences in light-use strategies, with species 450 

that grow well under low direct-sunlight conditions not benefitting from brighter conditions. This 451 

was supported by the stronger negative effects of SRAD anomalies in species with lower maximum 452 

photosynthetic capacity, stomatal conductance and electron transport capacity (Fig. 5), a trait 453 

syndrome consistent with shade-tolerance strategies (He et al. 2019). This interpretation was 454 
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supported in the plot-level analyses by the steeper growth rate decreases in the cloudier forests in 455 

response to positive SRAD anomalies (Fig. 4b), which may stem from a plot-wide relatively more 456 

marked adaptation to shade tolerance. 457 

Functional traits mediate the effects of climate anomalies on tree growth 458 

Species traits directly influenced species intrinsic growth rate. As expected, intrinsic growth rate 459 

increased with metabolism (Rd), maximum size (DBHmax), and acquisitive chemical and 460 

physiological traits related to the photosynthetic machinery (leaf P content, Asat and Vcmax). 461 

However, it also increased with leaf δ13C and LMA, contrary to expectations as high values of 462 

these traits correspond to tough, long-lived leaves and high intrinsic water use efficiency (Cernusak 463 

et al. 2013; Osnas et al. 2013). In our study, leaf δ13C was positively correlated with leaf N and P 464 

contents (Table S3b), suggesting variation in δ13C among species may have been driven more by 465 

photosynthetic capacity than by stomatal conductance. The positive association of LMA and 466 

growth, also reported in previous studies (Poorter et al. 2008; Wills et al. 2018; Gray et al. 2019), 467 

could be explained by a change in the cost-benefit balance of acquisitive traits with plant size 468 

(Gibert et al. 2016; Gray et al. 2019). 469 

An overarching finding is that species traits can enhance our understanding of differences in species 470 

growth response to the anomalies of SRAD and VPD, and to forest stand structure. Our results 471 

confirmed that resource-acquisitive species overall had higher intrinsic growth rate and that their 472 

growth was more sensitive to positive anomalies in SRAD and VPD. This highlights a tradeoff 473 

between fast growth (via high allocation to acquisitive tissues) and sensitivity to atmospheric water 474 

stress, consistent with expectations from the ‘fast-slow’ plant economics spectrum (Reich 2014).  475 

Most physiological traits directly related to photosynthesis (Table 1) successfully captured species 476 

differences in growth sensitivity to SRAD anomalies (Fig. 5; Fig. S6), confirming the importance 477 

of physiological traits to investigate potential mechanisms underlying differences in demographic 478 

responses to climate change among species (Brodribb et al. 2020; Powers et al. 2020). Increasing 479 
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values of these traits attenuated the tree growth reduction following increasing SRAD anomalies 480 

(Fig. 5; Fig. S7), suggesting that species investing in a more responsive and flexible photosynthetic 481 

machinery may cope better with unusually-high direct exposure to sunlight. While most traits that 482 

increased species intrinsic growth rate also exacerbated the negative effects of VPD anomalies on 483 

tree growth, the mediation of SRAD anomalies by species traits was mostly independent of the 484 

fast-slow spectrum (Fig. 5; Fig. S5, S6). For example, while leaf P concentration, stable carbon 485 

isotope ratio and the maximum photosynthetic capacity tended to increase intrinsic growth rate, 486 

the two former accentuated while the latter attenuated the negative effects of SRAD anomalies on 487 

tree growth (Fig. 5).  488 

 Stand structure as driver of tree growth variation 489 

Plot basal area consistently strongly reduced tree growth across species and explained more growth 490 

variation than mean climate for all four climate variables. Although plot basal area was partly 491 

correlated with elevation, the 30-year average of Tmean and VPD (r = 0.63, -0.59, and -0.47, 492 

respectively; Table S3a), the slope coefficient of basal area remained virtually unchanged across 493 

models including Tmean, VPD, or the other less correlated covariates (and was much steeper than 494 

the slopes of long-term Tmean or VPD), so that the stand structure effect detected here is unlikely 495 

to indirectly reflect Tmean or VPD. Furthermore, faster growth in less dense environments across 496 

forest plots suggests a release from competition for light. This is supported by the general light-497 

limitation suggested by the faster growth in sunnier sites. Slower growth in denser environments 498 

may also suggest an increase in competition for resources or attacks by natural enemies. 499 

Neighbourhood crowding has indeed been shown to strongly reduce tree growth in tropical and 500 

temperate forests (Clark et al. 2014; Fortunel et al. 2016, 2018; Uriarte et al. 2016). In line with 501 

these studies, we found that conservative species with high wood density suffered less growth 502 

reduction from increasing plot basal area, while acquisitive species with high dark respiration rate 503 

and leaf δ13C were more sensitive to basal area (Fig. S5, S6).  504 
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 505 

In summary, we have shown how long-term demographic data across multiple plots encompassing 506 

environmental gradients, combined with functional traits collection can yield insights into how 507 

climate affects interannual variation of tree growth at different temporal scales, and give important 508 

clues into which species and forests may be particularly vulnerable to climate change, and why. 509 

Our findings emphasise the importance of functional traits - and notably those directly related to 510 

photosynthesis and water use efficiency - to understand species differences in demographic 511 

sensitivity to abiotic and biotic drivers. Future efforts to further characterise how climate and 512 

neighbourhood crowding affect tree growth, survival, and population growth across environmental 513 

gradients, and how these effects are mediated by species traits will help improve predictions of 514 

forest response and future ecosystem functions to climate change under different trajectories. 515 

 516 
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Figures, legends, and Tables 778 

 779 

Figure 1 780 

 781 
 782 

Figure 1: Spatial and temporal dimensions of the tropical forest network. a: Maps of North 783 

Queensland (Australia) and the 23 forest plots on a background of the long-term mean annual 784 

precipitation for woody vegetation areas. Circles: plots; Circle colours: Plot elevation (strongly 785 

negatively correlated to mean annual temperature). b and c: Illustration of the temporal extent of 786 

the study and of the concepts of mean climate and anomalies for one plot (Mont Haig) presenting 787 

vapour pressure deficit (VPD) and solar radiation (SRAD) through time, respectively. Fig.1b,c 788 

show the mean climate (1981-2010) (horizontal black dashed line) and negative and positive 789 

anomalies (blue and red vertical segments and dots; monthly anomalies averaged per year). VPD 790 

and SRAD were modelled as a plot-specific function of year (see Methods and Table S4). The thin 791 

black line and shaded areas are the median and 95%-highest posterior density interval (HPDI) of 792 

the slope characterising the VPD increase over time. SRAD did not present any clear trend (slope 793 

not represented; i.e. the 95%-HPDI encompassed zero). 794 
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Figure 2 795 

 796 

Figure 2: Grand effects of climate, stand structure and tree size on tree growth (based on all 797 

509 species; M1 models). Red and blue arrows indicate clear negative and positive effects (i.e. 798 

slope coefficient 95%- HPDI not encompassing zero). Arrow widths are proportional to the median 799 

of covariate slope posteriors (grand slopes, values in rectangles; see β1-4,0 in eqs. 3) (details in Fig. 800 

S2 and Table S5). 801 
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Figure 3 802 

 803 

Figure 3: Correlations among species-level growth sensitivities highlighting joint responses 804 

to multiple drivers (M1 models; 509 species). Joint growth sensitivities to: a: VPD anomalies and 805 

mean VPD; b: Solar radiation anomalies and mean solar radiation; c: VPD anomalies and intrinsic 806 

growth rate; d: VPD anomalies and plot basal area. Circles are species, placed at the median of 807 

their corresponding coefficient posteriors. Vertical and horizontal bars are 95%-HPDI for the 808 

corresponding coefficients. Species for which both plotted coefficients were significant are plain 809 

blue; other species are shaded. Blue and red regression lines indicate positive and negative 810 

correlations (ρ, see eq. 3.5 in Supplementary Methods S1), respectively. Values beyond and below 811 

zero indicate positive and negative effects on growth rates, respectively. Mean, lower and upper 812 

95%-HPDI are in the upper right-hand corner of the figures.  813 
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Figure 4 814 

 815 

Figure 4: Plot-level growth sensitivity to positive (a) VPD anomalies and (b) solar radiation 816 

anomalies (b) across the full range of the corresponding mean climate variable (M3 models). 817 

Circles and vertical bars are the median and 95%-HPDI of the plot-level slope posteriors 818 

characterising the growth rate responses to climate anomalies. The plot-level models including 819 

VPD (a) and SRAD (b) had a marked interaction between anomalies and long-term mean (Table 820 

S5), so that plot-level sensitivities to a given anomaly depend on plots’ long-term mean. Figs. 4a 821 

and 4b illustrate those interactions through the differences of plot-level growth sensitivity to 822 

positive anomalies across the range of long-term means of the corresponding variable. The 823 

represented plot-level coefficients were calculated for a positive standardised anomaly equal to the 824 

95th percentile of anomalies in the data, i.e. a standardised anomaly of 0.8 (a) and 0.4 (b). The red 825 

and blue regression lines and shaded areas are decreasing and increasing slopes, respectively 826 

(median and 95%-HPDI, not encompassing zero), of the represented plot-level coefficients along 827 

the long-term means. Horizontal dashed line: limit between positive and negative slope coefficients 828 

indicating a growth rate increase and decrease, respectively, with the positive anomaly. 829 
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Figure 5 830 

 831 

 832 

Figure 5: Mediation of intrinsic growth rate and climate anomaly effects on growth rate by 833 

species functional traits (M2 models; 75 species). The figure only presents important trait-related 834 

effects (95- or 90%-HPDI not encompassing zero; non-transparent and semi-transparent arrows, 835 

respectively). Red and blue plain arrows indicate negative and positive direct effects of traits on 836 

species’ intrinsic growth rate (α1, see eq. 4.3). Dashed arrows indicate indirect trait effects on 837 

growth through the effects of environmental covariates, i.e. accentuation (red) or attenuation (blue) 838 

of the negative effects of VPD or SRAD anomalies when trait values increase (β3,1, see eq. 4.4). 839 

Arrow widths are proportional to the median of the covariate slope posterior across species (i.e. 840 

grand slope; details in Fig. S6 and Table S5).841 
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Table 1: Functional traits measured and their functions. These traits were measured on three adult individuals of 75 tree species and used to model 

intrinsic growth rate and growth response to mean climate, climatic anomalies, and stand structure. 

Organ Trait type Trait Abbreviation Units Mean (min, max) 

CV 

(%) 

Functional role 

Leaf Physiology 

Net photosynthetic rate at saturating 

irradiance and ambient CO2 (400 ppm) 

Asat µmol CO2 m
-2 s-1 5.44 (0.98, 9.36) 28.6 Photosynthesis and growth 

Net photosynthetic rate at saturating 

irradiance and saturated CO2 (1200 ppm) 

Amax µmol CO2 m
-2 s-1 12.9 (7.7, 19.2) 19.1 Photosynthesis and growth 

Stomatal conductance at saturating 

irradiance and ambient CO2 (400 ppm) 

gsat mol H2O m-2 s-1 0.071 (0.02, 0.146) 34.8 

Control of carbon and water exchange between the leaf and the atmosphere, 

hence influencing photosynthesis and water use efficiency (Liu et al. 2017) 

Stomatal conductance at saturating 

irradiance and saturated CO2 (1200 ppm) 
gmax mol H2O m-2 s-1 0.064 (0.018, 0.135) 33.1 

Control of carbon and water exchange between the leaf and the atmosphere, 

hence influencing photosynthesis and water use efficiency (Liu et al. 2017) 

Maximum rate of electron transport Jmax µmol e- m-2 s-1 68.2 (39.3, 94.5) 18.0 Directly related to photosynthetic rate (Walker et al. 2014) 

Maximum rate of Rubisco carboxylation Vcmax µmol CO2 m
-2 s-1 31.2 (11.2, 52.1) 25.3 Directly related to photosynthetic rate s 

Ratio of maximum electron transport to 

maximum carboxylation rates 
Jmax / Vcmax µmol e- µmol-1 CO2 2.32 (1.67, 6.73) 26.9 Relative allocation to Jmax and Vcmax (Smith et al. 2019) 

Leaf Metabolism Maximum rate of dark respiration Rd µmol CO2 m
-2 s-1 0.826 (0.259, 1.74) 41.7 Metabolic rate; Correlates with photosynthetic capacity (Atkin et al. 2015) 

Leaf Chemistry 

Leaf carbon stable isotope ratio leaf δ13C ‰ -30.4 (-32.9, -27.7) 4.6 

Positively correlated with intrinsic water use efficiency and the ratio of 

intercellular to ambient CO2 concentrations, hence relying on stomatal 

conductance and photosynthetic capacity (Cernusak et al. 2013) 

Leaf nitrogen per unit area Nleaf μg cm-2 177 (104, 268) 22.6 

Nleaf mainly supports the photosynthetic machinery, mostly the Rubisco 

carboxylation rate and hence photosynthesis (Wright et al. 2004; Walker et 

al. 2014; Quebbeman & Ramirez 2016) 

Leaf phosphorus per unit area Pleaf μg cm-2 10.3 (4, 38.7) 46.5 Important determinant of photosynthetic rate (Walker et al. 2014) 

Leaf Structure Leaf area LA cm2 540 (7, 32864) 695.9 

Light capture efficiency and control of the boundary layer driving leaf 

heating-cooling dynamics (Wright et al. 2017) 
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Leaf thickness thickness mm 0.28 (0.17, 0.53) 25.6 
Increases structural support and leaf lifespan; Related to resource acquisition 

and use (Westoby et al. 2002; Vile et al. 2005) 

Leaf mass per area LMA g m-2 126 (78, 216) 27.4 
Relative allocation to biomass per leaf area; Strongly correlated to leaf 

lifespan and thus nutrient use efficiency (Osnas et al. 2013) 

Wood Structure Wood density WD g cm-3 0.585 (0.312, 0.795) 17.1 

Mechanical support, water transport and storage capacity (carbon and other 

nutrients, defence compounds) (Chave et al. 2009) 

Whole plant Maximum size Maximum diameter (130 cm) DBHmax cm 54.6 (16.4, 113.2) 41.6 

Proxy of maximum height, itself summarising light-acquisition and growth 

strategies (Westoby 1998; Rüger et al. 2012) 

 842 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447571
http://creativecommons.org/licenses/by-nd/4.0/


40 

 

Supporting Information 843 

Table of content 844 

  845 

Supporting Information 40 846 

1. Supplementary Figures 41 847 

Figure S1: Trait turnover along the elevation gradient. 41 848 

Figure S2: Effects of long-term climate mean, climate anomalies, tree size and stand 849 

structure on tree growth rate (models based on all 509 species; no trait) 42 850 

Figure S3: Illustration of the variability of tree growth responses to the climatic drivers 851 

among species 43 852 

Figure S4: Coordination among the species-level growth responses to stand structure and 853 

intrinsic growth rate 44 854 

Figure S5: Effects of tree size, mean climate, climate anomalies, stand structure, and species 855 

functional traits on intrinsic growth rate (based on the 75 species with measured trait data)856 

 45 857 

Figure S6: Mediation of climatic and stand structure effects on tree growth by species 858 

functional traits (M2 models, from 75 species with trait data) 47 859 

2. Supplementary Tables 49 860 

3. Supplementary Methods S1 49 861 

Study sites and demographic data 49 862 

Climate data 50 863 

Functional traits 53 864 

Data analysis 56 865 

4. Supplementary Methods S2: R code 64 866 

 867 

 868 

 869 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447571
http://creativecommons.org/licenses/by-nd/4.0/


41 

 

1. Supplementary Figures 870 
 871 

Figure S1: Trait turnover along the elevation gradient. 872 

 873 

Figure S1: Trait turnover along the elevation gradient. Circles are individual trees. Circle diameters are proportional to 874 

individuals’ average basal area across the multiple censuses. Regression lines were drawn from linear regressions of the traits 875 

against elevation, using a frequentist approach, where observations (circles) were weighted by their basal area. The significance 876 

threshold (p-value of 0.05) was adjusted for multiple tests using the Sidak correction. Red and blue lines are significant negative 877 

and positive elevation effects, respectively. Grey lines correspond to non-significant tests. 878 

Fig. S1 shows how trait value distributions change across the elevation gradient. All 879 

photosynthetic traits (but Amax) tend to increase with elevation, and so do LMA, leaf thickness 880 

and wood density. Dark respiration rate, leaf δ13C, Pleaf and leaf area decrease with elevation. 881 

Although most traits see a significant increase or decrease in their values, the whole trait range 882 
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remains well represented across the whole gradient. In addition, it is worth noting that tree 883 

growth decreased with elevation (Fig. 2; positive effect of historical mean Tmean on growth, 884 

which is strongly negatively correlated to elevation, r = -0.95, see Table S3a), while several 885 

traits that increased with elevation (Fig. S1) also had a positive effect on intrinsic growth rate 886 

(Fig. 5 and Fig. S5e) (e.g. Vcmax, LMA). This indicates that the effects of traits on growth are 887 

actual trait effects rather than indirect elevation effects. This is confirmed by the fact that the 888 

trait effects on intrinsic growth rate (from the model including Tmean as climate variable) (Fig. 889 

S5e) are also detected in the models including a different climate variable (and no proxy of 890 

elevation; see Fig. S6i-l).  891 

Figure S2: Effects of long-term climate mean, climate anomalies, tree size and stand 892 

structure on tree growth rate (models based on all 509 species; no trait) 893 

 894 

 895 

Figure S2: Grandl effects of climate, stand structure and tree DBH on tree growth in the separate models including Tmean (a), 896 

SRAD (b), VPD (c), and MCWD (d) (M1 models on all 509 species; no trait; see eqs. 3 for coefficient codes). Circles, thick 897 

and thin intervals are median, 90%- and 95%-HPDI of coefficient posterior probability distributions. Red and blue circles 898 

indicate negative and positive effects on tree growth, respectively, for the covariates with clear effects (95%-HPDI not 899 

encompassing zero); white circles indicate coefficients whose 95%-HPDI include zero. 900 
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Figure S3: Illustration of the variability of tree growth responses to the climatic drivers 901 

among species  902 

 903 

Figure S3: Illustration of interspecific variability in tree growth sensitivity to the climatic drivers. Fig. S3a-d illustrate the 904 

species-level posterior distributions of the slope coefficients associated to four model covariates for 30 species (among the 905 

509). Fig. S3a,c: Tree growth response to VPD and solar radiation anomalies, displaying the 10 species presenting the strongest 906 

positive response, followed by 10 species presenting no particular response, and the 10 presenting the strongest negative 907 

response. Fig. S3b,d display the same 30 species for their tree growth response to the long-term mean VPD and solar radiation 908 

(1981-2010), respectively. Species-level growth responses to all the model covariates for all 509 species (i.e. species-level 909 
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slope coefficients) are in Table S4. The vertical dashed lines separate positive responses (i.e. growth rate increase with the 910 

corresponding covariate) on the right from negative responses on the left. Species whose posterior distribution does not include 911 

zero at all, or include it in the yellow tail of the posterior, can be considered as responding clearly to the corresponding climate 912 

covariate (90% of the posterior probability mass of the slope value is smaller or higher than zero). Comparing the vertical 913 

ordering of the posteriors between a and b, and between c and d, shows part of the significant correlations between the species-914 

level growth sensitivities to multiple drivers corresponding to Fig. 3a and Fig. 3b. 915 

Figure S4: Coordination among the species-level growth responses to stand structure and 916 

intrinsic growth rate 917 

 918 

Figure S4: Correlation among species-level growth responses highlighting joint responses to multiple drivers (models of all 919 

509 species; ρ, see eq. 3.5 in Supplementary Methods S1). Species-level correlation between tree growth sensitivity to plot 920 

basal area and intrinsic growth rate. Circles are species, placed at the median of their corresponding coefficient posteriors. 921 

Vertical and horizontal bars are 95%-HPDI for the corresponding coefficients. Species for which both plotted coefficients were 922 

clearly different than zero (95%-HPDI not encompassing zero) are plain blue; other species are shaded. The red regression line 923 

indicates a clear negative correlation (95%-HPDI of the correlation posterior not encompassing zero; mean, lower and upper 924 

95%-HPD interval values provided in the upper right-hand corner of the plots). On the y-axis, values above and below zero 925 

indicate positive and negative effects of plot basal area on growth, respectively.  926 

Fig. S4 shows that tree growth is more reduced by high plot basal area among fast-growing 927 

species than among slow-growing species, suggesting a trade-off between a fast average growth 928 

rate but higher sensitivity to competition for light or other resources (or natural enemies), and 929 

less sensitivity to stand structure but a slower average growth rate (see Discussion).930 
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Figure S5: Effects of tree size, mean climate, climate anomalies, stand structure, and 931 

species functional traits on intrinsic growth rate (based on the 75 species with measured 932 

trait data) 933 

 934 

Figure S5: Influences of tree size, plot basal area, mean climate and climate anomalies (a-d; same as Fig. S2b-e) and effects of 935 

species traits on intrinsic tree growth (e; M2 models, using 75 species with measured trait data; see coefficients codes in eqs. 936 

4, Supplementary Methods S1). Models were run separately for mean temperature (Tmean), vapour pressure deficit (VPD), 937 

maximum climatological water deficit (MCWD) and solar radiation (SRAD), each model containing the climate mean (1981-938 

2010) and anomalies of the corresponding climate variable (see Methods). Each of these four models were run with each trait 939 

separately. The indirect effects of traits on tree growth through their mediation of climate and stand structure effects are not 940 

represented here, for clarity, but are in Fig. S6. Circles, thick and thin intervals are median, 90%- and 95%-HPDI of coefficient 941 

posterior probability distributions. Red and blue circles indicate negative and positive effects on tree growth, respectively, for 942 

the covariates with clear effects (95%-HPDI not encompassing zero); white circles indicate coefficients whose 95%-HPDI 943 

include zero. e: Trait effects on intrinsic growth rate (i.e. on the intercept; α1 coefficient) from the model including VPD (Fig. 944 

S5c). The direct traits effects on growth rate from other models (a, b, d) were similar and not shown here for clarity. 945 
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The models run on the 75 species for which trait data were measured yielded similar results 946 

than the models run on all 509 species and without trait effects, regarding the climatic and stand 947 

structure covariate effects, with some differences. The effect of tree size, negative overall based 948 

on all 509 species (Fig. 2), became positive. This indicates that while tree growth rate still 949 

decreased with tree size in some species (Table S5), it increased with tree size for a large 950 

proportion of the 75 species. While showing the same trends, the negative effect of the 951 

anomalies in temperature became unimportant (95%-HPDI encompasses zero), and so did the 952 

positive effect of mean VPD and solar radiation.  953 

Species intrinsic growth rate increased with leaf δ13C, LMA, leaf P content (95%-HPDI not 954 

encompassing zero), and dark respiration rate (Rd), DBHmax, Asat and Vcmax (90%-HPDI not 955 

encompassing zero). 956 
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Figure S6: Mediation of climatic and stand structure effects on tree growth by species 957 

functional traits (M2 models, from 75 species with trait data) 958 

 959 

 960 

Figure S6: Effects of species traits on the influences that mean climate (β2,1), climate anomalies (β3,1) and plot basal area (β4,1) 961 

have on tree growth (based on the 75 trait species; see eqs. 4 in Supplementary Methods S1). Models were run separately for 962 

Tmean, VPD, MCWD and SRAD. Models were run with each trait separately. Circles, thick and thin intervals are median, 963 

90%- and 95%-HPDI of coefficient posterior probability distributions. Red and blue circles indicate negative and positive 964 

effects on tree growth, respectively, for the covariates with clear effects (95%-HPDI not encompassing zero); white circles 965 

indicate coefficients whose 95%-HPDI include zero. Refer to climate and stand structure effects (Fig. S5) to define whether 966 
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traits accentuate (trait mediation effect on Fig. S6 has the same sign than the direct covariate effect on Fig. S5) or attenuate 967 

(opposite sign) the effects of the main drivers on growth (see Methods for details). 968 

Figure S7: Overlap of the climate spaces of the 23 studied tropical rainforest plots and tropical 969 

forests worldwide. 970 

 971 

 972 

Figure S7: Comparison of the climatic space occupied by the 23 permanent plots of tropical rainforests of the study with the 973 

total climatic space of tropical wet forests worldwide. The climatic spaces were obtained from 30-year climate averages (1985-974 

2015) extracted from TerraClimate (Abatzoglou et al. 2018), combined with the spatial locations of the grid cells belonging to 975 

the ecoregion “Tropical and subtropical moist broadleaf forests” ((Dinerstein et al. 2017); see 976 

https://ecoregions2017.appspot.com/). 977 
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2. Supplementary Tables 978 

The supplementary Table S1-S7 are in a separate Excel document. 979 

3. Supplementary Methods S1 980 

Study sites and demographic data 981 

Individual tree annual absolute growth rates were calculated for 12,853 trees in 23 permanent 982 

forest plots of tropical rainforest located in northern Queensland, Australia, between 12°44' S 983 

to 21°15' S and 143°15' E to 148°33' E, and encompassing an elevation gradient between 15 984 

and 1200 m a.s.l. (Fig. 1a). Twenty of these plots (0.5-ha, 100 × 50 m) were established between 985 

1971 and 1980 to provide long-term ecological and demographic data (Bradford et al. 2014), 986 

while three plots were established more recently along the same elevation gradient (Table S1). 987 

With two exceptions, all CSIRO permanent plots were established in unlogged forest; at 988 

establishment, EP9 and EP38 showed evidence of slight disturbance in a section of the 989 

respective plot due to selective logging at least 20 years prior (Bradford et al. 2014). Regular 990 

cyclonic disturbance contributes to the dynamics of the forests (Murphy et al. 2013). These 991 

forests cover a wide range of mean annual temperatures (19°C to 26.1°C), precipitations (1213 992 

to 3563 mm), solar radiation (17.8 to 19.4 Mj m-2 day-1) and vapour pressure deficit (6.5 to 11.8 993 

hPa) (Table S1). At plot establishment, all trees with stems ≥ 10 cm diameter at breast height 994 

(DBH) were mapped, identified to species level and measured for diameter. The 20 long-term 995 

plots were re-measured every two years for ten years, and then at three- to four-year intervals, 996 

with diameter, recruits and deaths recorded, summing up to 10 to 16 censuses per plot. The 997 

remaining four plots were established more recently, between 2001 and 2012, and were 998 

resampled one to three times (Table S1).   999 

All available censuses were used to calculate individual annualised absolute growth rate (AGR) 1000 

based on DBH at times 1 and 2 (dates; t1 and t2), as:  1001 
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𝐴𝐺𝑅 =  
𝐷𝐵𝐻𝑡2 − 𝐷𝐵𝐻𝑡1
(𝑛𝑏 𝑑𝑎𝑦𝑠)𝑡2−𝑡1

        (1) 1002 

Abnormal AGR values were removed prior to analyses following (Condit et al. 2004). To do 1003 

so, we removed the negative AGR values for which DBHt2 was over four times SD1 below 1004 

DBHt1, where SD1 = 0.0062 * DBHt2 + 0.904 (in mm). These discarded values correspond to 1005 

remeasurement of the wrong tree or to a digit dropped when encoding the data. The same 1006 

correction could not be applied to positive AGR values, (see Condit et al. 2004 for details), so 1007 

that we defined an upper AGR threshold value beyond which AGR values were considered 1008 

outliers and removed.  1009 

Syzygium graveolens and Elaeocarpus angustifolius had a 95th AGR percentile of 3.97 cm year-1010 

1 and 3.6 cm year-1, respectively. These were consistently the fastest growing species of the plot 1011 

network. A total of 10 species presented and 95th AGR percentile > 1.5 cm year-1. The threshold 1012 

value for positive AGR outliers was set at 4 cm year-1. 1013 

Climate data 1014 

We used four complementary climate variables relevant to tree growth and showing variability 1015 

among the studied plots to investigate the effect of mean climate and climate anomalies on tree 1016 

growth: mean temperature (Tmean), solar radiation (SRAD), vapour pressure deficit (VPD), 1017 

and maximum climatological water deficit (MCWD).   1018 

Air evaporative demand – captured through VPD, the difference between air water vapour 1019 

pressure at saturation and the actual water vapour pressure at a given temperature – can lead to 1020 

reduced stomatal conductance while increasing evapotranspiration in many species, and can 1021 

therefore affect photosynthesis and growth (Grossiord et al. 2020). Soil water deficit also 1022 

controls tree growth through the balance between evapotranspiration and soil water availability, 1023 

itself related to soil type and precipitation regime (Malhi et al. 2009). The MCWD is a proxy 1024 

of the annual accumulated water stress over the drier season and is estimated from climate data 1025 

as the cumulative deficit between precipitation and evapotranspiration, hence better capturing 1026 
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the seasonality of precipitation and potential soil water deficit than precipitation itself (Aragão 1027 

et al. 2007; Malhi et al. 2009, 2015). Temperature partly controls photosynthesis, and increased 1028 

temperatures can push species beyond their optimal conditions (Doughty & Goulden 2009; 1029 

Brodribb et al. 2020), increase respiration costs (Tjoelker et al. 2001) and therefore change the 1030 

proportion of photosynthates allocated to growth. Finally, solar radiation is directly related to 1031 

the photosynthetic assimilation of CO2, so that increasing solar radiation could enhance tree 1032 

growth through higher photosynthetic rates in these tropical rainforests (Fyllas et al. 2017), but 1033 

could also reduce growth by indirectly increasing the leaf-to-air VPD (Grossiord et al. 2020). 1034 

 1035 

Monthly climatic variables were obtained for the period 1970 to 2018 for each plot from 1036 

ANUClimate v.2.0 (Hutchinson et al. 2014) (except for actual evapotranspiration), a spatial 1037 

model constructed from a new anomaly-based approach to the interpolation of Australia's 1038 

national point climate data to produce climate variables on a 0.01° longitude-latitude grid. The 1039 

monthly background means and the monthly anomaly values were spatially interpolated by 1040 

trivariate thin plate smoothing spline functions of longitude, latitude and vertically exaggerated 1041 

elevation using ANUSPLIN Version 4.6 (Hutchinson et al. 2014), using additional 1042 

dependencies on proximity to the coast for the temperature and vapour pressure variables. 1043 

Station elevations for the gridded min and max temperature (Tmin, Tmax), solar radiation 1044 

(SRAD) and vapour pressure deficit (VPD) were obtained from local averages of 0.01° grid 1045 

values from the GEODATA 9 second DEM version 3. Mean monthly temperature (Tmean) was 1046 

obtained from Tmin and Tmax. Station elevations for the gridded rainfall (precip) were obtained 1047 

from local averages of 0.05° grid values from the GEODATA 9 second DEM version 3 1048 

(Hutchinson et al. 2008). The VPD we used was an average of daily VPD at 9am and 3pm. The 1049 

monthly actual evapotranspiration (aet) was derived for the same time period from 1050 

TerraClimate (Abatzoglou et al. 2018), a gridded climate product that statistically downscales 1051 
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(ca. 4 km) a combination of the CRU TSv4.01 empirical climate interpolation and the JRA-55 1052 

climate reanalysis product. The aet was used in combination with precip to calculate the 1053 

monthly climatological water deficit (CWD), a simple proxy of meteorologically-induced 1054 

cumulative water stress (soil water deficit). The CWD was reset to zero at the wettest month of 1055 

the year (maximum precip calculated from the plot climatology) and had an upper bound at 1056 

1000 mm. To calculate CWD, we used the plot-specific monthly aet historical mean (1981-1057 

2010 climatology) instead of the actual monthly aet estimations to avoid potential biases related 1058 

to acclimation of trees to warmer and drier conditions across the long time span of the study 1059 

(this only minimally changed CWD values). The CWD was used to calculate the maximum 1060 

climatological water deficit of the year (MCWD), a measure of the peak dry season water deficit 1061 

(Aragão et al. 2007; Malhi et al. 2009, 2015; Rifai et al. 2019). The MCWD was calculated on 1062 

a monthly basis through a rolling maximum over the previous 12 months. Absolute values of 1063 

MCWD were used to ease interpretations of its effect on AGR, so that the higher the MCWD 1064 

the stronger the soil water deficit.  1065 

For each main variable (Tmean, VPD, MCWD, SRAD) in each forest plot, a monthly 30-year 1066 

mean and standard deviation were calculated (1981-2010 period) (Table S1). On this basis, we 1067 

calculated in each plot the monthly anomalies for each variable (i.e. monthly 30-year mean μ 1068 

subtracted from monthly value) and divided them by their location-specific 30-year monthly 1069 

standard deviation σ, yielding standardised anomalies (Aragão et al. 2007; Rifai et al. 2018):  1070 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦_𝑠𝑡𝑑𝑘,𝑡 =
(𝑋𝑘,𝑡 − 𝜇𝑘)

𝜎𝑘
        (2) 1071 

where Xk, t is the climate variable value in plot k at time t (i.e. year and month), and μk and σk 1072 

are the monthly 30-year mean and standard deviation of the corresponding plot’s location. 1073 

Standardised anomalies are expressed in units of standard deviation from monthly means over 1074 

1981-2010. This allows the comparison of plots differing not only in their historical means but 1075 

also in the long-term variation range around them, that is, an important element to detect 1076 
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anomaly effects on tree growth across different climates. Note that calculating anomalies per 1077 

month on the basis of the corresponding month 30-year mean ensures no possible confounding 1078 

between anomalies and seasonal variability. 1079 

For the tree growth models, the monthly 30-year mean and standardised anomaly variables were 1080 

averaged over the growth period between consecutive censuses (two to five years). For MCWD, 1081 

the maximum over the growth period between two censuses was used instead of the weighted 1082 

mean. The eight resulting interannual averaged variables were used as predictors to model tree 1083 

growth (see Data analysis). 1084 

We did not include elevation in the growth models as it was already strongly correlated with 1085 

long-term Tmean (r = -0.95; see Table S3a for correlations among climate variables, stand 1086 

structure and elevation). Elevation was also somewhat correlated with VPD (-0.66), but was 1087 

neither correlated with long-term solar radiation, MCWD, nor any of the anomaly variables 1088 

(Table S3a). Among the standardised anomaly variables, Tmean and VPD were moderately 1089 

correlated (r = 0.6), and smaller correlations were present between VPD and solar radiations (r 1090 

= 0.32), and VPD and MCWD (r = 0.37). The chosen climate variables were therefore highly 1091 

complementary and, besides long-term Tmean and elevation, were little correlated to one 1092 

another or to the elevation gradient. 1093 

Functional traits 1094 

Between July and September 2015, we measured the traits of 75 dominant, canopy trees in six 1095 

of the 23 plots and two additional plots across the elevation gradient (Table 1; Table S1 and S2 1096 

for plot and species details, respectively). For each plot, species were chosen with the aim of 1097 

sampling those that made up 80% of the standing biomass for the most recent census. Three 1098 

individual trees were selected for each of these species. One sunlit branch was retrieved from 1099 

the upper half of the crown from each of these trees by climbing and then using a pruning pole 1100 

to excise the branch. Branches and leaves were chosen with minimal damage from herbivory. 1101 
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The branch was carried to a central measuring station, the cut end was submerged in a bucket 1102 

of water, and then recut under water to remove any emboli introduced by the initial excision 1103 

from the canopy. The cut surfaces of the branches remained submerged in the bucket throughout 1104 

the course of the gas exchange measurements.  1105 

Five leaves, or leaflets in the case of compound leaves, were selected for gas exchange 1106 

measurements with an LI-6400 portable photosynthesis system (Li-Cor Inc, Lincoln, NE, 1107 

USA). Photosynthesis and stomatal conductance were first measured at a reference CO2 1108 

concentration of 400 µmol mol-1 and irradiance of 1500 µmol photons m-2 s-1 (Asat and gsat, 1109 

respectively) supplied with an artificial light source (6400-02B LED, Li-Cor Inc.). A fixed 1110 

block temperature was selected for each plot such that it was similar to the average daytime 1111 

temperature at the time the plot was visited (19 to 30°C). Leaf-to-air vapour pressure difference 1112 

during measurements was 1.1 ± 0.3 kPa (mean ± 1 SD). The CO2-saturated photosynthesis and 1113 

stomatal conductance (Amax and gmax, respectively) were then measured at 1200 µmol mol-1 1114 

CO2. These measurements were repeated on the other four selected leaves or leaflets, and the 1115 

resulting gas exchange parameters averaged for each branch.  1116 

One leaf per branch was wrapped in aluminium foil and left to dark-adapt for approximately 30 1117 

minutes, after which dark respiration (Rd) was measured. Block temperature was fixed as for 1118 

the photosynthesis measurements. Leaf temperatures during dark respiration measurements 1119 

ranged from 19 to 29°C. One leaf per species per plot was selected for measurement of a CO2 1120 

response (A-ci) curve. Temperature, irradiance, and leaf-to-air vapour pressure difference were 1121 

as described, and the reference CO2 concentration was varied in the following sequence: 400, 1122 

250, 100, 50, 300, 400, 600, 800, 1200, and 1600 µmol mol-1, requiring two minutes for each 1123 

step.  1124 

After gas exchange measurement, the leaves were scanned (Canon Lide 120) and leaf area was 1125 

measured using Image J software (U. S. National Institutes of Health, Bethesda, Maryland, 1126 
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USA). Leaves were then dried at 70°C for 48 hours and their dry mass determined with an 1127 

analytical balance (A&D Australasia, ANDW 464), for calculations of leaf mass per area. Leaf 1128 

thickness was measured with a micrometer. A section of branch with diameter approximately 1129 

1 cm was then removed for wood density determination. Bark was removed and fresh volume 1130 

determined by the water displacement method on an analytical balance (A&D Australasia, 1131 

ANDW 464). The wood section was then dried and dry mass determined as for the leaves. In 1132 

addition to the scanned leaves, approximately ten additional leaves were also collected from 1133 

each branch and dried for determination of nutrient concentrations and stable isotope 1134 

composition.  1135 

Dried leaf samples for each branch were bulked (without petioles) and ground to a fine powder 1136 

using a laboratory mill (Cyclotec 1093, FOSS, Eden Prarie, MN, USA). They were analysed 1137 

for concentrations of Ca, Mg, Na, K, B, Cu, Mn, Fe, Zn, P, and S by inductively coupled plasma 1138 

optical emission spectrometry following peroxide assisted nitric acid digestion at a commercial 1139 

laboratory (Nutrient Advantage, Werribee, Victoria, Australia). A separate aliquot from each 1140 

branch was measured for stable carbon isotope ratio (δ13C), and total carbon and nitrogen 1141 

concentrations, with an elemental analyser (CE Instruments, Milan, Italy) coupled to an isotope 1142 

ratio mass spectrometer (Delta V; Thermo Fisher Scientific, Bremen, Germany) at the 1143 

Advanced Analytical Laboratory, James Cook University, Cairns. The δ13C was expressed 1144 

relative to the PeeDee Belemnite international standard.  1145 

The photosynthesis model of Farquhar et al. (Farquhar et al. 1980) was fitted to the A-ci curves 1146 

using the ‘plantecophys’ package in R (Duursma 2015), with estimates of the maximum 1147 

carboxylation rate (Vcmax) and maximum light-driven electron flux (Jmax) normalized to 1148 

25°C. The one-point method (De Kauwe et al. 2016) was used to estimate Vcmax from net 1149 

photosynthesis measured at 400 µmol mol-1 CO2, and Jmax from net photosynthesis measured 1150 

at 1200 µmol mol-1 CO2 (Bloomfield et al. 2018). These estimates compared favourably to 1151 
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estimates from the full A-ci curves for the subset of branches on which both sets of 1152 

measurements were conducted. The one-point estimates were therefore used in order to have 1153 

estimates of these photosynthetic parameters for the full traits dataset.  1154 

Data analysis 1155 

We addressed our questions through three sets of Bayesian multilevel models (M1 to M3).  1156 

M1: Tree growth response to climate means and anomalies, and species differences in their 1157 

sensitivities to climate  1158 

In M1, we used 12,853 individuals from all 509 species to test the effects of climate on tree 1159 

growth, and to investigate tradeoffs among species between intrinsic growth rate and growth 1160 

sensitivity to climate covariates. We built a two-level hierarchical Bayesian model of AGR, 1161 

where the hierarchy included an upper level of response (hereafter grand coefficients or effects, 1162 

affecting AGR across species) above a lower, species-level response. The higher level modelled 1163 

AGR responses to covariates via hyperparameters (i.e. statistical distributions from which 1164 

species-level intercepts and slope coefficients arose), while the lower level captured species-1165 

specific growth sensitivities to model covariates, and species-level intercepts (hereafter intrinsic 1166 

AGR) captured unexplained growth variation across individuals, growth periods, and plots.1167 

  1168 

More specifically, we modelled individual log(AGR) as a species-specific function of (i) initial 1169 

tree size (approximated by log(DBH) at the beginning of a growth period), (ii) the local 30-year 1170 

mean of a climate variable, (iii) the anomalies of the same climate variable averaged over the 1171 

studied growth period, and (iv) stand structure (approximated by plot basal area at the beginning 1172 

of a growth period), using varying slopes (also known as random slopes) and a covariance 1173 

matrix to estimate correlations among species-specific AGR sensitivities to the covariates, as:  1174 

log(𝐴𝐺𝑅 𝑖,𝑗,𝑘,𝑡)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 𝑖,𝑗,𝑘,𝑡 , 𝜎𝑅)                (3.1)        [Likelihood] 1175 
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𝜇𝑖,𝑗,𝑘,𝑡 = 𝛼𝑗 + 𝛽1𝑗 × log(𝐷𝐵𝐻𝑖,𝑡) + 𝛽2𝑗 ×  𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘 + 𝛽3𝑗 ×  𝑐𝑙𝑖𝑚𝐴𝑛𝑜𝑚𝑘,𝑡 + 𝛽4𝑗 ×  𝐵𝐴𝑘,𝑡 +1176 

                  𝛾𝑘  +  𝛿𝑡  +  𝜆𝑖                                          (3.2)         [Linear model] 1177 

                                                                                                           1178 

(

𝛼𝑗
𝛽1𝑗
⋮
𝛽4𝑗

) ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (

𝛼0
𝛽1,0
⋮
𝛽4,0

 , 𝑆)                           (3.3)      [Adaptive priors for species-level param.] 1179 

𝑆 =  (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)  𝑅 (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)    (3.4)      [Construction of covariance matrix] 1180 

𝑅 = 

(

 
 

1 𝜌𝛼𝑗, 𝛽1𝑗
𝜌𝛽1𝑗 ,𝛼𝑗

1

⋮
𝜌𝛽4𝑗,𝛼𝑗

⋮
𝜌𝛽4𝑗,𝛽1𝑗

  

𝜌𝛼𝑗,𝛽…𝑗 𝜌𝛼𝑗,𝛽4𝑗
𝜌𝛽1𝑗,𝛽…𝑗 𝜌𝛽1𝑗,𝛽4𝑗
⋮

𝜌𝛽4𝑗,𝛽…𝑗

⋮
1

)

 
 
       (3.5)     [Correlation matrix of species-level params.] 1181 

𝛾𝑘  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾)                                                   (3.6)      [Adaptive priors for the k plots] 1182 

𝛿𝑡  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿)                                                    (3.7)      [Adaptive priors for the t time periods] 1183 

𝜆𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜆)                                                    (3.8)      [Adaptive priors for the i individuals] 1184 

𝛼0, 𝛽1−4,0  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)                                       (3.9)      [Priors for grand intercept and slopes] 1185 

𝜎𝛼 , 𝜎𝛽1−4 , 𝜎𝛾, 𝜎𝛿 , 𝜎𝜆, 𝜎𝑅 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)      (3.10)    [Priors for standard deviation params.] 1186 

𝑅 ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2)                                                          (3.11)    [Prior for correlation matrix] 1187 

where αj characterises the intrinsic AGR of species j and β1j, β2j, β3j and β4j characterise the 1188 

AGR response of species j to tree size, mean climate (1981-2010), standardised climate 1189 

anomalies and plot basal area in plot k for time interval t. The parameter α0 represents the grand 1190 

intercept, and the parameters β1-4, 0 are the grand slopes of model covariates whose posterior 1191 

distributions represent the effect of mean climate and climate anomaly on AGR across species.  1192 

The matrix of fitted correlation coefficients among species-level intercepts and slopes (αj, β1j, 1193 

β2j, β3j and β4j) allows evaluating correlations among species intrinsic growth rate (intercepts 1194 

αj) and species AGR sensitivity to model covariates (β1-4j). For instance, a model with a negative 1195 

ραj, β3j parameter and a negative β3,0 slope would indicate that species with higher intrinsic 1196 
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growth rate (αj) tend to have higher sensitivity (i.e. more negative slopes) to climate anomalies. 1197 

Using covariance matrix to pull information across species-level intercepts and slopes through 1198 

the multinormal distribution improves the accuracy of posterior likelihood estimates both across 1199 

and within species (hierarchical levels 1 and 2, respectively) while limiting risks of overfitting 1200 

through adaptive regularising priors, or partial pooling (e.g. McElreath 2020).  1201 

Parameters γk, δt, λi are varying intercepts capturing the residual variation in expected individual 1202 

AGR occurring among forest plots, time periods between consecutive censuses (characterised 1203 

by the years beginning and ending a given census period), and individual stems, respectively. 1204 

This model was run separately for each of the four climate variables (Tmean, SRAD, VPD, and 1205 

MCWD) to manage model complexity (representing a total of four M1 models). 1206 

M2: Trait-mediated species-level tree growth response to climate  1207 

Models M2 have the same hierarchical structure as M1, but additionally include the role of 1208 

species traits in AGR response to climate. We thus used a subset of 5,191 individuals from the 1209 

75 species with trait data. In M2, the species-level intercept and slopes are modelled as 1210 

depending from species mean trait value such that both species-specific intrinsic AGR and AGR 1211 

sensitivity to covariates can be influenced (either accentuated or lessened) by species traits 1212 

(Rüger et al. 2012; Uriarte et al. 2016; Fortunel et al. 2018) as: 1213 

log(𝐴𝐺𝑅 𝑖,𝑗,𝑘,𝑡)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 𝑖,𝑗,𝑘,𝑡 , 𝜎𝑅)                  (4.1)      [Likelihood] 1214 

𝜇𝑖,𝑗,𝑘,𝑡 = 𝛼𝑗 + 𝛽1𝑗 × log(𝐷𝐵𝐻𝑖,𝑡) + 𝛽2𝑗 ×  𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘 + 𝛽3𝑗 ×  𝑐𝑙𝑖𝑚𝐴𝑛𝑜𝑚𝑘,𝑡 + 𝛽4𝑗 ×  𝐵𝐴𝑘,𝑡 +1215 

                  𝛾𝑘  +  𝛿𝑡  +  𝜆𝑖                                           (4.2)       [Linear model – level 1] 1216 

𝛼𝑗 = 𝛼0 + 𝛼1 × log(𝑇𝑟𝑎𝑖𝑡𝑗)                                  (4.3)     [Linear model – level 2] 1217 

𝛽2−4𝑗 = 𝛽2−4,0 + 𝛽2−4,1 × log(𝑇𝑟𝑎𝑖𝑡𝑗)              (4.4)     [Linear model – level 2]          1218 

(

𝛼𝑗
𝛽1𝑗
⋮
𝛽4𝑗

) ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (

𝛼0
𝛽1,0
⋮
𝛽4,0

 , 𝑆)                          (4.5)      [Adaptive priors for species-level param.] 1219 
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𝑆 =  (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)  𝑅 (

𝜎𝛼
0

0
𝜎𝛽1

0 0
0 0

⋮ ⋮ ⋱ ⋮
0 0 0 𝜎𝛽4

)    (4.6)  [Construction of covariance matrix] 1220 

𝑅 = 

(

 
 

1 𝜌𝛼𝑗, 𝛽1𝑗
𝜌𝛽1𝑗 ,𝛼𝑗

1

⋮
𝜌𝛽4𝑗,𝛼𝑗

⋮
𝜌𝛽4𝑗,𝛽1𝑗

  

𝜌𝛼𝑗,𝛽…𝑗 𝜌𝛼𝑗,𝛽4𝑗
𝜌𝛽1𝑗,𝛽…𝑗 𝜌𝛽1𝑗,𝛽4𝑗
⋮

𝜌𝛽4𝑗,𝛽…𝑗

⋮
1

)

 
 
       (4.7)     [Correlation matrix of species-level params.] 1221 

𝛾𝑘  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾)                                                  (4.8)      [Adaptive priors for the k plots] 1222 

𝛿𝑡  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿)                                                   (4.9)      [Adaptive priors for the t time periods] 1223 

𝜆𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜆)                                                   (4.10)    [Adaptive priors for the i individuals] 1224 

𝛼0, 𝛽1−4,0  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)                                      (4.11)    [Priors for grand intercept and slopes] 1225 

𝛼1, 𝛽2−4,1  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)                                      (4.12)    [Priors for trait effect on level 1 params.] 1226 

𝜎𝛼 , 𝜎𝛽1−4 , 𝜎𝛾, 𝜎𝛿 , 𝜎𝜆, 𝜎𝑅 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)      (4.13)    [Priors for standard deviation params.] 1227 

𝑅 ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2)                                                          (4.14)    [Prior for correlation matrix] 1228 

where eqs. 4.1, 4.2, 4.5-4.7 are the same as eqs. 3.1-3.5 of M1, while species-level intercepts 1229 

and slopes are mediated by species mean trait value (eqs. 4.3-4.4; detailed equations and priors 1230 

in Supplementary Methods S1). Parameter α1 is the species-level departure from the grand 1231 

intercept (α0) for an increase of one standard deviation in the log(trait Tj) value of species j 1232 

(direct effect of trait on AGR), while β2-4, 1 are the departures from the grand slope of the 1233 

corresponding model covariates for an increase of one standard deviation in the log(trait Tj) 1234 

value of species j (trait mediation of AGR response to climate and stand structure; see 1235 

Supplementary Methods S1 for ecological interpretations of trait coefficient signs). We did not 1236 

include the role of species traits in AGR response to tree size because some traits can change 1237 

through tree ontogeny (Fortunel et al. 2020) and our trait data does not encompass species tree 1238 

size ranges. M2 models were run separately for each of the four climate variables and for each 1239 

of the 15 functional traits to manage model complexity (representing a total of 60 M2 models). 1240 

 1241 
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For the covariates c ∈ (1, 2, 3, 4), negative and positive values of the βcj or βc,0 slope parameters 1242 

respectively indicated a negative and positive effect of the corresponding covariate on tree 1243 

growth of species j (βcj) or across all species (βc,0). For instance, a negative β3,0 in the model 1244 

including VPD as the climate variable would indicate that tree growth decreases when VPD 1245 

anomalies increase, at the population level. If the sign of the trait coefficient (βc, 1) is the same 1246 

than that of the covariate it influenced (βc, j), then increasing values of trait Tj accentuate the 1247 

effect of covariate c on tree growth (i.e. push βcj further away from 0). If the signs are different, 1248 

increasing values of trait Tj attenuate the effect of covariate c (i.e. pull βc, j closer to 0).   1249 

In both M1 and M2 models, we standardised the response variable log(AGRi, j, k, t) and all 1250 

covariates – but climate anomalies – to mean zero and unit standard deviation, to allow relative 1251 

importance comparisons between covariates through slope coefficients (Schielzeth 2010), and 1252 

to ease the assignment of plausible priors to the parameters (McElreath 2020) (eqs. 4.7-4.9). 1253 

We did not standardise the averaged monthly anomalies to maintain their interpretability as 1254 

deviations from long-term means in terms of plot-specific units of standard deviation (see eq. 1255 

2; i.e. mean anomaly covariate slope coefficients are not directly comparable to other covariate 1256 

mean slopes). Individual trait measurements were averaged per species and log-transformed 1257 

prior to standardisation, thus implying that parameter βc, j corresponds to βc, 0 at the mean trait 1258 

value of the dataset. 1259 

M3: Plot-level tree growth response to climate anomalies and interaction with mean climate1260 

  1261 

M3 models evaluate plot-level growth response to climate anomalies, and whether it varies 1262 

depending on local mean climates (e.g. whether plot-level AGR sensitivity to VPD anomalies 1263 

is higher in drier sites). We focused on the tree growth at the plot level, and modelled the 1264 

expected log(AGR) as a linear function of mean climate and climate anomalies. We used a 1265 
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similar Bayesian hierarchical model as described for M2, where plot-specific average AGR 1266 

depended on climate anomalies, whose effect on AGR itself depended on the plot mean climate, 1267 

as:  1268 

log(𝐴𝐺𝑅 𝑖,𝑗,𝑘,𝑡)~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 𝑖,𝑗,𝑘,𝑡 , 𝜎𝑅)            (5.1)           [Likelihood] 1269 

𝜇𝑖,𝑗,𝑘,𝑡 = 𝛼𝑘 + 𝛽1𝑘 ×  𝑐𝑙𝑖𝑚𝐴𝑛𝑜𝑚𝑘,𝑡 +  𝛾𝑗  +  𝛿𝑡  +  𝜆𝑖       (5.2)     [Linear model – level 1] 1270 

𝛼𝑘 = 𝛼0 + 𝛼1 ×𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘                            (5.3)         [Linear model – level 2] 1271 

𝛽1𝑘 = 𝛽1,0 + 𝛽1,1 ×𝑚𝑒𝑎𝑛𝐶𝑙𝑖𝑚𝑘                      (5.4)         [Linear model – level 2]                                                                                                 1272 

(
𝛼𝑘
𝛽1𝑘
) ~ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 (

𝛼0
𝛽1,0

 , 𝑆)                          (5.5)           [Adaptive priors for plot-level params.] 1273 

𝑆 =  (
𝜎𝛼 0
0 𝜎𝛽1

)  𝑅 (
𝜎𝛼 0
0 𝜎𝛽1

)                           (5.6)           [Construction of covariance matrix] 1274 

𝑅 = (
1 𝜌𝛼,𝛽1

𝜌𝛼,𝛽1 1
)                                             (5.7)          [Correlation matrix of plot-level params.] 1275 

𝛾𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾)                                              (5.8)           [Adaptive priors for the j species] 1276 

𝛿𝑡  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛿)                                              (5.9)           [Adaptive priors for the t time periods] 1277 

𝜆𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜆)                                               (5.10)        [Adaptive priors for the i individuals] 1278 

𝛼0, 𝛽1,0  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)                                      (5.11)        [Priors for grand intercept and slopes] 1279 

𝛼1, 𝛽1,1  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)                                      (5.12)       [Priors for meanClim effect on level 1 params.] 1280 

𝜎𝛼 , 𝜎𝛽1 , 𝜎𝛾, 𝜎𝛿 , 𝜎𝜆, 𝜎𝑅 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)     (5.13)        [Priors for standard deviation params.] 1281 

𝑅 ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2)                                                     (5.14)        [Prior for correlation matrix] 1282 

where αk is the average growth rate in plot k, and β1k characterises the growth response of plot 1283 

k to standardised climate anomalies for time interval t. α0 is the mean intercept value (i.e. mean 1284 

absolute growth rate) across plots, and α1 is the departure from the grand mean for one unit 1285 

increase in mean climate. β1,0 is the grand slope of climate anomalies, and β1,1 is the departure 1286 

from this grand mean for a one unit increase in mean climate (mediation of the effect of 1287 

anomalies on growth by the plot mean climate; i.e., crosslevel interaction between the plot-level 1288 

climate anomaly effect and the population-level mean climate effect). Parameters γj, δt, λi are 1289 

varying intercepts for species, census periods, and individual stems, respectively.  1290 
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We run M3 models only for two climate variables (VPD and SRAD), as we found they were 1291 

the most important climate variables for tree growth in M1 and M2 models (see Results). 1292 

Standardisation of variables was carried out as for M1. 1293 

Trends in climate over time  1294 

To explore the implications of the effects of climate anomalies on tree growth, we built a 1295 

separate set of hierarchical Bayesian models to test for linear temporal trends in mean annual 1296 

climate variables between 1971 and 2019. We used varying year slopes per plots to allow plot-1297 

specific trends (model details in Supplementary Methods S1). We also run the models for the 1298 

period 2000 to 2019 for comparison with recent analyses suggesting an increasing rate of VPD 1299 

increase over time since the late nineties (Yuan et al. 2019). Annual mean temperature and VPD 1300 

increased of 0.015 °C and 0.02 hPa per year between 1971 and 2019 (R² = 0.97 and 0.84, 1301 

respectively, Table S4; illustration in Fig. 1b) and of 0.038 °C and 0.045 hPa per year between 1302 

2000 and 2019 (R² = 0.98 and 0.81, respectively, Table S4). There was no general temporal 1303 

trend for MCWD or SRAD (Fig. 1c). 1304 

Analysis of model outcomes  1305 

All model parameter posteriors were summarised through their median and 95%-highest 1306 

posterior density interval (HPDI) (i.e. the narrowest posterior interval encompassing 95% of 1307 

the probability mass, corresponding to the coefficient values most consistent with the data; 1308 

(McElreath 2020)). Model covariates were considered important at two high levels of 1309 

confidence, when their coefficient had a posterior probability of over 95% or 90% of being 1310 

either positive or negative (HPDI not encompassing zero).  1311 

The goodness-of-fit of the models was assessed through the squared Pearson correlation 1312 

between the observed AGR and the AGR predicted by the fitted model (R2). M1 and M2 models 1313 
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had high explanatory power, with R² of 0.46 and 0.52 on average, respectively. M3 models, 1314 

with VPD and SRAD as climate variables, had an R² of 0.67 and 0.63, respectively. 1315 

Bayesian updating of parameters was performed via the No-U-Turn Sampler (NUTS) in Stan 1316 

(Carpenter et al. 2017), using three chains and 3000 steps (1500 warmings). All models mixed 1317 

well and converged (Rhat within < 0.01 of 1). Models were run in the R environment (Team 1318 

2020) using the packages ‘brms’ (Bürkner 2017), ‘tidybayes’ (Kay 2020) and ‘tidyverse’ 1319 

(Wickham et al. 2019).  1320 
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4. Supplementary Methods S2: R code 1321 
### *************************************************************************  1322 
### Analysis of the growth of trees in the tropical rainforests of Queensland  1323 
### *************************************************************************  1324 
 1325 
### I. Calculation of the climatologies and standardised climate anomalies  1326 
# ************************************************************************** # 1327 
# ########################################################################## # 1328 
 1329 
# ANUClimate: Tmin, Tmax, Tmean, vpd 1330 
# TerraClimate: aet (et), pet, used to calculate cwm and mcwd 1331 
 1332 
library(lubridate) 1333 
library(RcppRoll) 1334 
library(tidyverse) 1335 
 1336 
# Helper functions -------------------------------------------------------- 1337 
fcwd_et <- function(cwd_et, precip, et, pet, month, wmy,  1338 
                    min_et = 40, throughfall = 1, reset_wmy = T,  1339 
                    min_cwd = -1000){ 1340 
  for(i in seq(2, length(precip))){ 1341 
    cwd_et[i] <- min(0, cwd_et[i-1] + (throughfall*precip[i]) - max(et[i], min_et, na.rm = T), na.rm = T) 1342 
    if(reset_wmy == T){ 1343 
      cwd_et[i] <- ifelse(month[i] == wmy[i], 0, cwd_et[i]) 1344 
    } 1345 
    cwd_et[i] <- ifelse(cwd_et[i] < -1000, -1000, cwd_et[i]) 1346 
  } 1347 
  return(cwd_et) 1348 
} 1349 
 1350 
mode <- function(x) { 1351 
  ux <- unique(x) 1352 
  ux[which.max(tabulate(match(x, ux)))] 1353 
} 1354 
 1355 
# ----------------------------- 1356 
# --- ANUClimate data prep ---- 1357 
# ----------------------------- 1358 
load("ANUClimate_raw_data.RData") 1359 
 1360 
list_clim <- list(srad = srad, tmax = tmax, tmin = tmin, vpd = vpd) 1361 
 1362 
# Order the table by plot name and increasing year within a plot: 1363 
list_clim <- lapply(list_clim, function (x) x[order(x$Plot), ]) 1364 
 1365 
# Final dataframe for climatic variables in a single table: 1366 
# 12 is for the 12 months: 1367 
dat <- data.frame(matrix(nrow = nlevels(vpd$Plot)*12*nlevels(as.factor(vpd$Year)), ncol = 3 + length(list_clim))) 1368 
colnames(dat) <- c("plot", "year", "month", names(list_clim)) 1369 
 1370 
count <- 0 1371 
for (i in 1:nrow(list_clim[[1]])) { 1372 
  for (j in 1:12) { 1373 
    count <- count + 1         # Define the row of dat 1374 
    dat[count, 1] <- as.character(list_clim[[1]][i, 1]) 1375 
    dat[count, 2] <- as.integer(list_clim[[1]][i, 2]) 1376 
    dat[count, 3] <- seq(1, 12)[j] 1377 
    for (k in 1:length(list_clim)) { # for each climatic variable, on the month j 1378 
      dat[count, k+3] <- list_clim[[k]][i, 2+j] 1379 
    } 1380 
  } 1381 
} 1382 
 1383 
# Create a date variable in the same form as the one used with the TerraClimate data: 1384 
# Transform months to numbers from 1 to 12: 1385 
dat <- dat %>%  1386 
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  rowwise() %>%  1387 
  mutate(date = parse_date_time(paste(year, month, "15", sep = "-"), "ymd")) %>%  1388 
  rename(plot_code = "plot") 1389 
 1390 
# ------------------------------- 1391 
# --- TerraClimate data prep ---- 1392 
# ------------------------------- 1393 
# import (TerraClim) 1394 
clim_raw <- read_csv("data/TerraClimate_DB_forestPlots_1958_2018.csv") 1395 
clim_raw %>%  1396 
  as_tibble() %>%  1397 
  glimpse() 1398 
 1399 
# extract date: 1400 
clim <- clim_raw  %>%  1401 
  mutate(date = parse_date_time(paste0(substr(`system:index`, 1, 6), 15),"ymd")) %>%   # 15th of each month 1402 
  mutate(year = year(date), month = month(date)) %>%  1403 
  rename(plot_code = "plot") 1404 
 1405 
# apply scaling factors and selecting only variables complementary to those of ANUClimate: 1406 
clim <- clim %>%  1407 
select(year, month, date, plot_code, aet, pet) %>%  1408 
  mutate(et = aet*0.1, pet = pet*0.1) %>%  1409 
  select(-aet) 1410 
 1411 
# remove data before 1960, for the ANUClimate and TerraClimate data to match: 1412 
clim <- clim %>%  1413 
  filter(year >= 1960) 1414 
 1415 
# Merge ANUClimate and TerraClimate data: 1416 
# *************************************** 1417 
climm <- left_join(clim,  1418 
                   select(dat, -c(year, month)),  1419 
                   by = c("plot_code", "date")) 1420 
 1421 
# rename variables: 1422 
climm <- climm %>%  1423 
  rename(precip = rain, Tmin = tmin, Tmax = tmax)  1424 
 1425 
# Tmean: 1426 
climm <- climm %>%  1427 
  rowwise() %>%  1428 
  mutate(Tmean = mean(c(Tmin, Tmax))) %>%  1429 
  ungroup()  1430 
 1431 
# Calculate climatology using 1981-2010: 1432 
# ************************************** 1433 
# seasonal (monthly) means and standard deviations: 1434 
lt_climm <- climm %>%  1435 
  filter(year >= 1981 & year <= 2010) %>%  1436 
  select(plot_code, month,  1437 
         vpd, Tmin, Tmax, srad, et, pet, precip, Tmean) %>%  1438 
  group_by(month, plot_code) %>%  1439 
  summarize_all(.funs = list(u = mean, sigma = sd),  1440 
                # .predicate=c('_u','_sigma'),  1441 
                na.rm = T) %>%  1442 
  ungroup() 1443 
 1444 
# mean annual values (over the 30 years): 1445 
ma_climm <- climm %>%  1446 
  filter(year >= 1981 & year <= 2010) %>%  1447 
  select(-year) %>%  1448 
  group_by(plot_code) %>%  1449 
  summarise_all(.funs = list(ma = mean),  1450 
                na.rm=T) %>%  1451 
  ungroup() 1452 
 1453 
# wettest month of the year from seasonal climatology: 1454 
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lt_wmy <- lt_climm %>%  1455 
  group_by(plot_code) %>%  1456 
  filter(precip_u == max(precip_u, na.rm = T)) %>%  1457 
  mutate(wmy = month) %>%  1458 
  select(plot_code, wmy)  1459 
 1460 
## check wmy vals: 1461 
left_join(lt_climm, lt_wmy, by=c('plot_code')) %>%  1462 
  filter(plot_code %in% c("AEP02","CBAY","EP29", "BEK01")) %>%  1463 
  ggplot(data=., aes(month, precip_u)) + 1464 
  geom_line() + 1465 
  geom_vline(aes(xintercept = wmy)) + 1466 
  facet_wrap(~ plot_code, nrow = 4) 1467 
 1468 
# join climm w/ seasonal and annual climatology: 1469 
climm <- left_join(climm, lt_climm, by = c('plot_code', 'month')) 1470 
climm <- climm %>% left_join(., ma_climm, by = c('plot_code')) 1471 
climm <- climm %>% left_join(., lt_wmy, by = c('plot_code')) 1472 
 1473 
# ------------------------------------- 1474 
# calculation of the CWD and MCWD ----- 1475 
# ------------------------------------- 1476 
# The CWD can be calculated using either the seasonal evapotranspiration 'et' or the 'et' from the climatology. 1477 
# The second option would be better in case the trees are predicted to evaporate more while they 1478 
# actually adapted to the gradually changing climate and have not changed their 'et' so much. 1479 
# There is a lot of uncertainty around the evapotranspiration values, and both ways of calculating 1480 
# the CWD should be tested and discussed.  1481 
# We will generate 'cwd' and 'cwd_uet' for the cwd with the actual values of 'et' and the climatology, 1482 
# respectively. 1483 
 1484 
# apply CWD calculation: 1485 
# cwd: 1486 
climm <- climm %>%  1487 
  mutate(cwd = NA) %>% # declare cwd, important for pre-allocating memory 1488 
  group_by(plot_code) %>%  1489 
  arrange(date) %>%  1490 
  mutate(cwd = fcwd_et(cwd, precip, et, pet, month, wmy,  1491 
                       min_et = 40, throughfall = 1,  1492 
                       reset_wmy = T, min_cwd = -1000)) %>%  1493 
  ungroup() 1494 
 1495 
# mcwd: 1496 
climm <- climm %>%  1497 
  group_by(plot_code) %>%  1498 
  arrange(date) %>%  1499 
  mutate(mcwd = roll_minr(cwd, n=12, fill=NA)) %>%  1500 
  ungroup() 1501 
 1502 
# cwd_uet: 1503 
climm <- climm %>%  1504 
  mutate(cwd_uet = NA) %>% # declare cwd, important for pre-allocating memory 1505 
  group_by(plot_code) %>%  1506 
  arrange(date) %>%  1507 
  mutate(cwd_uet = fcwd_et(cwd_uet, precip, et_u, pet, month, wmy,  1508 
                           min_et=40, throughfall = 1,  1509 
                           reset_wmy = T, min_cwd = -1000)) %>%  1510 
  ungroup() 1511 
 1512 
# mcwd_uet: 1513 
climm <- climm %>%  1514 
  group_by(plot_code) %>%  1515 
  arrange(date) %>%  1516 
  mutate(mcwd_uet = roll_minr(cwd_uet, n=12, fill=NA)) %>%  1517 
  ungroup() 1518 
 1519 
# calculate climatology for cwd and mcwd using 1981-2010 data: 1520 
lt_cwd <- climm %>%  1521 
  filter(year >= 1981 & year <= 2010) %>%  1522 
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  select(plot_code, month, cwd, mcwd, cwd_uet, mcwd_uet) %>%  1523 
  group_by(month, plot_code) %>%  1524 
  summarise_all(.funs = list(u = mean, sigma = sd),  1525 
                na.rm = T) %>%  1526 
  ungroup() 1527 
 1528 
# mean annual values (over the 30 years): 1529 
ma_cwd <- climm %>%  1530 
  filter(year >= 1981 & year <= 2010) %>%  1531 
  select(plot_code, cwd, mcwd, cwd_uet, mcwd_uet) %>%  1532 
  group_by(plot_code) %>%  1533 
  summarise_all(.funs = list(ma = mean),  1534 
                na.rm = T) %>%  1535 
  ungroup() 1536 
 1537 
# merge climm and climatology: 1538 
climm <- left_join(climm, lt_cwd, by = c('plot_code','month')) 1539 
climm <- left_join(climm, ma_cwd, by = c('plot_code')) 1540 
 1541 
## check vals 1542 
climm %>%  1543 
  filter(plot_code %in% c("AEP02","CBAY","EP29", "BEK01")) %>% 1544 
  filter(year >= 1980 & year <= 2010) %>% 1545 
  ggplot(data=., aes(date, cwd)) + 1546 
  geom_line() + 1547 
  geom_line(aes(date, mcwd), col = 'red') + 1548 
  facet_wrap(~ plot_code, nrow = 4) 1549 
 1550 
## compare cwd and mcwd computed from 'et' and 'uet': 1551 
climm %>%  1552 
  filter(plot_code %in% c("AEP02","CBAY","EP29", "BEK01")) %>% 1553 
  filter(year >= 1980) %>% 1554 
  ggplot(data = ., aes(date, cwd)) + 1555 
  geom_line() + 1556 
  geom_line(aes(date, mcwd), col = 'red') + 1557 
  geom_line(aes(date, cwd_uet), linetype = "dashed") + 1558 
  geom_line(aes(date, mcwd_uet), col = 'blue', linetype = "dashed") + 1559 
  facet_wrap(~ plot_code, nrow = 4) 1560 
 1561 
# There were no major differences here, but a slightly better fit was obtained using the second option 1562 
# in the tree growth models, so that mcwd_uet-based variables were used. 1563 
# --------------------------------------------------------------------------------- 1564 
 1565 
# Calculate anomalies for all climate variables: 1566 
# ********************************************** 1567 
# Dividing the monthly mean anomaly by the monthly sigma climatology (yielding z-scores anomalies) allows evaluating the 1568 
effect of  1569 
# deviations from the plot-specific natural variation, hence allowing comparisons across plots of different baseline climate 1570 
variability. 1571 
# For example, 1°C of anomaly in a very stable plot is not the same than 1°C of anomaly in a site with a naturally very 1572 
variable climate.  1573 
# Standardising expresses anomalies in all plots in terms of units of standard deviations, with respect to the plot-specific  1574 
# long-term variability. 1575 
 1576 
climm <- climm %>%  1577 
  mutate(Tmean_anom = Tmean - Tmean_u,  1578 
         Tmin_anom = Tmin - Tmin_u, 1579 
         Tmax_anom = Tmax - Tmax_u, 1580 
         precip_anom = precip - precip_u, 1581 
         vpd_anom = vpd - vpd_u, 1582 
         cwd_uet_anom = cwd_uet - cwd_uet_u, 1583 
         mcwd_uet_anom = mcwd_uet - mcwd_uet_u, 1584 
         srad_anom = srad - srad_u) %>%  1585 
  mutate(Tmean_anom_sigma = Tmean_anom/Tmean_sigma,  1586 
         Tmin_anom_sigma = Tmin_anom/Tmin_sigma, 1587 
         Tmax_anom_sigma = Tmax_anom/Tmax_sigma, 1588 
         precip_anom_sigma = precip_anom/precip_sigma, 1589 
         vpd_anom_sigma = vpd_anom/vpd_sigma, 1590 
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         cwd_uet_anom_sigma = cwd_uet_anom/cwd_uet_sigma, 1591 
         mcwd_uet_anom_sigma = mcwd_uet_anom/mcwd_uet_sigma, 1592 
         srad_anom_sigma = srad_anom/srad_sigma) 1593 
 1594 
### II. Calculation of the climate variables for the interannual growth periods ### 1595 
# ******************************************************************************* # 1596 
# ############################################################################### # 1597 
 1598 
# Function for weighted mean: 1599 
w.mean <- function(x, y) { 1600 
  wm <- sum(x * y) / sum(y) 1601 
  return(wm) 1602 
} 1603 
 1604 
# Filter the years before the very first census year (1971): 1605 
clim <- as.data.frame(clim %>%  1606 
                        filter(year >= 1971) %>%  1607 
                        rename(plot = plot_code)) 1608 
 1609 
# Nb of days of each month: 1610 
# First remove the time part of the date, then transform date using lubridate, and calculate nbs of days: 1611 
# Add also year-month, as this will help filter the years and months from which the weighted climatic variable means 1612 
# will be calculated: 1613 
clim <- clim %>%  1614 
  mutate(date2 = sub("T00:00:00Z", "", clim$date)) %>%  1615 
  select(1:3, date2, everything()) %>%  # insert date without time (hours) part  1616 
  select(-date) %>%  1617 
  rename(date = date2) %>%  # remove old date column 1618 
  mutate(date2 = parse_date(date, "%Y-%m-%d")) %>%  # transform with lubridate 1619 
  select(-date) %>%  1620 
  select(1:3, date2, everything()) %>%  1621 
  rename(date = date2) %>%  1622 
  mutate(nb_days = days_in_month(date),  1623 
         ym = format(date, "%Y/%m")) %>%  1624 
  select(1:4, nb_days, ym, everything()) 1625 
 1626 
load('datafinal.RData') # Matrix of growth observation per stem and census interval 1627 
 1628 
# Create an empty dataset to be filled with the climate and strand structure variables for  1629 
# all the census intervals of all plots: 1630 
datafinal_pred <- datafinal %>%  1631 
  group_by(plot, year_0, year_1, date_0, date_1) %>%  1632 
  summarise() %>%  1633 
  mutate(year = year_0) %>%  # 'year' is temporary (for left_join()) 1634 
  ungroup()  1635 
 1636 
datafinal_pred <- datafinal_pred %>%     1637 
  left_join(clim_temp, by = c("plot", "year")) %>%  # This line only serve to add the climate columns to the dataset (the 1638 
values are incorrect) 1639 
  select(-c(9:13)) %>% # remove time-related columns coming from 'clim' 1640 
  mutate_at(.vars = 9:ncol(datafinal_pred), ~ifelse(is.na(.), NA, NA)) # NA in all climate columns 1641 
 1642 
# Adding summarised climate variables (weighted mean or min) for all growth periods and stems: 1643 
# ******************************************************************************************** 1644 
# VPD, SRAD, Tmean were averaged over the months separating two censuses, weighting the months by the 1645 
# number of days. 1646 
# The min of MCWD was taken over the census period (MCWD is still negative at this stage so that the min 1647 
# value corresponds to the strongest soil water deficit; it will be transformed to be positive further  1648 
# down in the data analysis section). 1649 
 1650 
# Climate and cyclone: 1651 
# ******************** 1652 
for (i in 1:nrow(datafinal_pred)) { 1653 
   1654 
  plot_i <- datafinal_pred$plot[i] 1655 
   1656 
  # Be sure to use the same separator symbol for 'ym' in both 'clim' and 'dem' ("/" in this case): 1657 
  ym_0 <- format(parse_date(datafinal_pred$date_0[i], format = "%Y-%m-%d"), "%Y/%m") # Transform 'character' class date in 1658 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447571
http://creativecommons.org/licenses/by-nd/4.0/


69 

 

'Date' class date, for time_0, and extract year/month 1659 
  ym_1 <- format(parse_date(datafinal_pred$date_1[i], format = "%Y-%m-%d"), "%Y/%m") # Transform 'character' class date in 1660 
'Date' class date, for time_1, and extract year/month 1661 
  clim.interc <- clim %>%  1662 
    filter(plot == plot_i & ym >= ym_0 & ym <= ym_1) 1663 
  # Calculate the weight per monthly value (nb of growth days) in the subset of climatic data: 1664 
  day_0 <- day(parse_date(datafinal_pred$date_0[i])) 1665 
  day_1 <- day(parse_date(datafinal_pred$date_1[i])) 1666 
  clim.interc <- clim.interc %>%  1667 
    mutate(w = nb_days) # generate new column for weight, as it will differ from 'nb_days' for first and last month 1668 
  clim.interc$w[1] <- clim.interc$nb_days[1] - day_0 # Adjustment of nb_days of first month of growth period 1669 
  clim.interc$w[nrow(clim.interc)] <- day_1 # Adjustment of nb_days of last month of growth period 1670 
  1671 
  datafinal_pred$srad_u[i] <- w.mean(clim.interc$srad_u, clim.interc$w) 1672 
  datafinal_pred$Tmin_u[i] <- w.mean(clim.interc$Tmin_u, clim.interc$w) 1673 
  datafinal_pred$Tmax_u[i] <- w.mean(clim.interc$Tmax_u, clim.interc$w) 1674 
  datafinal_pred$Tmean_u[i] <- w.mean(clim.interc$Tmean_u, clim.interc$w) 1675 
  datafinal_pred$vpd_u[i] <- w.mean(clim.interc$vpd_u, clim.interc$w) 1676 
  datafinal_pred$mcwd_uet_u[i] <- w.mean(clim.interc$mcwd_uet_u, clim.interc$w) 1677 
 1678 
  datafinal_pred$srad_anom_sigma[i] <- w.mean(clim.interc$srad_anom_sigma, clim.interc$w) 1679 
  datafinal_pred$Tmin_anom_sigma[i] <- w.mean(clim.interc$Tmin_anom_sigma, clim.interc$w) 1680 
  datafinal_pred$Tmax_anom_sigma[i] <- w.mean(clim.interc$Tmax_anom_sigma, clim.interc$w) 1681 
  datafinal_pred$Tmean_anom_sigma[i] <- w.mean(clim.interc$Tmean_anom_sigma, clim.interc$w) 1682 
  datafinal_pred$vpd_anom_sigma[i] <- w.mean(clim.interc$vpd_anom_sigma, clim.interc$w) 1683 
  datafinal_pred$mcwd_uet_anom_sigma[i] <- min(clim.interc$mcwd_uet_anom_sigma) 1684 
 1685 
} 1686 
 1687 
# Join 'datafinal' and 'datafinal_pred': 1688 
datafinal <- left_join(datafinal, datafinal_pred,  1689 
                       by = c("plot", "year_0", "year_1", "date_0", "date_1")) 1690 
 1691 
# Add stand structure (total plot basal area): 1692 
# ******************************************** 1693 
load('dem2.RData') # Community composition in all plots and censuses 1694 
 1695 
for (i in 1:nrow(datafinal)) { 1696 
  plot_i <- datafinal$plot[i] 1697 
  sub_plot <- dem2 %>%  1698 
    filter(plot == plot_i & year == datafinal$year_1[i]) 1699 
 1700 
  BA.sum <- as.numeric(sub_plot %>%  1701 
                             # grouping by plot allows summing basal area across all sp. 1702 
                             group_by(plot) %>%  1703 
                             summarise(sum(ba, na.rm = TRUE)))[2] 1704 
  datafinal$dens.tot[i] <- BA.sum / dim_plot$dimension[dim_plot$plot == plot_i] 1705 
} 1706 
 1707 
# Dataset of growth observations for all censuses and plots, plus corresponding climate  1708 
# and stand structure variables. This dataset contains all 509 species. 1709 
datafinal_all_sp <- datafinal  1710 
 1711 
### III. Integrating the trait data ### 1712 
# *********************************** # 1713 
# ################################### # 1714 
 1715 
# Load the trait data: 1716 
# ******************** 1717 
 1718 
trait <- read_tsv("traits_per_stem.txt")  1719 
 1720 
trait_sp <- trait %>% # 'trait_sp' corresponds to part of 'trait_av_all_plots' further up 1721 
  group_by(code, family, genus, taxon) %>%  1722 
  summarise_at(vars(leaf_d13C:LMA),  1723 
               .funs = list(u = mean), na.rm = TRUE) %>%  1724 
  ungroup 1725 
 1726 
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datafinal_trait_u <- inner_join(datafinal,  1727 
                                trait_sp,  1728 
                                by = c("code", "family", "genus", "taxon")) %>%  1729 
  rename_at(vars(leaf_d13C_u:LMA_u),  1730 
            .funs = funs(sub("_u", "", .))) %>%  # remove the '_u' in the trait names 1731 
  arrange(code, stem, stem2, year_0) 1732 
 1733 
### IV. Models of tree growth as a function of climate, without traits, based on all 509 tree species (M1 models) ### 1734 
# ****************************************************************************************************** # 1735 
# ###################################################################################################### # 1736 
 1737 
# Libraries: 1738 
# ********** 1739 
library(tidyverse) 1740 
library(brms) 1741 
 1742 
data <- datafinal_all_sp %>%  1743 
  filter(dead == 0, outlier == 0, new_ID == 0) # Removing growth values considered as outliers as well as virtually-created 1744 
stems 1745 
 1746 
# Create a variable 'period' for the precise interval to use as a varying intercept: 1747 
data <- data %>%  1748 
  mutate(period = str_c(year_0, year_1)) %>%  1749 
  select(plot:taxon, period, everything()) 1750 
 1751 
# Remove pteridophytes and palms (no secondary growth): 1752 
# ***************************************************** 1753 
# Arecaceae with traits: Normanbya normanbyi: 1754 
data <- data %>%  1755 
  filter(taxon != "Normanbya normanbyi") %>%  1756 
  filter(taxon != "Cyathea cooperi") 1757 
 1758 
# 2. Log-transformation of absolute growth rates: 1759 
# ----------------------------------------------- 1760 
# 'agr_dbh' and 'rgr_dbh' are transformed by taking the log of the value + the absolute value of the min + 1761 
# a tenth of the min value (to avoid any 0): 1762 
min_agr <- min(data$agr_dbh, na.rm = T) 1763 
min_rgr <- min(data$rgr_dbh, na.rm = T) 1764 
 1765 
data2 <- data %>%  1766 
  mutate(agr_dbh = log(agr_dbh + abs(min_agr + min_agr/10)), 1767 
         rgr_dbh = log(rgr_dbh + abs(min_rgr + min_rgr/10))) 1768 
 1769 
# Transformation and standardisation of covariates: 1770 
# ************************************************* 1771 
# Inverse the sign of maximum climatological water deficit-related and pdsi-related variables, to ease their interpretation. 1772 
# For now, the drier the condition, the smaller and negative the value. As a result, if growth decreases when 1773 
# drought increases, we have a positive relationship between growth and mcwd or pdsi, which is counter-intuitive. 1774 
data2 <- data2 %>%  1775 
  mutate_at(.vars = vars(contains("mcwd")), function(x) x * (-1)) %>%  1776 
  mutate_at(.vars = vars(contains("pdsi")), function(x) x * (-1)) 1777 
 1778 
# The climatic variables could be standardised by plot, as they were calculated by plot (for the anomalies). 1779 
# The _anom_sigma variables won't be standardised, as they already are (by plot) in the way they're calculated.  1780 
# However, some plots only have one interval, making the standardisation impossible (yields NA), so that 1781 
# the climate variables that need to be standardised will be standardise across all plots: 1782 
var_to_std <- data2 %>%  1783 
  select(agr_dbh:CEC) %>%  1784 
  select(-contains("anom_sigma")) %>%  # already standardised 1785 
  names 1786 
 1787 
# Standardisation: 1788 
data_mod <- data2 %>%  1789 
  mutate_at(vars(all_of(var_to_std)), scale)  1790 
 1791 
# Hierarchical model: 1792 
# ******************* 1793 
# ******************* 1794 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447571doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447571
http://creativecommons.org/licenses/by-nd/4.0/


71 

 

# See Data analysis (Methods) for details 1795 
 1796 
prior_brms <- c(prior(normal(0, 1), class = "Intercept"),  1797 
             prior(normal(0, 1), class = "b"), 1798 
             prior(normal(0, 1), class = "sd"),  1799 
             prior(lkj(2), class = "cor"))  1800 

 1801 
# See Bürkner (2017) for details linking the brms syntax to the M1 models (eqs. 3, Supplementary Methods S1): 1802 
fit_brms_Tmean_500sp <- brm(formula = agr_dbh ~ lndbh_0 + Tmean_u + Tmean_anom_sigma + dens.tot +  1803 
                    (1 + lndbh_0 + Tmean_u + Tmean_anom_sigma + dens.tot | species) +  1804 
                    (1 | stem) + (1 | plot) + (1 | period), 1805 
                  data = data_mod, 1806 
                  family = gaussian(), 1807 
                  prior = prior_brms, 1808 
                  iter = 3000, 1809 
                  chains = 3, 1810 
                  cores = 3, 1811 
                  seed = 42, 1812 
                  control = list(adapt_delta = 0.99, max_treedepth = 15)) 1813 
 1814 
### V. Models of tree growth as a function of climate, with traits, based on the 75 trait species (M2 models) ### 1815 
# ************************************************************************************************* # 1816 
# ################################################################################################# # 1817 
 1818 
# Define the data we will work with: 1819 
# ********************************** 1820 
# Remove dead individuals and AGR outliers: 1821 
data <- datafinal_trait_u  1822 
 1823 
# Create a variable 'period' (time interval between two censuses, "year2_year1") to use as varying intercept: 1824 
data <- data %>%  1825 
  mutate(period = str_c(year_0, year_1)) %>%  1826 
  select(plot:taxon, period, everything()) 1827 
 1828 
# Remove pteridophytes and palms (no secondary growth): 1829 
# ***************************************************** 1830 
# Arecaceae with traits: Normanbya normanbyi: 1831 
data <- data %>%  1832 
  filter(taxon != "Normanbya normanbyi") 1833 
 1834 
# The only pteridophyte (Cyathea cooperi) in the dataset has no trait measurements. 1835 
 1836 
# Preparation for Vcmax and Jmax: 1837 
# ******************************* 1838 
# Remove the Vcmax and Jmax calculated from the ACi curves (too many missing values) and rename Vcmax 1839 
# and Jmax obtained from the one-point estimate at 400 and 1200 ppm, respectively (see Material and methods). 1840 
data <- data %>% 1841 
  select(-c("Vcmax", "Jmax")) %>% 1842 
  rename(Vcmax = Vcmax_400op, Jmax = Jmax_1200op) %>%  1843 
  mutate(JmaxVcmax_ratio = Jmax/Vcmax) %>%  1844 
  select(1:Jmax, JmaxVcmax_ratio, everything()) 1845 
 1846 
# Log-transformation of absolute growth rates: 1847 
# -------------------------------------------- 1848 
# Note that relative growth rate will not be used. 1849 
# 'agr_dbh' and 'rgr_dbh' are transformed by taking the log of the value + the absolute value of the min + 1/10 of the min 1850 
value (to avoid any 0): 1851 
min_agr <- min(data$agr_dbh, na.rm = T) 1852 
min_rgr <- min(data$rgr_dbh, na.rm = T) 1853 
 1854 
data2 <- data %>%  1855 
  mutate(agr_dbh = log(agr_dbh + abs(min_agr + min_agr/10)), 1856 
         rgr_dbh = log(rgr_dbh + abs(min_rgr + min_rgr/10))) 1857 
 1858 
# Transformation and standardisation of the covariates: 1859 
# ***************************************************** 1860 
# Inverse the sign of maximum climatological water deficit-related and pdsi-related variables, to ease their interpretation. 1861 
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# For now, the drier the condition, the smaller and negative the value. As a result, if growth decreases when 1862 
# drought increases, we have a positive relationship between growth and mcwd or pdsi, which is counter-intuitive. 1863 
data2 <- data2 %>%  1864 
  mutate_at(.vars = vars(contains("mcwd")), function(x) x * (-1)) %>%  1865 
  mutate_at(.vars = vars(contains("pdsi")), function(x) x * (-1)) 1866 
 1867 
# The _anom_sigma variables won't be standardised, as they already are by nature (by plot).  1868 
# The climatic variables could be standardised by plot, as they were calculated by plot (for the anomalies). 1869 
# However, some plots only have one interval, making the standardisation impossible (yields NA), so that 1870 
# the climate variables that need to be standardised will simply be standardised across all plots: 1871 
# Vector of names of variables to standardise (center and reduce): 1872 
var_to_std <- data2 %>%  1873 
  select(agr_dbh:CEC) %>%  1874 
  select(-contains("anom_sigma")) %>%  # already standardised 1875 
  names 1876 
 1877 
# Standardisation of AGR and tree size is done across all species, and traits are log-transformed prior to STD: 1878 
# Keep a trace of the mean and SD used for AGR, to back-transform later. 1879 
mean_agr_for_scale <- mean(data2$agr_dbh) 1880 
sd_agr_for_scale <- sd(data2$agr_dbh) 1881 
 1882 
# Final dataset for analyses: 1883 
data_mod <- data2 %>%  1884 
  select(-leaf_d15N) %>% # remove unused traits 1885 
  mutate_at(vars(all_of(var_to_std)), scale) %>% # standardise AGR and all covariates 1886 
  mutate(leaf_d13C = leaf_d13C + abs(min(leaf_d13C) + min(leaf_d13C)/10)) %>%   1887 
  mutate_at(vars(dbh_max:LMA), log) %>%  # log-transformation of all traits across all plots 1888 
  mutate_at(vars(dbh_max:LMA), scale) # standardise the log-transf. traits across all plots 1889 
 1890 
# Unconditional models and progressive addition of covariates till full model, using brms: 1891 
# **************************************************************************************** 1892 
# **************************************************************************************** 1893 
 1894 
prior_brms <- c(prior(normal(0, 1), class = "Intercept"),  1895 
             prior(normal(0, 1), class = "b"), 1896 
             prior(normal(0, 1), class = "sd"),  1897 
             prior(lkj(2), class = "cor"))  1898 

 1899 
# See Bürkner (2017) for details linking the brms syntax to the M2 models (eqs. 4, Supplementary Methods S1), 1900 
# and see “First and Second Level Predictors with Random Slopes and Crosslevel Interaction”, by Prof. van der Schoot, 1901 
https://www.rensvandeschoot.com/tutorials/brms-started/, for how the ‘brms’ model syntax and structure belox builds the  1902 
# aimed level-1 and level-2 of covariates, and the influence of level-2 covariates (one trait, here) on the 1903 
# species-level level-1 covariates (intercept, mean climate, anomalies, plot basal area): 1904 
 1905 
# Model including Asat as trait and Tmean as climate variable: 1906 
fit_brms_Asat_Tmean <- brm(formula = agr_dbh ~ lndbh_0 + Tmean_u + Tmean_anom_sigma + dens.tot +  1907 
                       Asat + Tmean_u:Asat + Tmean_anom_sigma:Asat + dens.tot:Asat + 1908 
                    (1 + lndbh_0 + Tmean_u + Tmean_anom_sigma | species) +  1909 
                    (1 | stem) + (1 | plot) + (1 | period), 1910 
                  data = data_mod, 1911 
                  family = gaussian(), 1912 
                  prior = prior_brms, 1913 
                  iter = 3000, 1914 
                  chains = 3, 1915 
                  cores = 3, 1916 
                  seed = 42, 1917 
                  control = list(adapt_delta = 0.99, max_treedepth = 15)) 1918 
 1919 
### VI. Plot-level growth response to VPD and Tmean anomalies as a function of mean climate (M3 models) ### 1920 
# ******************************************************************************************* #  1921 
# ########################################################################################### # 1922 
 1923 
# Use ‘data_mod’ from M1 models 1924 
# ***************************** 1925 
 1926 
## VI.1. Plot-level growth response to VPD anomalies: 1927 
# *************************************************** 1928 
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prior_brms <- c(prior(normal(0, 1), class = "Intercept"),  1929 
                prior(normal(0, 1), class = "b"), 1930 
                prior(normal(0, 1), class = "sd"),  1931 
                prior(lkj(2), class = "cor"))  1932 

fit_brms <- brm(formula = agr_dbh ~ 1 + vpd_anom_sigma + vpd_u + vpd_anom_sigma:vpd_u + 1933 
                            (1 + vpd_anom_sigma | plot) +  1934 
                            (1 | stem) + (1 | code) + (1 | period), 1935 
                          data = data_mod, 1936 
                          family = gaussian(), 1937 
                          prior = prior_brms, 1938 
                          iter = 2000, 1939 
                          chains = 3, 1940 
                          cores = 3, 1941 
                          seed = 42, 1942 
                          control = list(adapt_delta = 0.99, max_treedepth = 15)) 1943 

 1944 
### VII. Modelling climate as a function of time ### 1945 
# ************************************************ #  1946 
# ################################################ # 1947 
 1948 
library(tidyverse) 1949 
library(brms) 1950 
 1951 
load("clim.RData") 1952 
 1953 
clim_for_mod <- clim %>%  1954 
  group_by(plot, year) %>%  1955 
  summarise_at(vars(Tmin:mcwd_uet), mean) %>%  1956 
  arrange(plot, year) 1957 
 1958 
# Center 'year' so that the intercept corresponds to 0: 1959 
clim_for_mod <- clim_for_mod %>%  1960 
  mutate(year = year - 1971) 1961 
 1962 
##  Hierarchical Bayesian model of climate through time: 1963 
# ****************************************************** 1964 
# ****************************************************** 1965 
# Model VPD as a function of time, with the effect of time on VPD allowed to vary across  1966 
# plots (varying slope): 1967 
 1968 
# Priors: 1969 
prior_brms <- c(prior(normal(0, 1), class = "Intercept"),  1970 
                prior(normal(0, 1), class = "b"), 1971 
                prior(normal(0, 1), class = "sd"))  1972 
 1973 
# Model: 1974 
fit_brms_vpd_all <- brm(formula = vpd ~ 1 + year + (1 + year| plot), 1975 
                     data = clim_for_mod, 1976 
                     family = gaussian(), 1977 
                     prior = prior_brms, 1978 
                     iter = 3000, 1979 
                     chains = 3, 1980 
                     cores = 3, 1981 
                     seed = 42, 1982 
                     control = list(adapt_delta = 0.99, max_treedepth = 15)) 1983 

 1984 
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