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Abstract 24 

According to the temperature-size rule, warming of aquatic ecosystems is generally predicted to 25 

increase individual growth rates but reduce asymptotic body sizes of ectotherms. However, we 26 

lack a comprehensive understanding of how growth and key processes affecting it, such as 27 

consumption and metabolism, depend on both temperature and body mass within species. This 28 

limits our ability to inform growth models, link experimental data to observed growth patterns, 29 

and advance mechanistic food web models. To examine the combined effects of body size and 30 

temperature on individual growth, as well as the link between maximum consumption, metabolism 31 

and body growth, we conducted a systematic review and compiled experimental data on fishes 32 

from 59 studies that combined body mass and temperature treatments. By fitting hierarchical 33 

models accounting for variation between species, we estimated how these three processes scale 34 

jointly with temperature and body mass within species. We found that whole-organism maximum 35 

consumption increases more slowly with body mass than metabolism, and is unimodal over the 36 

full temperature range, which leads to the prediction that optimum growth temperatures decline 37 

with body size. Using an independent dataset, we confirmed this negative relationship between 38 

optimum growth temperature and size within fish species. Small individuals may therefore exhibit 39 

increased growth with initial warming, whereas larger conspecifics could be the first to experience 40 

negative impacts of warming on growth. These findings help advance mechanistic models of 41 

individual growth and food web dynamics and improve our understanding of how climate warming 42 

affects the growth and size structure of aquatic ectotherms. 43 

 44 

 45 

 46 
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Introduction 47 

Individual body growth is a fundamental process powered by metabolism, and thus depends on 48 

body size and temperature (Brown et al. 2004). It affects individual fitness and life history traits, 49 

such as maturation size, population growth rates (Savage et al. 2004), and ultimately energy 50 

transfer across trophic levels (Andersen et al. 2009; Barneche & Allen 2018). Therefore, 51 

understanding how growth scales with body size and temperature is important for predicting the 52 

impacts of global warming on the structure and functioning of ecosystems. 53 

Global warming is predicted to lead to declining body sizes of organisms (Daufresne et al. 54 

2009; Gardner et al. 2011). The temperature size-rule (‘TSR’) states that warmer rearing 55 

temperatures lead to faster developmental times (and larger initial size-at-age or size-at-life-stage), 56 

but smaller adult body sizes in ectotherms (Atkinson 1994; Ohlberger 2013). This relationship is 57 

found in numerous experimental studies (Atkinson 1994), is reflected in latitudinal gradients 58 

(Horne et al. 2015), and is stronger in aquatic than terrestrial organisms (Forster et al. 2012; Horne 59 

et al. 2015). Support for the TSR exists in fishes, in particular in young fish, where reconstructed 60 

individual growth histories often reveal positive correlations between growth rates and temperature 61 

in natural systems (Thresher et al. 2007; Neuheimer et al. 2011; Baudron et al. 2014; Huss et al. 62 

2019). However, whether the positive effect of warming on growth is indeed limited to small 63 

individuals within a species, as predicted by the temperature size-rule, is less clear. Negative 64 

correlations between maximum size, asymptotic size or size-at-age of old fish and temperature 65 

have been found in commercially exploited fish species (Baudron et al. 2014; van Rijn et al. 2017; 66 

Ikpewe et al. 2020). However, other studies, including large scale experiments, controlled 67 

experiments and latitudinal studies or observational data on unexploited species, have found no or 68 

less clear negative relationships between maximum size, growth of old fish or mean size and 69 
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temperature (Barneche et al. 2019; Huss et al. 2019; Van Dorst et al. 2019; Audzijonyte et al. 70 

2020; Denderen et al. 2020) and differences between species may be related to life history traits 71 

and depend on local environmental conditions (Denderen et al. 2020; Wang et al. 2020).  72 

While the support for TSR is mixed, and the underlying mechanisms are not well understood 73 

(Ohlberger 2013; Audzijonyte et al. 2019; Neubauer & Andersen 2019), theoretical growth 74 

models, such as Pütter growth models (Pütter 1920), including the von Bertalanffy growth model 75 

(VBGM) (von Bertalanffy 1957), commonly predict declines in asymptotic body mass with 76 

temperature and declines in optimum growth temperature with body mass, in line with the TSR 77 

(Perrin 1995; Morita et al. 2010; Pauly & Cheung 2018b; Pauly 2021). Yet, the physiological basis 78 

of these models has been questioned, as the commonly applied scaling parameters (mass 79 

exponents) tend to differ from empirical estimates (Lefevre et al. 2018; Marshall & White 2019). 80 

Hence, despite attempting to describe growth from first principles, Pütter growth models can also 81 

be viewed as phenomenological. In more mechanistic growth models, the difference between 82 

energy gain and expenditure is partitioned between somatic growth and gonads (Ursin 1967; 83 

Kitchell et al. 1977; Jobling 1997; Essington et al. 2001). Energy gain is normally the amount of 84 

energy extracted from consumed food and expenditure, which is defined as maintenance, activity 85 

and feeding metabolism. These components of the energetics of growth are found in dynamic 86 

energy budget models (Kitchell et al. 1977; Kooijman 1993), including those used in 87 

physiologically structured population models (PSPMs) (de Roos & Persson 2001) and size-88 

spectrum models (Hartvig et al. 2011; Maury & Poggiale 2013; Blanchard et al. 2017). Therefore, 89 

it is important to understand how consumption and metabolism rates scale with body mass and 90 

temperature in order to understand if and how growth of large fish within populations is limited 91 

by temperature, and to evaluate the physiological basis of growth models.  92 
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Moreover, the effect of body mass and temperature on growth dynamics should be evaluated 93 

over ontogeny at the intraspecific level (within species), which better represents the underlying 94 

process than interspecific data (among species) (Marshall & White 2019). For instance, we do not 95 

expect an interspecific relationship between optimum growth temperature and body mass, but 96 

within species it may have a large effect on growth dynamics. Despite this, intraspecific body mass 97 

and temperature scaling is often inferred from interspecific data, and we know surprisingly little 98 

about average relationship between consumption and metabolic exponents within species 99 

(Marshall & White 2019). Importantly, how physiological rates depend on mass and temperature 100 

within species can differ from the same relationships across species (Glazier 2005; Rall et al. 2012; 101 

Jerde et al. 2019). Across species, rates are often assumed and found to scale as power functions 102 

of mass with exponents of 3/4 for whole organism rates, exponentially with temperature, and with 103 

independent mass and temperature effects (e.g., in the Arrhenius fractal supply model (AFS) 104 

applied in the metabolic theory of ecology, MTE (Gillooly et al. 2001; Brown et al. 2004; Downs 105 

et al. 2008)). In contrast, within species, deviations from a general 3/4 mass exponent are common 106 

(Clarke & Johnston 1999; Bokma 2004; Barneche et al. 2019; Jerde et al. 2019), rates are typically 107 

unimodally related to temperature and activation energies can vary a lot (Dell et al. 2011; Englund 108 

et al. 2011; Rall et al. 2012; Pawar et al. 2016; Uiterwaal & DeLong 2020) and the effects of mass 109 

and temperature can be interactive (Xie & Sun 1990; Glazier 2005; García García et al. 2011; 110 

Ohlberger et al. 2012; Lindmark et al. 2018) (but see Jerde et al. (2019)). Extensions of the MTE 111 

include fitting multiple regression models where coefficients for mass and temperature are 112 

estimated jointly (Downs et al. 2008), as well as fitting non-linear models that can capture the de-113 

activation of biological rates at higher temperatures (Schoolfield et al. 1981; Dell et al. 2011; 114 

Englund et al. 2011; Padfield et al. 2017). To advance our understanding of the intraspecific 115 
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properties of mass- and temperature dependence of biological rates, intraspecific data with 116 

variation in both mass and temperature are needed. 117 

In this study, we analyzed how maximum consumption, metabolism and growth rate of fish 118 

scale intraspecifically with mass and temperature. We performed a systematic literature review by 119 

searching the Web of Science Core Collection to compile datasets on individual-level maximum 120 

consumption, metabolism and growth rates of fish from experiments in which the effect of fish 121 

body mass is replicated across multiple temperatures within species (total n=3672, with data from 122 

13, 20 and 34 species for each rate, respectively). We then fit hierarchical Bayesian models to 123 

estimate general intraspecific scaling parameters while accounting for variation between species. 124 

The estimated mass dependence and temperature sensitivity of consumption and metabolism were 125 

used to quantify average changes in net energy gain (and hence, growth, assumed proportional to 126 

net energy gain) over temperature and body mass. Lastly, we compared our predicted changes in 127 

optimum growth temperature over body mass with an independent experimental dataset on 128 

optimum growth temperatures across individuals of different sizes within species.  129 

 130 

Results 131 

We identified that within species of fish, metabolic rates increase faster with body mass than 132 

maximum consumption rates, and neither of these rates conform to the commonly predicted 3/4 133 

scaling with body mass (Fig. 1). We also quantified the unimodal relationship of consumption rate 134 

over the full temperature range (Fig. 2). Combined, these scaling relationships lead to the 135 

prediction, based on Pütter-type growth models, that optimum growth temperature declines with 136 

body size (Fig. 3). The prediction of declining optimum growth temperatures with size was 137 

confirmed by our analysis of independent experimental growth rate data. We find that within 138 
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species the optimum growth temperature declines with body size by 0.31℃ per unit increase in the 139 

natural log of relative body mass (Fig. 4). Below we present the underlying results in more detail.  140 

We found that the average intraspecific mass exponent for consumption rate is smaller (0.63 141 

[0.55, 0.71]) than that for metabolic rate (0.79 [0.74, 0.84]), based on the non-overlapping 142 

Bayesian 95% credible intervals (Fig. 1). It is also probable that the scaling exponents differ from 143 

3/4 (that is predicted by the MTE), because >99% of the posterior distribution of the mass exponent 144 

of maximum consumption is below 3/4, and 95% of the posterior distribution of the mass exponent 145 

of metabolic rate is above 3/4. Activation energies of maximum consumption rate and metabolism 146 

are both similar (0.69 [0.54, 0.85] and 0.62 [0.57, 0.67] respectively; Fig. 1) and largely fall within 147 

the prediction from the MTE (0.6-0.7 eV) (Brown et al. 2004). The global intraspecific intercept 148 

for routine and resting metabolic rate is estimated to be 1.85 [1.68, 2.04], and for standard 149 

metabolic rate it is 1.29 [0.97, 1.61] (SI Appendix, Fig. S7). Models where all coefficients varied 150 

by species were favored in terms of WAIC (M5 and M1, for consumption and metabolism, 151 

respectively) (SI Appendix, Table S4). We found statistical support for a species-varying mass and 152 

temperature interaction for metabolic rate; 98% of the posterior distribution of the global 153 

interaction coefficient 𝜇!! is above 0 (SI Appendix, Fig. S5). The estimated coefficient is 0.0018 154 

[0.015, 0.037] on the Arrhenius temperature scale, which corresponds to a decline in the mass 155 

scaling exponent of metabolic rate by 0.0026 ℃"#. The selected model for maximum consumption 156 

rate did not include an interaction term between mass and temperature (M5).  157 

We estimated the parameters of the Sharpe-Schoolfield equation (Eq. 4) for temperature-158 

dependence of consumption including data beyond peak temperature as: activation energy, 𝐸$ = 159 

0.73 [0.54, 0.94], rate at reference temperature, 𝐶%" = 0.79 [0.58, 0.99], temperature at which the 160 

rate is reduced to half (of the rate in the absence of deactivation) due to high temperatures, 𝑇& = 161 
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0.75 [-0.86, 2.37], and the rate of the decline past the peak, 𝐸& = 1.89 [1.68, 2.1]. This shows that 162 

the relationship between consumption rate and temperature is unimodal and asymmetric, where 163 

the decline in consumption rate at high temperatures is steeper than the increase at low 164 

temperatures (Fig. 2).  165 

The above results provide empirical support for the two criteria outlined in Morita et al., (2010) 166 

that result in declining optimum temperatures with size, i.e. (i) smaller whole organism mass 167 

exponent for consumption than metabolism (Fig. 1) and (ii) that growth reaches an optimum over 168 

temperature. In our case, the second criterion is met because consumption reaches a peak over 169 

temperature (Fig. 2) (in contrast to Morita et al. (2010), who assumed consumption to be linearly 170 

related to temperature, based on data from Atkinson (1994)). We illustrate the consequence of 171 

these findings in Fig. 3, which shows that the optimum temperature for net energy gain is reached 172 

at a lower temperature for a larger fish because of the difference in mass exponents of consumption 173 

and metabolism and because consumption is unimodally related to temperature. Assuming growth 174 

is proportional to net energy gain, this predicts that optimum growth temperature declines with 175 

body size. 176 

Using independent data from growth trials across a range of body sizes and temperatures, we 177 

also find strong statistical support for a decline in optimum growth temperature with body mass 178 

within species, because 92% of the posterior density of the global slope estimate (𝜇!#) is below 0. 179 

The models with and without species-varying slopes were indistinguishable in terms of WAIC (SI 180 

Appendix, Table S5), and we present the results for the species-varying intercept and slope model, 181 

due to slightly better model diagnostics (SI Appendix, Fig. S24-27). The global relationship is 182 

given by the model: 𝑇'() = −0.074 − 0.31 × 𝑚, where 𝑚 is the natural log of the rescaled body 183 

mass, calculated as the species-specific ratio of mass to maturation mass.  184 
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 185 

Discussion 186 

In this study, we systematically analyzed the intraspecific scaling of consumption, metabolism and 187 

growth with body mass and temperature. We found strong evidence for declining optimum growth 188 

temperatures as individuals grow in size, based on two independent approaches. First, we find 189 

differences in the intraspecific mass-scaling of consumption and metabolism, and a unimodal 190 

temperature dependence of consumption, which lead to predicted declines in optimum temperature 191 

for net energy gain (and hence growth) with size. Second, we confirm this prediction using 192 

intraspecific growth rate data of fish from temperature experiments. Our analysis thus 193 

demonstrates the importance of understanding intraspecific scaling relationships when predicting 194 

responses of fish populations to climate warming. 195 

That warming increases growth and development rates but reduces maximum or adult size is 196 

well known from experimental studies, also referred to as the temperature-size rule (TSR). Yet, 197 

the mechanisms underlying the TSR remain poorly understood. Pütter-type growth models, 198 

including the von Bertalanffy growth equation (VBGE), predict that the asymptotic size declines 199 

with warming if the ratio of the coefficients for energy gains and losses (𝐻/𝐾 in Eq. 7) (Pauly & 200 

Cheung 2018b) declines with temperature. However, the assumptions underlying the VBGE were 201 

recently questioned because of the lack of empirical basis for the scaling exponents and the effects 202 

of those on the predicted effects of temperature on asymptotic size (Lefevre et al. 2018; Marshall 203 

& White 2019). Specifically, the allometric exponent of energy gains (𝑎) is assumed to be smaller 204 

than that of energetic costs (𝑏) (Eq. 7). This is based on the assumption that anabolism scales with 205 

the same power as surfaces to volumes (𝑎 = 2/3) and catabolism, or maintenance metabolism, is 206 

proportional to body mass (𝑏 = 1) (von Bertalanffy 1957; Pauly & Cheung 2018a). In contrast, 207 
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maintenance costs are commonly thought to instead be proportional to standard metabolic rate, 208 

which in turn often is proportional to intake rates at the interspecific level (Brown et al. 2004; 209 

Marshall & White 2019). This leads to 𝑎 ≈ 𝑏, resulting in unrealistic growth trajectories and 210 

temperature dependencies of growth dynamics in Pütter models (Lefevre et al. 2018; Marshall & 211 

White 2019). However, similar to how the existence of large fishes in tropical waters does not 212 

invalidate the hypothesis that old individuals of large-bodied fish may reach smaller sizes with 213 

warming, interspecific scaling parameters cannot reject or support these model predictions on 214 

growth within species. We show that the average intraspecific whole-organism mass scaling 215 

exponent of metabolism is larger than that of maximum consumption, i.e., the inequality 𝑎 < 𝑏 216 

holds at the intraspecific level. By contrast, Pawar et al. (2012) estimated larger mass exponents 217 

for consumption than metabolic rate (0.84 and 1.04 in 2D and 3D foraging) from interspecific data, 218 

which reveals the importance of parameterizing processes occurring over ontogeny with 219 

intraspecific rather than interspecific data. When accounting for the smaller intraspecific mass 220 

exponent of consumption, and the unimodal thermal response of consumption, the thermal 221 

response of net energy gain is characterized by the optimum temperature being a function of body 222 

size (Morita et al. 2010). Therefore, empirically derived intraspecific parameterizations of simple 223 

growth models result in predictions in line with the TSR, in this case via declines in optimum 224 

growth temperatures over ontogeny rather than declines in asymptotic sizes. 225 

Declines in optimum growth temperatures over ontogeny as a mechanism for TSR-like growth 226 

dynamics do not rely on the assumption that the ratio of the coefficients for energy gains and losses 227 

declines with temperature. In fact, we find that when using data from sub-peak temperatures only, 228 

the average intraspecific predictions about the activation energy of metabolism and consumption 229 

do not differ substantially, which implies there is no clear loss or gain of energetic efficiency with 230 
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warming within species below temperature optima. This is in contrast to other studies, e.g. 231 

Lemoine & Burkepile (2012) and Rall et al. (2010). However, it is in line with the finding that 232 

growth rates increase with temperature (e.g. Angilletta & Dunham 2003), which is difficult to 233 

reconcile from a bioenergetics perspective if warming always reduced net energy gain. Our 234 

analysis instead suggests that the mismatch between gains and losses occurs when accounting for 235 

unimodal consumption rates over temperature. The match, or mismatch, between the temperature 236 

dependence of feeding vs. metabolic rates is a central question in ecology that extends from 237 

experiments to meta-analyses to food web models (Vasseur & McCann 2005; Rall et al. 2010; 238 

Lemoine & Burkepile 2012; Fussmann et al. 2014; Lindmark et al. 2019). Our study highlights 239 

the importance of accounting for non-linear thermal responses for two main reasons. First, the 240 

thermal response of net energy gain reaches a peak at temperatures below the peak for 241 

consumption. Secondly, as initial warming commonly leads to increased growth rates, the effect 242 

of warming on growth rates depends on temperature, and growth should therefore not be assumed 243 

to be monotonically related to temperature. 244 

Life-stage dependent optimum growth temperatures have previously been suggested as a 245 

component of the TSR (Ohlberger 2013). Although previous studies have found declines in 246 

optimum growth temperatures with body size in some species of fishes and other aquatic 247 

ectotherms (Wyban et al. 1995; Panov & McQueen 1998; Steinarsson & Imsland 2003; Björnsson 248 

et al. 2007; Handeland et al. 2008), others have not (Brett et al. 1969; Elliott & Hurley 1995). 249 

Using systematically collated growth data from experiments with variation in both size and 250 

temperature treatments (13 species), we find that for an average fish, the optimum growth 251 

temperature declines as it grows in size. This finding emerges despite the small range of body sizes 252 

used in the experiments (only 10% of observations are larger than 50% of maturation size) (SI 253 
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Appendix, Fig. S2). Individuals of such small relative size likely invest little energy in 254 

reproduction, which suggests that physiological constraints at warmer temperatures contribute to 255 

reduced growth performance of large compared to small fish, in addition to increasing investment 256 

into reproduction (Barneche et al. 2018). 257 

Translating results from experimental data to natural systems is challenging because maximal 258 

feeding rates, unlimited food supply, lack of predation, and constant temperatures do not reflect 259 

natural conditions, yet affect growth rates (Brett et al. 1969; Lorenzen 1996; Huey & Kingsolver 260 

2019). In addition, total metabolic costs in the wild also include additional costs for foraging and 261 

predator avoidance. It is, however, typically found and assumed that standard metabolic rate and 262 

natural feeding levels are proportional to routine metabolic rate and maximum consumption rate, 263 

respectively, and thus exhibit the same mass-scaling relationships (Kitchell et al. 1977; Neuenfeldt 264 

et al. 2020).  Intraspecific growth rates may not appear to be unimodally related to temperature 265 

when measured over a temperature gradient across populations within a species (Denderen et al. 266 

2020), because each population can be adapted to local climate conditions and thus display 267 

different temperature optima. However, each population likely has a thermal optimum for growth, 268 

which differs between individuals of different size. Hence, each population might have a unimodal 269 

relationship with temperature that differs from other populations of the same species. This 270 

highlights the importance of understanding the time scale of environmental change in relation to 271 

that of immediate physiological responses, acclimation, adaptation and community reorganization 272 

for the specific prediction about climate change impacts. In natural systems, climate warming may 273 

also result in stronger food limitation (Ohlberger et al. 2011; Huey & Kingsolver 2019). Hence, 274 

as optimum growth temperatures decline not only with size but also food availability (Brett et al. 275 

1969; Brett 1971), and realized consumption rates are a fraction of the maximum consumption rate 276 
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(20-70%) (Kitchell et al. 1977; Neuenfeldt et al. 2019), species may be negatively impacted by 277 

warming even when controlled experiments show they can maintain growth capacity at these 278 

temperatures. Supporting this point is the observation that warming already has negative or lack 279 

of positive effects on body growth in populations living at the edge of their physiological tolerance 280 

in terms of growth (Neuheimer et al. 2011; Huss et al. 2019). 281 

Whether the largest fish of a population will be the first to experience negative effects of 282 

warming, as suggested by the finding that optimum growth temperature declines with body size, 283 

depends on the environmental temperatures they typically experience compared to smaller 284 

conspecifics. For instance, large fish may inhabit colder temperatures compared to small fish due 285 

to ontogenetic habitat shifts (Werner & Hall 1988; Lloret-Lloret et al. 2020); see also Heincke’s 286 

law (Heincke 1913; Audzijonyte & Pecl 2018). Yet, there is already empirical evidence of the 287 

largest individuals in natural populations being the first to suffer from negative impacts of warming 288 

from heatwaves (Pörtner & Knust 2007), or not being able to benefit from warming (Huss et al. 289 

2019; Van Dorst et al. 2019). Hence, assuming that warming affects all individuals of a population 290 

equally is a simplification that can bias predictions of the biological impacts of climate change.  291 

The interspecific scaling of fundamental ecological processes with body mass and temperature 292 

has been used to predict the effects of warming on body size, size structure, and population and 293 

community dynamics (Vasseur & McCann 2005; Morita et al. 2010; Cheung et al. 2013; Gilbert 294 

et al. 2014). We argue that a contributing factor to the discrepancy between mechanistic growth 295 

models, general scaling theory, and empirical data has been the lack of data synthesis at the 296 

intraspecific level. The approach presented here can help overcome limitations of small data sets 297 

by borrowing information across species in a single modelling framework, while accounting for 298 

the intraspecific scaling of rates. Accounting for the faster increase in whole-organism metabolism 299 
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than consumption with body size, the unimodal thermal response of consumption, and resulting 300 

size-dependence of optimum growth temperatures is essential for understanding what causes 301 

observed growth responses to global warming. Acknowledging these mechanisms is also 302 

important for improving predictions on the consequences of warming effects on fish growth for 303 

food web functioning, fisheries yields and global food production in warmer climates.  304 

 305 

Materials and methods 306 

Data acquisition 307 

We searched the literature for experimental studies evaluating the temperature response of 308 

individual maximum consumption rate (feeding rate at unlimited food supply, ad libitum), resting, 309 

routine and standard oxygen consumption rate as a proxy for metabolic rate (Nelson 2016) and 310 

growth rates across individuals of different sizes within species. We used three different searches 311 

on the Web of Science Core Collection (see SI Appendix, for details). In order to estimate how 312 

these rates depend on body size and temperature within species, we selected studies that 313 

experimentally varied both body size and temperature (at least two temperature treatments and at 314 

least two body masses). The average number of unique temperature treatments (temperature 315 

rounded to nearest ℃) by species is 7.2 for growth and 4.3 for consumption and metabolism data. 316 

The criteria for both mass and temperature variation in the experiments reduce the number of 317 

potential data sets, as most experimental studies use either size or temperature treatments, not both. 318 

However, these criteria allow us to fit multiple regression models and estimate the effects of mass 319 

and temperature jointly, and to evaluate the probability of interactive mass- and temperature effects 320 

within species. Following common practice we excluded larval studies, which represents a life 321 
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stage exhibiting different constraints and scaling relationships than non-larval life stages (Glazier 322 

2005).  323 

Studies were included if (i) a unique experimental temperature was recorded for each trial 324 

(±1°C), (ii) fish were provided food at ad libitum (consumption and growth data) or if they were 325 

unfed (resting, standard or routine metabolic rate), and (iii) fish exhibited normal behavior during 326 

the experiments. We used only one study per species and rate to ensure that all data within a given 327 

species are comparable as measurements of these rates can vary between studies due to e.g. 328 

measurement bias, differences in experimental protocols, or because different populations were 329 

studied (Armstrong & Hawkins 2008; Jerde et al. 2019). In cases where we found more than one 330 

study for a given rate and species, we selected the most suitable study based on our pre-defined 331 

criteria (for details, see SI Appendix). We ensured that the experiments were conducted at 332 

ecologically relevant temperatures (SI Appendix, Figs. S1, S3). A more detailed description of the 333 

search protocol, data selection, acquisition, quality control, collation of additional information and 334 

standardizing of rates to common units can be found in SI Appendix. 335 

We compiled four datasets: maximum consumption rate, metabolic rate, growth rate and the 336 

optimum growth temperature for each combination of body mass group and species. We compiled 337 

a total of 746 measurements of maximum consumption rate (of which 666 are below peak), 2699 338 

measurements of metabolic rate and 227 measurements of growth rate (45 optimum temperatures) 339 

from published articles for each rate, from 20, 34 and 13 species, respectively, from different 340 

taxonomic groups, habitats and lifestyles (Table S1-S2). We requested original data from all 341 

corresponding authors of each article. In cases where we did not hear from the corresponding 342 

author, we extracted data from tables or figures using Web Plot Digitizer (Rohatgi 2012).   343 

 344 
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Model fitting 345 

Model description 346 

To each dataset, we fit hierarchical models with different combinations of species-varying 347 

coefficients, meaning they are estimated with shrinkage. This reduces the influence of outliers 348 

which could occur in species with small samples sizes (Gelman & Hill 2007; Harrison et al. 2018). 349 

The general form of the model is: 350 

𝑦*$~𝑁(𝜇*$ , 	𝜎)                                                                 (1) 351 

𝜇*$ = 𝛽%$ + ∑ (𝛽( × 𝑥*()+
(,#                                                            (2) 352 

𝛽%$~𝑁(𝜇!# , 𝜎!#)                                                                (3) 353 

where 𝑦*$ is the 𝑖th observation for species 𝑗 for rate y, 𝛽%$ is a species-varying intercept, 𝑥*( is a 354 

predictor and 𝛽( is its coefficient, with 𝑝 = 1, . . 𝑛, where 𝑛 is the number of predictors considered 355 

in the model (mass, temperature, and their interaction). Predictors are mean centered to improve 356 

interpretability (Schielzeth 2010). Species-level intercepts follow a normal distribution with 357 

hyperparameters 𝜇!# 	(global intercept) and 𝜎!# (between-species standard deviation). For most 358 

models we also allow the coefficient 𝛽( to	vary between species, such that 𝛽( becomes 𝛽($ and 359 

𝑥*( 𝑥*$(, where 𝛽($~𝑁(𝜇!$ , 𝜎!$). For each dataset, we evaluate multiple combinations of species-360 

varying coefficients (from varying intercept to 𝑛 varying coefficients). We used a mix of flat, 361 

weakly informative, and non-informative priors. For the temperature and mass coefficients we 362 

used the predictions from the MTE as the means of the normal prior distributions (Brown et al. 363 

2004), but with large standard deviations (see SI Appendix, Table S3). Below we describe how the 364 

model in Eqns. 1-3 is applied to each data set. 365 

 366 
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Mass- and temperature dependence of consumption, metabolism and growth below peak 367 

temperatures 368 

Peak temperature (optimum in the case of growth) refers to the temperature at which the rate was 369 

maximized, by size group. For data below peak temperatures, we assumed that maximum 370 

consumption rate, metabolism and growth scale allometrically (as a power function of the form 371 

𝐼 = 𝑖%𝑀-#) with mass, and exponentially with temperature. Hence, after log-log (natural log) 372 

transformation of mass and the rate, and temperature in Arrhenius temperature (1/𝑘𝑇 in unit eV"#, 373 

where 𝑘 is Boltzmann’s constant [8.62×10-5 eV K"#]), the relationship between the rate and its 374 

predictors becomes linear. This is similar to the MTE, except that we estimate all coefficients 375 

instead of correcting rates, and allow not only the intercepts but also slopes to vary across species.  376 

When applied to Eqns. 1-3, 𝑦*$ is the 𝑖th observation for species 𝑗 of the natural log of the rate 377 

(consumption, metabolism or growth), and the predictors are 𝑚*$ (natural log of body mass), 𝑡.,*$ 378 

(Arrhenius temperature, 1/𝑘𝑇 in unit eV"#), both of which were mean-centered, and their 379 

interaction. Body mass is in g, consumption rate in g	day"#, metabolic rate in mg	O0	h"# and 380 

specific growth rate in unit %	day"#. We use resting or routine metabolism (mean oxygen uptake 381 

of a resting unfed fish only showing some spontaneous activity) and standard metabolism (resting 382 

unfed and no activity, usually inferred from extrapolation or from low quantiles of routine 383 

metabolism, e.g. lowest 10% of measurements) to represent metabolic rate (Beamish 1964; 384 

Ohlberger et al. 2007). Routine and resting metabolism constitute 58% of the data used and 385 

standard metabolism constitutes 42%. We accounted for potential differences between these types 386 

of metabolic rate measurements by adding two dummy coded variables, 𝑡𝑦𝑝𝑒1 and 𝑡𝑦𝑝𝑒2, the 387 

former taking the value 0 for standard and 1 for a routine or resting metabolic rate measurement, 388 

and vice versa for the latter variable. Thus, for metabolism, we replace the overall intercept 𝛽%$ in 389 
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Eqns. 2-3 with 𝛽%1$ and 𝛽%2$. 𝛽%2$ is forced to 0 for a species that has a routine or resting metabolic 390 

rate and 𝛽%1$ is forced to 0 for a species with standard metabolic rate data. We assume these 391 

coefficients vary by species following normal distributions with global means 𝜇!#% and 𝜇!#&, and 392 

standard deviations 𝜎!#% and 𝜎!#&, i.e. 𝛽%1$~𝑁(𝜇!#% , 𝜎!#%) and 𝛽%2$~𝑁(𝜇!#& , 𝜎!#&).  393 

 394 

Mass- and temperature dependence of consumption including beyond peak temperatures 395 

Over a large temperature range, many biological rates are unimodal. We identified such tendencies 396 

in 10 out of 20 species in the consumption data set. To characterize the decline in consumption 397 

rate beyond peak temperature, we fit a mixed-effects version of the Sharpe Schoolfield equation 398 

(Schoolfield et al. 1981) as expressed in (Padfield et al. 2020), to equations 1-2 with 𝑦*$ as rescaled 399 

consumption rates (𝐶). Specifically, we model 𝜇*$ in Eq. 1 with the Sharpe-Schoolfield equation: 400 

𝜇*$ =
3#"(5')7

(")
*

+,-
. *
+,/

#87
(0)

*
+,0

. *
+,/

                                                       (4) 401 

𝐸$~𝑁(𝜇9 , 𝜎9)                                                           (5) 402 

𝐶%$~𝑁(𝜇3# , 𝜎3#)                                                         (6) 403 

where 𝐶%"(𝑇3) is the rate at a reference temperature 𝑇3  in Kelvin [K] (here set to 263.15), 𝐸$ [eV] 404 

is the activation energy, 𝐸& [eV] characterizes the decline in the rate past the peak temperature and 405 

𝑇& [K] is the temperature at which the rate is reduced to half (of the rate in the absence of 406 

deactivation) due to high temperatures. We assume 𝐸$ and 𝐶%" vary across species according to a 407 

normal distribution with means 𝜇9 and 𝜇3#, and standard deviations 𝜎9 and 𝜎3# (Eq. 5-6). Prior to 408 

rescaling maximum consumption (in unit g	day"#) by dividing 𝐶*,$ with the mean within species 409 

𝐶:\ , we isolate the effect of mass by dividing consumption with 𝑚%.<=, which is the estimated 410 
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allometric relationship from the log-linear model. Temperature, 𝑇, is centered by subtracting the 411 

temperature at peak consumption. This was estimated separately for each species using the Sharpe-412 

Schoolfield equation but without group-varying coefficients in a frequentist framework (see 413 

‘Parameter estimation’). The rescaling is done to control for differences in the optimum 414 

temperature between species, which if not accounted for obscures the average relationship between 415 

consumption and temperature among species. 416 

 417 

Mass-dependence of optimum growth temperature 418 

To evaluate how the optimum temperature (𝑡'(),*$, in degrees Celsius) for individual growth 419 

depends on body mass, we fit Eqns. 1-3 with 𝑦*$ as the mean-centered optimum growth 420 

temperature within species (𝑡'(),*$ = 𝑇'(),*$ − 𝑇]'(),$), to account for species being adapted to 421 

different thermal regimes. 𝑚*$, the predictor variable for this model, is the natural log of the ratio 422 

between mass and mass at maturation acquired from FishBase (Froese & Pauly 2019), within 423 

species: 𝑚*$ = ln(𝑀*$/𝑀>?),$) − ln(𝑀@:/𝑀>?),:)]]]]]]]]]]]]]]]]]]]. This rescaling is done because we are 424 

interested in examining relationships within species over “ontogenetic size”, and because we do 425 

not expect an interspecific relationship between optimum growth temperature and body mass 426 

because species are adapted to different thermal regimes. We consider both the intercept and the 427 

effect of mass to potentially vary between species. 428 

 429 

Parameter estimation 430 

We fit the models in a Bayesian framework, using R version 4.0.2 (R Core Team 2020) and JAGS 431 

(Plummer 2003) through the R-package ‘rjags’ (Plummer 2019). We used 3 Markov chains with 432 

5000 iterations for adaptation, followed by 15000 iterations burn-in and 15000 iterations sampling 433 
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where every 5th iteration saved. Model convergence was assessed by visually inspecting trace plots 434 

and potential scale reduction factors (𝑅a) (SI Appendix). 𝑅a compares chain variance with the pooled 435 

variance, and values <1.1 suggest all three chains converged to a common distribution (Gelman et 436 

al. 2003). We relied heavily on the R packages within ‘tidyverse’ (Wickham et al. 2019) for data 437 

processing, as well as ‘ggmcmc’ (Fernández-i-Marín 2016), ‘mcmcviz’ (Youngflesh 2018) and 438 

‘bayesplot’ (Gabry et al. 2019) for visualization. Single-species Sharpe-Schoolfield models were 439 

fitted using the packages ‘rTPC’ (Padfield & O’Sullivan 2020) and ‘nls.multstart’ (Padfield & 440 

Matheson 2020) 441 

 442 

Model comparison 443 

We compared the parsimony of models with different hierarchical structures, and with or without 444 

mass-temperature interactions, using the Watanabe-Akaike information criterion (WAIC) 445 

(Watanabe 2013; Vehtari et al. 2017), which is based on the posterior predictive distribution. We 446 

report WAIC for each model descried above (Table S4-S5), and examine models with ∆WAIC 447 

values < 2, where ∆WAIC is each models difference to the lowest WAIC across models, in line 448 

with other studies (Olmos et al. 2019).  449 

 450 

Net energy gain  451 

The effect of temperature and mass dependence of maximum consumption and metabolism 452 

(proportional to biomass gain and losses, respectively) (Ursin 1967; Kitchell et al. 1977; Essington 453 

et al. 2001) on growth is illustrated by visualizing the net energy gain. The model for the net energy 454 

gain (growth) can be viewed as an empirical temperature-dependent Pütter-type model. Pütter-455 

type models are the simplest growth models based on a dynamic energy budget, and make strong 456 
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assumptions about mass-scaling of key life-history and physiological processes (e.g., maturation 457 

and assimilation). However, Pütter-type models are among the most commonly applied growth 458 

models in ecology and fisheries, they tend to fit data reasonably well (Marshall & White 2019), 459 

and are suitable for illustrating the consequences of non-linear consumption rates due to their 460 

simplicity (in contrast to more complex and parameter-rich dynamic energy budget models, e.g. 461 

(Kitchell et al. 1977; Cuenco et al. 1985)). A Pütter model is the result of two antagonistic 462 

allometric processes, biomass gains and biomass losses: 463 

AB
A)
= 	𝐻(𝑇)𝑀?	– 	𝐾(𝑇)𝑀-                                                 (7) 464 

where 𝑀 is body mass and 𝑇 is temperature, 𝐻 and 𝐾 the allometric constants and 𝑎 and 𝑏 the 465 

exponents of the processes underlying gains and losses, respectively. We convert metabolism from 466 

oxygen consumption [mg	O0	h"#	day"#] to g	day"# by assuming 1 kcal = 295 mg	O0 (based on 467 

an oxycaloric coefficient of 14.2 J/mg	O0) (Hepher 1988), 1 kcal = 4184 J and an energy content 468 

of 5600 J/g (wet weight) (Rijnsdorp & Ibelings 1989). Consumption rate is already in unit g	day"#. 469 

Consumption and metabolic rates are calculated for two sizes (5 and 1000 g, which roughly 470 

correspond to the 25th percentile of both datasets and the maximum mass in the consumption data, 471 

respectively), using the global allometric relationships found in the log-log models fit to sub-peak 472 

temperatures. These allometric functions are further scaled with the temperature correction factors 473 

𝑟C for consumption and 𝑟> for metabolism. 𝑟C is based on the Sharpe-Schoolfield model and 𝑟> is 474 

given by the temperature dependence of metabolic rate from the log-linear model. Because 𝑟C and 475 

𝑟> are fitted to data on different scales, we divide these functions by their maximum. Lastly, we 476 

rescale the product between the allometric functions and 𝑟C and 𝑟> such that the rate at 19℃ (mean 477 

temperature in both data sets) equals the temperature-independent rate.  478 

 479 
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Figures 769 

 770 

Figure 1. Natural log of maximum consumption rate (A) and metabolic rate (B) against body mass 771 

on a logarithmic x-axis. Lines are global predictions (routine metabolic rate in panel B) at the 772 

average temperature in each data set (both 19℃, but note the model is fitted using mean-centred 773 

Arrhenius temperature), hence the temperature terms are omitted. Red dahsed lines indicate a 774 

slope of 3/4, corresponding to the prediction from the metabolic theory of ecology. Shaded areas 775 

correspond to 80% and 95% credible intervals. Species are grouped by color (legend not shown, 776 
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n=20 for consumption and n=34 for metabolism, respectively). C) Global and species-level effects 777 

of mass and temperature on maximum consumption rate and metabolic rate. Horizontal lines show 778 

the posterior medians of the global activation energies and mass exponents of maximum 779 

consumption and metabolism (𝜇!* and 𝜇!1 in Eqs. 6-8 for the mass and temperature coefficients, 780 

respectively). The shaded horizontal rectangles correspond to the posterior median ± 2 standard 781 

deviations. Points and triangles show the posterior medians for each species-level coefficient (for 782 

maximum consumption rate and metabolic rate, respectively), and the vertical bars show their 783 

80% and 95% credible interval.  784 
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 785 

Figure 2. Mass-corrected maximum consumption rate increases until a maximum is reached, after 786 

which it declines steeper than the initial rate of increase. Maximum consumption rates are relative 787 

to the average maximum consumption rates within species and temperature is the difference 788 

between the experimental temperature and the temperature where maximum consumption peaks 789 

(also by species). Lines show posterior median of predictions from the Sharpe-Schoolfield model 790 

(using the average intercept across species and the common coefficients), grey bands show 95% 791 

and 80% credible intervals. Colors indicate species. 792 

 793 

 794 

 795 

 796 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.01.21.427580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.21.427580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 797 

Figure 3. Illustration of predicted whole-organism maximum consumption rate (green), metabolic 798 

rate (purple) and the difference between them (orange) for two body sizes (top=1000g, 799 

bottom=5g) (see ´Materials and Methods´). Vertical arrows indicate the temperature where the 800 

difference in net energy gain (energy available for growth) is maximized for the two body sizes, 801 

which occurs at different temperatures despite that consumption peaks at the same temperature 802 

for both body sizes.  803 
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 804 

Figure 4. Experimental data demonstrating optimum growth temperature declines with 805 

intraspecific body mass. The plot shows the optimum temperature within species (rescaled by 806 

subtracting the mean optimum temperature from each observation, by species) as a function of the 807 

natural log of rescaled body mass (ratio of mass to maturation mass within species). Probability 808 

bands represent 80% and 95% credible intervals, and the solid line shows the global prediction 809 

(𝜇!# and 𝜇!*). Colors indicate species and the area of the circle corresponds to body mass in unit 810 

g. 811 
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