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Summary

Nasal breathing affects cognitive functions, but it has remained largely unclear how respiration-

driven inputs shape information processing in neuronal circuits. Current theories emphasize the

role of neuronal assemblies,  coalitions of transiently active pyramidal cells,  as the core unit  of

cortical network computations. Here, we show that respiration-related oscillations (RROs) directly

pace  the  activation  of  neuronal  assemblies  in  the  medial  prefrontal  cortex  (mPFC)  of  mice.

Neuronal assemblies are more efficiently entrained than single neurons and activate preferentially

during the descending phase of RROs. At the same time, overlap between individual assemblies is

minimized  during  descending  RRO due  to  the  efficient  recruitment  of  GABAergic  neurons  by

assemblies.  Our  results  thus  suggest  the  RROs  support  cortical  operations  by  defining  time

windows of enhanced yet segregated assembly activity.
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Introduction

Nasal airflow activates olfactory sensory neurons in the olfactory epithelium  (Grosmaitre et al.,

2007), thereby producing oscillating depolarizations that are broadcast to the brain via the olfactory

bulbs (Fontanini and Bower, 2006). Besides the well-studied role of respiration-related oscillations

(RROs) in the processing of olfactory information (Kay, 2015), converging evidences indicate that

RROs occurs  in  a  variety  of  higher-order  cortical  areas  including the medial  prefrontal  cortex

(mPFC,  Biskamp et al., 2017,  Nguyen Chi et al., 2016,  Lockmann et al., 2016,  Ito et al., 2014,

Zhong et al., 2017, Karalis and Sirota, 2018, Moberly et al., 2018, Kőszeghy et al., 2018, Bagur et

al., 2021). These results suggest that rhythmic breathing might affect cognitive functions beyond

the processing of smells  (Heck et al., 2019). Behavioural studies on human participants indeed

demonstrated that nasal respiration supports memory encoding and recall  (Zelano et al.,  2016,

Nakamura et al., 2018, Arshamian et al., 2018), but how respiration affects information processing

and fundamental circuit operations in higher-order neocortex has remained largely unexplored on

the mechanistic level.

Neuronal  assemblies  are  thought  to  comprise  the  building  blocks  of  cognitive  function

(Buzsáki, 2010, Papadimitriou et al., 2020, El-Gaby et al., 2021). Assemblies are composed of co-

active  neurons  which  transiently  and  consistently  fire  together,  and  are  thought  to  convey

information  to  downstream  reader  neurons  by  effective  synaptic  transmission  due  to  their

synchronized  activity  (Buzsáki,  2010).  The  recurrent  nature  of  connections  among  cortical

pyramidal cells and strengthening of connections of coactive neurons are thought to provide the

structural  and functional  grounds for  the emergence of  assemblies  (Harris,  2005,  Palm et  al.,

2014). One way in which RROs could impact cortical information processing is to directly modulate

the activity of assemblies. Focusing on the medial prefrontal cortex (mPFC), a highly associative

brain area providing top-down control to cortex (Le Merre et al., 2021), we tested this hypothesis in

awake mice. We find that assembly patterns emerge during spontaneous behaviour in the mPFC,

and that these patterns are entrained by ongoing RROs. Assembly patterns preferentially activate

during the descending phase of the RRO, when cortical excitation is maximized. Moreover, we

provide  evidence  that  the  differential  recruitment  of  putative  GABAergic  interneurons  by
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assemblies during the descending phase of RRO supports the temporal segregation of assembly

patterns.  These  results  thus  suggest  that  rhythmic  breathing  affects  cognitive  function  at  a

fundamental level by defining time windows of preferred assembly activation.

Results

Prefrontal assemblies are entrained by respiration-related oscillations

The cortical local field potential (LFP) is characterized by prominent RROs, which peak in the 1-5

Hz frequency band during immobility (Biskamp et al., 2017, Zhong et al., 2017, Karalis and Sirota,

2018). We confirmed this finding in head-fixed mice, in which we simultaneously recorded LFP

signals from the olfactory epithelium (LFPolf) and the mPFC (Karalis and Sirota, 2018, Fig. 1A,B).

During immmobility, the mPFC LFP showed a spectral peak at ~1-5 Hz, which coincided with high

spectral power of the LFPolf (Fig. 1C,D). Furthermore, we found both signals to be coherent in the

1-5 Hz band (Fig. 1E). 1-5 Hz LFP power (Fig. 1C,F) and coherence with respiration moreover

showed a dorso-ventral increase, consistent with a previous report on RROs in the mPFC (Karalis

and Sirota, 2018, Fig. 1E,H). Our data thus support recent accounts that 1-5 Hz oscillatory activity

in the mPFC reflects primarily a respiration-related rhythm. During movement, power spectra of

both cortical LFP and respiration peaked at ~7-10 Hz (Supplementary Fig. 1). Given the spectral

overlap  to  theta  oscillations  in  mice  (~7  Hz),  it  was  less  clear  to  what  extend  7-10  Hz  LFP

oscillations were driven by respiration during movement. We thus focused on immobile states to

assess the potential impact of 1-5 Hz RROs on neuronal assemblies.

Motivated by previous reports of spontaneously occurring cell assemblies in neocortex and

hippocampus  (Peyrache et al., 2009,  Miller et al., 2014,  El-Gaby et al., 2021), we screened for

assembly patterns in a dataset of single unit recordings from the mPFC of head-fixed, awake mice

navigating in a virtual arena. In this paradigm, the animals showed periods of voluntary locomotion

intermingled with extended epochs of immobility (proportion immobility: 0.40 ± 0.03, n=13 mice).

We identified neuronal assembly activations from the occurrence of co-firing of neurons exceeding

random coactivation (25 ms bin width, 60 ± 4 neurons per session, Fig. 2A, Supplementary Fig 2,

Lopes-dos-Santos et al., 2013). This approach reliably extracted cell assemblies in simulated data
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(Supplementary Fig. 2) and identified on average one assembly pattern per 6.8 ± 0.2 neurons in

the mPFC data set (25 sessions from 13 mice, 1494 pyramidal cells in total), similar to results from

the hippocampus (El-Gaby et al., 2021). Assembly patterns were dominated by few neurons with

large weights, which displayed more strongly correlated spike trains than neurons with low weight

(p=10-131, Fig. 2A, see Supplementary Fig. 3 for additional quantification of assembly parameters).

Ongoing network activity in the mPFC is thus characterized by the emergence of spontaneously

activating neuronal assemblies.

To quantify the expression of assembly patterns with high temporal resolution, we extracted

for each pattern the time course of activation by projecting the weight vectors on smoothed spike

trains of all simultaneously recorded pyramidal neurons (Fig. 2B,C, van de Ven et al., 2016). We

extracted all  RRO cycles during which a given pattern activated, and quantified the number of

assembly activations as a function of RRO phase. Importantly, since the duration of each phase

bin  is  taken  into  account,  this  analysis  is  robust  against  waveform asymmetries  of  the  RRO.

Comparison against randomly shuffled onset times for each pattern revealed that 38 % of identified

assembly patterns were significantly entrained by the ongoing RRO (84 out of 221 patterns, n=13

mice,  Fig.  2D).  The majority  of  patterns  activated during the descending phase of  RRO, thus

coinciding with excitation of the circuitry during negative LFP deflections (Fig. 2D). This finding was

robust against different threshold values for the detection of active assemblies (Supplementary Fig.

4).  Considering  all  221  patterns,  we  detected  a  significantly  higher  activation  frequency  and

stronger average expression strength during the descending compared to the ascending phase

(p=4.8*10-11 and p=6.0*10-6, Fig. 2E). These data thus demonstrate that RRO defines time windows

of preferred activity for neuronal ensembles.

RRO entrainment of assemblies emerges despite variable coupling of contributing neurons

We next asked whether the entrainment of assembly patterns by rhythmic breathing is a reflection

of  the functional grouping of highly RRO-coupled neurons into assemblies, or whether it  is  an

emergent property that is independent from the RRO-coupling of the contributing neurons. We

found evidence for the latter: First, the mean coupling strength of patterns was higher than that of
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individual neurons (p=6*10-20, Fig. 2F). Second, the average RRO coupling intensity of neurons

with high contribution to assembly patterns did not differ from low-contributing neurons (p=0.648,

Fig. 2G), indicating that coactivity of pyramidal cells with varying RRO coupling depth underlies

RRO-paced assemblies. Third,  correlation of a neuron’s weight in the assembly with the RRO

coupling intensity of that neuron was generally low and showed no significant difference for RRO-

entrained and non-entrained patterns (p=0.063,  Fig. 2H). Thus, it is the transient coactivation of

assemblies  which  is  entrained  by  respiration,  independently  of  the  coupling  of  the  individual

neurons forming them. 

RRO-paced interneuron activity supports sparse assembly activations

Given that assemblies activate more often during the descending phase of RR, we next asked

whether this results in enhanced assembly overlap due to an increase in co-occurence by chance.

We quantified the coactivation of any two simultaneously recorded patterns within a time window of

±10 ms, which is within the integration time of cortical neurons (Koch et al., 1996). Despite higher

assembly frequency (Fig. 2E), we observed reduced coactivation during the descending compared

to the ascending phase (Fig. 3A, n=931 pairs of patterns, p=0.004). These data suggest that active

mechanisms contribute to keeping assembly activations apart from each other during descending

RRO.

Previous work showed that GABAergic interneurons associate their activity with individual

assembly patterns (Dupret et al., 2013). Feedback inhibition by GABAergic cells that are recruited

by some but not other assemblies might thus provide a mechanism to maintain a sparse assembly

activation profile (Buzsáki, 2010). For this to be true, interneurons should be differentially recruited

by individual assembly patterns, fire when assemblies activate, and be more strongly aligned with

assemblies  during  the  descending  phase  of  RRO.  To  test  these  predictions,  we  analyzed

electrophysiolgically identified interneurons that were recorded simultaneously with the pyramidal

cell population (n=270 putative interneurons). We found that interneurons showed diverse activity

profiles (i.e. firing change in relation to the onset of each assembly pattern, Fig. 3B). The similarity

in interneuron profiles between two patterns correlated positively with the coactivation strength of
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the  same  pair  of  patterns  (Fig.  3C,  Spearman’s  r=0.358,  p=3*10-29),  indicating  that  strongly

coactivating patterns share similar interneuron profiles. Moreover,  similar to assembly patterns,

interneurons discharged more during the descending phase of RRO (Fig. 3D). Finally, interneurons

showed  stronger  coactivation  with  the  assembly  patterns  during  the  descending  than  the

ascending phase (Fig.  3E,  n=270 interneurons,  p=4*10-11).  Jointly  these data suggest  that  the

pattern-specific  coactivation  of  interneurons  with  individual  assembly  patterns  provides  a

mechanism to support the segregation of assemblies during the descending phase of RRO.

Phase-specific recruitment of interneurons by assembly neurons

Finally,  we  asked  which  mechanisms  might  mediate  the  enhanced  assembly-recruitment  of

interneurons during descending RRO. One possibility would be that interneurons become more

responsive to local glutamatergic drive from assembly neurons. To directly test this hypothesis, we

analyzed putative excitatory synaptic  connections from pyramidal cells onto interneurons using

spike train cross-correlation (English et al., 2017). In total, we detected 234 connections (Fig. 4A,

n=13 mice, 14842 connections tested). During the descending phase or RRO, spike transmission

probability was significantly increased compared to the ascending phase (Fig. 4B, n=204 synaptic

interactions, p=0.009). To directly compare assembly and non-assembly neurons, we separated

the data set in connections from pyramidal neurons with high weight in at least one pattern in the

recording (assembly connections, ~39% of connections) or low weight (non-assembly connections,

61% of connections). Both types of connections did not differ in their overall spike transmission

(Fig. 4C, p=0.532), connection probability, or convergence (Supplementary Fig. 5). However, while

non-assembly connections showed indistinguishable spike transmission when analysed separately

for the ascending and descending phase of RRO (Fig. 4D, n=122, p=0.222), assembly connections

displayed stronger  spike transmission probability during the descending phase (Fig.  4D, n=82,

p=0.003).  These  data  jointly  suggest  that  RROs  support  sparse  assembly  activity  during  the

descending phase of each cycle by defining time windows of enhanced responsiveness of the local

interneuron population to excitatory drive from assembly neurons.
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Discussion

We found that  spontaneously occurring assemblies in the mPFC align their  activation with the

descending  phase  of  ongoing  RRO.  We provide  evidence  that  this  effect  is  explained  by  an

emergent property of the circuit rather than the simple combination of RRO-coupled neurons into

assemblies. This implies that RROs might have a stronger pacemaking effect on neuronal circuits

than previously assumed on the basis of recordings from individual neurons.

A technical limitation when studying neuronal assemblies is the unequivocal identification of

time  points  of  assembly  onset.  Incomplete  sampling  of  the  local  neuron  population  and

thresholding the assembly expression time course, as done in our study and others (van de Ven et

al., 2016, El-Gaby et al., 2021), might underestimate the real number of active assemblies at any

given time point. However, our key finding that RROs define time windows of preferred assembly

activation did hold for different activation thresholds, suggesting that the RRO modulation does not

depend on the parameter selection but rather represents a fundamental property of the behaviour

of cortical assemblies. It should be further noted that our method of assembly detection does not

take into  account  the temporal  structure of  the neuronal  activity  in  the assemblies,  but  solely

detects whether or not neurons show significant coactivation. Neuronal assemblies have, however,

also been defined based on the temporal alignment of spikes (i.e. neuronal sequences) in both the

hippocampus (Chenani et al., 2019) and neocortex (Carrillo-Reid et al., 2015, Luczak et al., 2007,

Luczak et al., 2009). Future work will be required to test whether the principle of RR modulation

applies to such neuronal sequences.

Our data add to the notion that cell  assemblies exist  in the absence of specific stimuli,

arguing in favor of pre-existing network structure suitable to integrate new information using a pool

of readily available network motifs (Miller et al., 2014,  Almeida-Filho et al., 2014,  Carrillo-Reid et

al., 2015, Hamm et al., 2017, Dejean et al., 2016). While assembly activity was higher during the

descending RRO phase, the overlap between individual assemblies was reduced during that time

(Fig. 3A). These data imply that the co-activation of assemblies is actively suppressed during the

descending phase of RR, as the higher frequency of assembly activation would make random

coactivity more likely.  The simultaneous recruitment of  putative GABAergic interneurons,  which
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happens distinctly for different assembly patterns, provides a potential mechanism how individual

assemblies might separate their activation from each other  (Buzsáki,  2010). These data are in

agreement with results from the hippocampus showing that GABAergic neurons differentially align

their firing with cell assemblies representing distinct places during spatial learning (Dupret et al.,

2013). In line with this hypothesis, interneurons were recruited more strongly to assemblies during

the descending phase of RRO (Fig. 3E). Importantly, although occurring on the basis of higher

interneurons rates during descending RRO, the enhanced interneuron recruitment was not merely

an effect of higher interneuron firing since our measure of assembly-aligned recruitment takes into

account the local rate before assembly onset. The association of interneuron firing with assemblies

could be caused by an enhanced excitability state due to impinging respiration-driven excitation

linked with negative LFP deflections in combination with short-term plasticity processes. To lines of

evidence argue in  favor of  this hypothesis:  First,  using a cross-correlation-based estimation of

spike transmission probability,  we show that interneurons are particularly receptive to incoming

excitatory signals from assembly neurons (Fig. 4D). Presynaptic cooperativity could synergistically

impact  spike  transmission  at  assembly  neuron-interneuron  connections:  In  the  hippocampus,

synchronized presynaptic  activity  leads to  enhanced spike  transmission (English  et  al.,  2017).

Such synchronization would be expected for assembly neurons and might thus contribute to higher

spike transmission during the descending phase of RROs. Second, interneurons have been shown

to be particularly receptive to respiration-driven input. They are consistently found to be more likely

to be phase-coupled to RRO than principal cells (Karalis and Sirota, 2018, Biskamp et al., 2017).

Furthermore,  whole-cell  recordings  from  pyramidal  cells  in  the  parietal  cortex  revealed

subthreshold respiration-synchronous membrane potential oscillations likely reflecting GABAergic

synaptic currents (Jung et al., 2019). These findings imply that the main effect of respiration-driven

inputs to neocortical circuits is mediated through GABAergic neurons.

Our results add to the increasing recognition of internally generated bodily influences as

modulators of brain activity and cognitive functions, including drive from respiration, heart rate and

gastrointestinal  rhythms  (Heck  et  al.,  2019,  Azzalini  et  al.,  2019).  RROs  have  been  directly

observed in various areas of the neocortex, hippocampus, thalamus, and amygdala (Zhong et al.,
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2017,  Ito et al.,  2014, Biskamp et al.,  2017, Nguyen Chi et  al.,  2016,  Lockmann et  al.,  2016,

Moberly et al.,  2018,  Jung et al.,  2019,  Bagur et al.,  2021) and are thought to impact cortical

circuits through the entrainment of brain oscillations involved in cognitive functions, including theta

(Zelano et al., 2016), gamma  (Zhong et al., 2017,  Biskamp et al., 2017) and sharp-wave/ripple

oscillations (Liu et al., 2017). Based on our results we propose that the role of RROs extends to the

building blocks of  cortical  computations,  the assemblies.  The synchronization of  assemblies to

RROs might provide an  effective sender-reader interaction such that the impact of synchronized

activity from upstream can be efficiently interpreted by downstream reader implementations across

neocortex  and  subcortical  structures  (Buzsáki,  2010).  Alternatively,  pooling  sparse  assembly

activations in the descending phase of RRO might provide a mechanism to facilitate spontaneous

assembly  reactivations  during  offline  states,  which  has  been  argued  to  support  memory

persistence in the presence of synaptic turnover (Fauth and van Rossum, 2019). 
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Figures and figure legends

Fig. 1: The mPFC LFP is entrained by respiration during immobility.

A: Head-fixed mice were recorded during spontaneous immobility, bottom: example traces of the

olfactory epithelium LFP (black) and the LFP in the mPFC (red) band pass filtered 1-4 Hz during

immobility. B: Top, coronal section of the mPFC showing the shank of the silicon probe. Bottom:

schematic of  the recording configuration in  the mPFC. C:  Mean power spectral  density of  the

mPFC along the dorso-ventral  axis.  D:  Power  spectral  density  of  the olfactory epithelium LFP

(shaded area: sem). E: Mean coherence between the mPFC and the respiration along the dorso-

ventral  axis.  F:  Amplitude of  the  peak power  for  the  most  dorsal  and  ventral  recording  sites.

P=0.014. G: Depth profile of the Granger causality of the mPFC by the respiration (red) and of the

respiration by the mPFC (black). H: Peak coherence between the respiration and the mPFC LFP

for the most dorsal and ventral recording sites. n=4 mice, p=0.007. * p<0.05,** p<0.01, paired t-

tests.
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Fig. 2: Cell assemblies preferentially activate during the descending phase of RROs.

A: Assemblies were extracted from covariance matrices of binned spike trains. Top, the example

covariance matrix of simultaneously recorded pyramidal cells in one session. Bottom, examples of

three assembly weight vectors with assembly neurons labelled in red. Assembly neurons showed

stronger cofiring than other neurons, confirming their joint assembly membership. n=674 assembly

and 454206 other pairs, p=10-131. B: Time course of activation of the first assembly pattern shown

in A along with the pyramidal cells giving rise to the pattern. The inset in the blue box shows one

activation at higher resolution. C: Examples of assembly activations (asterisks) with simultaneously

recorded RRO (1-5 Hz-filtered) during immobility. D: Average assembly activation frequency as a

function  of  RRO phase revealed preferential  occurrence of  assemblies  during the descending

phase. Right: Example (top) and summary (bottom) of significantly RRO-entrained assemblies. E:

Average  pattern  frequency  (left)  and  expression  strength  (right)  during  the  ascending  and

descending phase. n=221, p=4.8*10-11 and p=6.0*10-6  paired t-tests. F: RRO-coupling strenghts of

assemblies and all individual pyramidal neurons. n=221 and 1145, p=6*10-20. G: Assembly neurons
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and cells with low contribution to a pattern showed similar RRO-coupling depth. n=142 and 143

patterns, p=0.648. H: Similar correlation between weight in an assembly pattern and RRO coupling

intensity for RRO-modulated (n=84) and non-modulated patterns (n=137). p=0.063. *** p<0.001,

Welch’s tests. Data are shown as mean ± sem.

12

272

273

274

275

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447658doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447658
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 3: RRO phase-specific alignment of interneurons with assemblies.

A: Quantification of coactivation of assembly patterns within ±10 ms revealed reduced coactivation

frequency during the descending phase of ongoing RRO. n=931 pairs, p=0.004. B: Interneurons

show differential activation profiles in relation to patterns. Left: example normalized firing rate of

two interneurons (purple and blue) relative to the onset of two different assembly patterns (pattern

10  and  13).  Right:  Interneuron  profile  matrix  summarizing  the normalized  firing  change  of  all

interneurons  in  the  recording  in  response  to  the onset  of  all  patterns  in  one  session.  Arrows

indicate the interneurons shown on the left.  C: Correlation of pattern coactivation strength and

similarity of the interneuron profile of the same patterns. n=13 mice. D: Interneurons align their

firing to the descending phase of RRO. E: Interneuron recruitment by assemblies is enhanced

during descending RRO. The graph shows the summed normalized activation of each interneuron

to all patterns. n=270 interneurons, p=6*10-11. Paired t-tests. 
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Fig. 4: RRO phase-specific recruitment of interneurons by assembly neurons.

A. Example of spike transmission at a pyramidal cell (p)-interneuron (int) connection during the

ascending  (blue)  and  descending  phase  of  RRO  (orange).  Red  line  indicates  the  slowly

comodulated baseline. B: Summary of connection strength during ascending and descending RRP

phase.  Spike  transmission  was  significantly  enhanced  during  the  descending  phase.  n=204

connections,  p=0.009.  C:  Unaltered overall  spike  transmission probability  at  assembly neuron-

interneuron (high contribution, n=91) and non-assembly-interneuron connections (low contribution,

n=143,  p=0.532,  Welch’s  test).  D:  Spike  transmission  for  non-assembly  neuron-to-interneuron

connections  did  not  depend  on  RRO  phase  (left,  n=122,  p=0.222)  while  connections  from

assembly  neurons  displayed  stronger  transmission  during  descending  RRO  (right,  n=82,

p=0.0027).  E:  Schematic of  the proposed function of  RRO: Assembly activations are favoured

during  the  descending  phase,  while  assembly  overlap  is  minimized  due  to  the  enhanced

recruitment of interneurons. **p<0.01. Data in C are shown as mean ± sem. Paired t-tests unless

indicated otherwise.
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Methods

Mice

C57Bl6/J mice of both sexes were used in this study. The animals had free access to food and

water and were maintained on a 12 dark/light cycle. Mice were 6 to 13 weeks old. All experiments

were  performed  in  agreement  with  national  legislation  and  were  approved  by  the

Regierungspräsidium Freiburg. We analyzed data from 10 mice that were recorded in the context

of a previous study (Sauer and Bartos, 2021). 4 additional mice were implanted and recorded for

this study. 

Surgical procedures

A stainless steel head plate was implanted on the skull  under general anesthesia in isoflurane

(induction: 3%, maintenance: 1-2%) using dental cement. In 4 mice,  a 0.8 mm hole was drilled

above the nasal cavity, and a silver wire insulated up to ~0.5 mm from the extremity was inserted

between the olfactory epithelium and the bone, and cemented in place. The animals were allowed

to recover from head plate implantation for at least three days. Buprenorphin (0.1 mg/kg body

weight) and Carprofen (5 mg/kg body weight) were injected subcutaneously before the surgery for

pain relief.  Once the animals were habituated to head-fixation (see below),  a craniotomy was

performed  over  both  mPFCs  (1.9  mm  anterior,  0.4  mm  lateral  of  bregma)  under  isoflurane

anesthesia. The craniotomy was then covered with a drop of phosphate-buffered saline (PBS) and

sealed  of  with  QuikCast  elastomer  until  the  recordings  took  place.  An  additional  injection  of

Carprofen was given for analgesia prior to craniotomy.

Single-unit recording in the virtual reality

The mice were habituated to running on a circular track in a virtual reality. For head fixation, the

mice were briefly anesthetized in isoflurane (3% in O2). During habituation and recording, the mice

ran on a circular styrofoam wheel. First, animals were habituated to head-fixation for at least three

days without  the  virtual  reality  turned on.  Then,  they  were daily  exposed to  the virtual  reality

(circular track, length 2-3 m, with visual cues placed outside the arena). The virtual reality was
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constructed with open-source 3D rendering software Blender (Schmidt-Hieber and Häusser, 2013)

and was projected on five computer screens surrounding the head-fixation setup. 

Recordings were performed 1-3 days after the craniotomy using H3 single-shank silicon

probes  (64  recording  sites  spaced  20  µm  apart,  total  shank  length  1275  µm,  Cambridge

Neurotech). The probe was coated with a fluorescent marker (DiI or DiO) and was slowly (~2-5

µm/s) lowered to the mPFC (1600-1900 µm below brain surface).  The probe was left  in place

before the recordings for 10-15 min. Wide-band signals were recorded with a 64-channel amplifier

(Intan Technologies) using OpenEphys GUI software (30 kHz sampling frequency). Movement of

the animal was assessed by recording the motion of the running wheel as a pulse-width modulated

signal.  After  the recording,  the probe was slowly retracted and the craniotomy sealed off  with

QuickCast elastomer. With each mouse, 1-3 recording sessions were performed (1 session per

day).

Histology

After recording, the animals were deeply anesthetized with ketamin/xylazine (i.p.  injection) and

transcardially  perfused  with  ~20  ml  phosphate-buffered  saline  followed  by  ~30  ml  of  4%

paraformaldehyde.  100  µm-thick  coronal  sections  of  the  mPFC were  cut  after  post-fixation  in

fixative  overnight  at  4°.  The  slices  were  washed  in  PBS  and  stained  with  4′,6-diamidino-2-

phenylindole. A laser scanning microscope (LSM 710 or 900, Zeiss)  was used to visualize the

location of the silicon probe. Recording locations ranged from layer 2 to 6, spanning from the

accessory motor cortex to the medial orbital area.

Single-unit isolation

Single units were extracted from bandpass-filtered data (0.3-3 kHz) using MountainSort (Chung et

al.,  2017). Putative single-unit  clusters with high isolation index (>0.90) and low noise overlap

(<0.1) were kept for manual curation, during which only clusters with a clear refractory period were

kept. In case of two clusters with similar waveforms, cross-correlation was used to assess whether

clusters  had to be merged.  Isolated units  were separated in  putative  excitatory and inhibitory
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neurons based on trough-to-peak duration and asymmetry index as described before (Sirota et al.,

2008). 

Analysis of respiration-local field potential coupling

Olfactory  epithelium  and  mPFC  LFP power  spectral  density  and  cross  spectral  density were

computed using Welch’s average periodogram method. For the power, the signals were divided in

Hann windows of 2 s length with no overlap and padded by a factor 10, and the obtained power

spectral density was then averaged across windows. The coherence was computed on windows of

4 s  as the normalized cross spectral  density  of  2 s  Hann windows with no overlap and then

averaged. The Granger causality was defined as the variance of the residual from a linear auto-

regressive model fitted on a 2 s window of the mPFC LFP or the LFPolf divided by the residual of a

vector  auto-regressive  model  including the LFPolf or  the mPFC LFP.  Both auto-regressive  and

vector auto-regressive models (from the  statsmodels python package) had a fixed lag of 1, and

were computed on signals filtered below 50 Hz and downsampled to 100 Hz.

Detection of assembly patterns

Assembly  extraction  was  performed  using  principal-  and  independent  component  analysis

following a published procedure using simultaneously recorded pyramidal cells (van de Ven et al.,

2016).  The  extraction  was  done  on  the  entire  recording  duration,  including  movement  and

immobility, while the analysis of assembly activations in relation to ongoing RROs was performed

during immobility. We used a total of 13 mice with sufficient immobility duration for this analysis.

The spike trains of n pyramidal neurons were binned in B 25 ms bins and normalized by z-

scoring to avoid bias by highly active neurons. To detect the number of assembly patterns in a

recording, principal component analysis was applied to the binned spike train matrix. We next used

the Marčenko-Pastur law to extract the number of significant assembly patterns  (Marčenko and

Pastur, 1967, Lopes-dos-Santos et al., 2013). The Marčenko-Pastur law indicates that a correlation

matrix constructed from independent random variables yields eigenvalues below a critical value c

given as
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c=(1+√ nB )
2

.

If neurons fire correlated with each other (as it would be the case for assemblies), eigenvalues

above the critical limit will exist. The number of  eigenvalues exceeding the theoretical limit thus

indicates  the  number  of  assembly  patterns  (Lopes-dos-Santos  et  al.,  2013).  Independent

component analysis was then used to extract activity patterns that are as independent from each

other  as  possible.  Using  the  fastICA algorithm  of  scikit.learn, we  extracted  the  number  of

independent components given by the eigenvalues above c. The resulting components represent

the weight vectors of each assembly pattern. Note that the orientation of independent components

is arbitrary, so each vector was oriented to have the largest deflection in positive direction and was

further  scaled  to  unit  length.  Assembly  neurons  were  defined  as  those  cells  with  a  weight

exceeding 2x the standard deviation of the pattern vector  (van de Ven et al., 2016).  Sparsity of

assembly patterns (i.e. to what extent assemblies were dominated by high weights of few neurons)

was quantified as 

1−
√n−∑|k i|

√n−1
,

where n denotes the length of the weight vector, and ki is the weight of neuron i in pattern k.

Reconstruction of assembly activations over time

To obtain the assembly activation time course  T  for all  k patterns at high resolution, the weight

vectors corresponding to the assemblies were projected on smoothed spike trains z of all neurons:

T p (t)=z (t)
T P k z (t) ,

where T denotes the transpose operator and Pk gives the outer product of the kth weight vector. The

spike train matrix  z  was constructed by convolving each neuron’s  spike train with a Gaussian

kernel (standard deviation 7.2 ms).  This procedure resulted in smooth time courses of  pattern

activation. We set a threshold of 5 to detect assembly activations, unless indicated otherwise (van

de Ven et al., 2016).
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Assembly detection in simulated data

A simulated binned spike train matrix Bsim consisting of 70 neurons and 1000 bins was constructed

as 70 Poisson neurons using the numpy.random.poisson function (with lam=1). Assemblies were

modeled as a group of neurons with joint elevation in spike rate in 50 randomly chosen bins. The

spike rate increase was modeled by randomly drawing a spike value ranging between 0 and 6 for

each of the assembly neurons. This way, the identity of the assembly neurons was known a priori,

while the time points of activation were not. The assembly extraction procedure was applied as

described above, except that the reconstruction of the time course of the assemblies was done

directly on Bsim rather than convolved spike trains.

Single-neuron analysis

The cofiring coefficient was calculated using Pearson’s correlation coefficient from binned spike

trains  (25  ms  bin  width)  in  a  round-robin  fashion  separately  for  assembly  and  non-assembly

neurons. To assess the spatial extent of assemblies, we measured for each pattern the average

distance between all assembly neurons and a matching number of randomly drawn neurons. The

position of the neuron was defined by the electrode with largest negative voltage deflection. RRO-

coupling of units was quantified using the Kullback-Leibler distance (see below). Only cells with at

least 200 spikes during the immobility epochs were considered for this analysis. To compare RRO-

coupling for assembly and non-assembly neurons, the coupling value of assembly neurons for

each pattern was compared with a matching number of  low-contributing neurons (i.e.  with the

lowest weights in the pattern vector). The association of interneurons with assembly patterns was

tested by first z-scoring the convolved interneuron spike trains. Then, the mean firing rate change

during a 30 ms window following assembly onset relative to preceding baseline (833 ms long,

ending 166 ms before assembly onset) was calculated for each pattern and interneuron.

Assembly analysis

Assembly-RRO coupling was assessed by extracting first  the times of assembly activations by

threshold-crossing. After an onset was detected, no further activations could be scored for 50 ms to
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avoid double-detection. Then, for each activation we determined the instantaneous phase of the

ongoing 1-5 Hz filtered and Hilbert-transformed RRO, and quantified the mean activation as a

function  of  RRO  phase  bins  (25  bins).  This  coupling  measure  thus  carries  the  unit  “mean

activations/14.4°”. Coupling strength was expressed with the Kullback-Leibler distance K between

the actual phase distribution P and a uniform distribution U with the same mean:

K=∑
b=1

n

Pb log10(
Pb
U b

),

where  n denotes  the  bin  number.  Significant  coupling  was  tested  by  randomly  shuffling  the

activation times (1000 iterations). Phase-coupling was considered significant when K exceeded the

99th percentile of the random distribution. Kullback-Leibler distance was also used to obtain phase-

coupling of single-units.

Assembly coactivation and synaptic interactions

To detect assembly coactivations and putative pyramidal cell-interneuron connections, we used a

cross-correlation  based  framework  (English  et  al.,  2017).  For  synaptic  connections,  we  first

determined the raw cross-correlation between two binned spike trains (0.4 ms bins) for neurons

with  more  than  500 spikes  using the filter_correlogram function  of  the  neuronpy.util.spiketrain

package. Criteria for a significant monosynaptic interaction were a peak in the monosynaptic time

window (0.8-2.8  ms  following  the  spike  in  the  pyramidal  cell)  significantly  exceeding  the  co-

modulated baseline and the peak in anti-causal direction (i.e. interneuron-pyramidal cell, -2 to 0

ms).  The  baseline  b  was  obtained  by  convolving  the  raw  cross-correlogram  with  a  partially

hollowed  Gaussian  function  (hollow  fraction:  0.6,  standard  deviation:  10  ms).  The  Poisson

distribution  with  continuity  correction  was  used  to  estimate  the  probability  of  the  observed

magnitude of cross-correlation in the monosynaptic bins (Psyn),

Psyn=1−∑
x=0

n−1

( e−b (m)b (m )x

x ! )−0.5 e−b (m)b (m )n

n !
.
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Similarly, we estimated the probability of the observed count in the monosynaptic bins of the cross-

correlogram  being  larger  than  the  count  in  anticausal  direction  (canticausal)  using  the  Poisson

distribution with continuity correction,

Pcausal=1−∑
x=0

n−1

(
e−canticausal (−m)canticausal(−m)x

x!
)−0.5(

e−canticausal(−m)canticausal(−m)n

n!
).

Following  optogenetic  ground truth  data  obtained in  the  hippocampus,  a  pair  was marked  as

connected if  Psyn<0.001 and Pcausal<0.0026  (English et al.,  2017). Spike transmission probability

was defined as the spiking in the monosynaptic window exceeding b normalized by the number of

presynaptic  spikes.  For  all  significantly  connected  pairs,  we  additionally  extracted  spike

transmission probability separately for the ascending and descending phases of RRO, which were

defined from 1-5 Hz filtered and Hilbert-transformed raw LFP traces. Only connections with positive

spike transmission during both ascending and descending phase were considered for this analysis.

Convergence  was  assessed  by  taking  the  number  of  convergent  connections  divided  by  the

number of total connections of the session. This analysis was only applied to sessions with at least

3 connections (12 sessions from 10 mice). For assembly coactivations, the coactivation strength

was determined by summing the values exceeding b in the -10 to + 10 ms time window for all pairs

of patterns. 

Statistical analysis

Unpaired comparisons were done with two-sided Welch’s tests, which is robust against deviation

from normal distribution at large sample sizes (Stonehouse and Forrester, 1998). For small group

sizes <15, an unpaired two-sided  t-test was used. Correlations were assessed with Spearman’s

correlation coefficient. Pairwise comparisons were done with a paired t-test. Data are presented as

full data ranges or as mean ± sem where indicated. All analysis (except for initial spike sorting)

were performed in Python2.7.
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