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Abstract 

Single-cell transcriptomics enables systematic charting of cellular composition of complex tissues. 

Identification of cell populations often relies on unsupervised clustering of cells based on the 

similarity of their scRNA-seq profiles, followed by manual annotation of cell clusters using 

established marker genes. However, manual selection of marker genes is a time-consuming 

process that may lead to sub-optimal annotation results as the selected markers must be 

informative of both the individual cell clusters and various cell types present in the complex 

samples. Here, we developed a computational platform, termed ScType, which enables data-

driven, fully-automated and ultra-fast cell-type identification based solely on given scRNA-seq 

data, combined with our comprehensive cell marker database as background information. Using a 

compendium of six scRNA-seq datasets from various human and mouse tissues, we show how 

ScType provides an unbiased and accurate cell-type annotation by guaranteeing the specificity of 

positive and negative marker genes both across cell clusters and cell types. We also demonstrate 

how ScType enables distinguishing between healthy and malignant cell populations, based on 

single-cell calling of single-nucleotide variants, making it a versatile tool for exploration and use of 

single-cell transcriptomic data for anticancer applications. The widely-applicable method is 

deployed both as an interactive web-tool (https://sctype.app), and as an open-source R-package, 

connected with a comprehensive ScType database of specific markers. 
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Introduction 

Accurate identification of distinct cell types in complex tissue samples is a critical prerequisite for 

elucidating the roles of cell populations in various biological processes including hematopoiesis, 

embryonic and intestinal development1,2,3,4. Traditionally, cell sorting and microscopic techniques 

have been extensively used to isolate cell types, followed by molecular profiling of the sorted cells 

using, for instance, mRNA or protein measurements5,6,7. Decades of research has led to several 

collections of cell-specific features, including expression of marker genes in various tissues, that 

are being used to distinguish various cell types in new tissue samples8,9. However, the entire 

process is manually tedious and technically challenging. Recently, single-cell RNA sequencing 

(scRNA-seq) has been established as a high-throughput approach to routinely chart diverse cell 

populations in tissue samples and to study various biological processes in disease and 

development2,10,11,12. The scRNA-seq technology has provided an unprecedented view of various 

cell types and it has become the leading technology in large-scale cell mapping projects such as 

the Human Cell Atlas13. 

 

Identification of cell populations often relies on unsupervised clustering of cells based on their 

transcriptomic profiles, followed by cluster annotation using marker genes that are differentially-

expressed between the clusters14,15. These marker genes are then manually inspected using 

available information in the literature or cell marker databases8,9 to assign cell-type labels to each 

detected cluster. However, the manual selection of cluster-specific marker genes is a time-

consuming and error-prone task, since the marker genes are often (i) expressed in multiple cell 

clusters, and (ii) correspond to multiple cell types. In addition, the expression of negative marker 

genes, which provide evidence against a cell being of a particular type, should also be 

incorporated into the cell-type identification process. The cell annotation procedure is further 

complicated by the lack of curated cell marker databases that include both known and de novo 

positive and negative markers to annotate cell-types with confidence. For example, selection of 

CD44 as marker gene may compromise the accuracy of cell annotation as CD44 is expressed in 

various immune cell populations.8 Another popular approach for cell-type assignment is to utilize a 

reference dataset, a collection of previously annotated cell types in single-cell data, to train a 

classification algorithm and to apply it to new single-cell datasets. However, such supervised 

approaches require that the reference and new datasets resemble each other, which often pose a 

problem in scRNA-seq studies16. 

 

One important application of single-cell characterization is to design personalized treatments that 

selectively target malignant cell types in a patient-derived sample, while avoiding severe inhibition 
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and toxic effects on healthy cells17. In cancers and other complex diseases, monotherapy 

resistance often emerges and requires multi-drug co-inhibition of various disease- and resistance-

driving cell populations. We recently demonstrated how our comprehensive ScType marker 

database helped an AI-guided identification of personalized drug combination therapies for 

patients with refractory acute myeloid leukemia (AML), which led to synergistic co-inhibition of 

leukemic cell subpopulations that emerged in various stages of the disease pathogenesis and 

treatment regimens18. These cancer-selective and patient-specific combinations were shown to be 

relatively less toxic to lymphoid cells (non-malignant cells in the AML case), thereby increasing 

their likelihood for clinical translation. However, how to accurately distinguish between multiple 

malignant and non-malignant cell populations for targeted treatments remains a translational 

challenge and requires both systematic and highly selective strategies that are applicable to 

various diseases and tissue types. In many applications, reference single-cell data and cell-type 

annotations are not available, rather the cell population identification needs to be done individually 

for each patient sample.  

 

To solve these challenges, we developed a computational ScType platform (marker database and 

cell-type identification algorithm), which requires only a single scRNA-seq dataset for accurate and 

unsupervised cell-type annotation (Fig. 1a). The unbiased yet selective cell-type annotation is 

achieved by compiling the largest database of established cell-specific markers (ScType 

database), and by ensuring the specificity of marker genes across both the cell clusters and cell-

types (ScType algorithm, see Fig. 1b-c).  We carried out a systematic benchmarking of ScType 

and related methods across 6 scRNA-seq datasets from 4 human and 2 mouse tissues, and 

showed that ScType platform correctly annotated a total of 72 out of 73 cell-types (98.6% 

accuracy), including 8 newly-reannotated cell-types that were incorrectly or non-specifically 

annotated in the original studies. In addition, ScType implements a single-cell single-nucleotide 

variant (SNV) calling option to distinguish between malignant and non-malignant cells (Fig. 1a), 

demonstrated here using scRNA-seq data from AML patient samples. The ScType platform is 

implemented as an open-source and interactive web-tool (https://sctype.app), connected to the 

ScType marker database, to enable ultra-fast and fully-automated cell-type annotation. 

 

Results 

ScType improves annotation of cell-types using solely scRNA-seq data 

We first investigated the performance of ScType by re-analyzing a published scRNA-seq study of 

human liver cells10. Using only the raw scRNA-seq data from the liver atlas dataset, ScType 

identified 17 clusters and correctly assigned them to 11 identified liver-related cell types that were 

manually annotated in the original study (Fig 1d). This demonstrates the benefits of the 

comprehensive marker databases and the accuracy of the fully-automated annotation process. 
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Additionally, ScType was able to automatically distinguish between two closely-related cell 

populations of B-cells (immature and plasma B cells) that were not differentiated in the original 

manuscript10. This segregation between immature and plasma B cells was done based on the 

information in the ScType database that plasma cells do not express common B-cell markers, such 

as CD19 and CD20, but instead they express CD138 (Fig. 1e)19.  

 

Next, we re-analyzed another published scRNA-seq data of mouse retinal cells (Fig. S1a)20. 

ScType automatically identified three closely-related cell populations of amacrine cell types 

(GABAergic, glycinergic and startbust), which were originally-identified by an extensive and deep 

analysis of selectively-expressed markers20. Furthermore, ScType correctly distinguished between 

the two subtypes of bipolar cells – rod (expressing PRKCA21 and CAR822, Fig. S1b) and cone 

(expressing SCGN23, Fig. S1b) bipolar cells, which were manually assigned to a single group in the 

original study, therefore enhancing the resolution of the cell-type annotation. Taken together, these 

results indicate that ScType enables a fully-automated prioritization of highly-specific markers for 

accurate annotation of even rare cell-types with distinct and selective molecular features.  
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Figure 1. A schematic view of cell-type annotation using ScType. (a) ScType requires only the 

raw or pre-processed single-cell transcriptomics dataset(s) as input. ScType implements options 

for additional quality control and normalization steps, where needed, followed by unsupervised 

clustering of cells based on scRNA-seq profiles. The results here are based on the Louvain 

clustering; however, also SC3, DBSCAN, GiniClust and k-means clustering options are available in 

ScType (see Methods). In the next step, ScType performs a fully-automated cell-type annotation 

using an in-built comprehensive marker database. Finally, ScType implements novel options for 

somatic single-cell SNV calling to distinguish between healthy and malignant cell populations. (b-c) 

ScType algorithm guarantees that the marker genes show specificity both across clusters and cell 

types for accurate unsupervised cell-type annotation with high cell subpopulation selectivity. (d)  

UMAP example of automated cell subtype identification by ScType in the liver atlas dataset, where 

it automatically labelled the same cell-types as assigned manually in the original study.10 (e) Based 

on the information that plasma cells do not express common B-cell markers, such as CD19 and 

CD20, but instead express CD138, ScType enhanced the resolution of cell-type annotations of two 

cell clusters, which were jointly annotated as B-cells in the original study, by segregating them into 

immature B-cell and plasma (B) cell types (lower UMAP plot of panel d).  

 

Systematic evaluation of ScType across human and mouse scRNA-seq datasets  

To investigate the wider applicability of the automated method, we next benchmarked the 

performance of ScType in terms of its ability to automatically assign cell-types in comparison to the 

cell-type annotations given by the original authors of additional four (six in total) published scRNA-

seq studies. We further utilized all the six datasets to compare ScType performance against other 

recent cell-type annotation methods in terms of their accuracy and running time. The RNA-seq 

datasets used in the benchmarking originated from various tissues, including human liver10, 

pancreas24, peripheral blood mononuclear cells (PBMCs)25, brain26, as well as mouse lung27 and 

retina samples20. These scRNA-seq datasets were utilized to investigate the performance of 

ScType and the related methods in the context of various sequencing platforms, tissues types and 

organisms.  

 

Among the six scRNA-seq datasets from various human and mouse tissues, ScType correctly 

annotated a total of 72 cell types out of 73 cell-types (98.6% accuracy), including 8 correctly 

reannotated cell-types that were originally incorrectly or non-specifically annotated (Fig. 2a). The 

only cell-type ScType was unable to automatically label as known was fetal cells in the human 

brain dataset, as there are no fetal cell markers available for human brain in the current version of 

the ScType database. However, ScType correctly identified all the other cell populations of the 

human brain tissues (oligodendrocytes, astrocytes, microglial cells, neurons, endothelial and 

oligodendrocyte precursor cells), according to the annotations made in the original study26. 
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Furthermore, ScType was able to refine the originally-annotated neuron cell population into 

cholinergic (expressing SLC17A7)28 and glutamatergic (expressing ACHE)29 subtypes.  

 

Next, we compared ScType against the state-of-the-art cell-type annotation methods with reported 

(i) highest accuracy (scSorter30 that was recently shown to outperform several popular tools such 

as Garnett31 and CellAssign32), (ii) shortest running time (SCINA33), and (iii) full-automated process 

(scCATCH34). For an unbiased comparison, we provided scSorter and SCINA with our in-built 

database markers, while scCATCH utilized its own integrated marker database. Overall, ScType 

correctly annotated more than 94% of the cells in each dataset (Fig. 2b, upper panel), 

outperforming the other algorithms in 5 out 6 datasets. We note that the differences between 

ScType and the next best performing method scSorter were not large, as both methods showed a 

high accuracy in all the datasets, but importantly ScType was more than 30 times faster than 

scSorter (Fig. 2b, bottom panel). In particular, ScType showed almost perfect accuracy in the 

challenging human PBMC dataset (Fig. 2c), where there are multiple closely-related subtypes. In 

contrast, scSorter and scCATCH did not identify natural killer cell population, and they incorrectly 

identified several T cell subtypes, while SCINA was not able to distinguish between the two 

monocyte subpopulations as well as several subsets of T cells (Fig. 2c).  

 

These benchmarking results indicate that ScType enables ultra-fast and highly accurate separation 

even between closely-related subtypes by utilizing the novel concepts of marker gene specificity 

across both cell clusters and cell types, along with negative marker genes (e.g., effector T cells are 

known to be CCR7 negative35). 
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Figure 2. ScType performs ultra-fast and accurate cell-type annotation across various 

tissues. (a) The overall performance of ScType across six human and mouse scRNA-seq 

datasets. ScType automatically assigned cell-types according to the original studies, and it also 

correctly reannotated five cell types in the human brain, liver and pancreas tissues, compared to 

the original studies (marked as novel cell types). ScType labelled only single cluster (fetal cells) as 

unknown cell-type in the human brain dataset (marked as not assigned). Similarly, in the mouse 

lung and retina datasets, ScType enabled automated identification of all the cell types, and it also 

correctly reassigned three novel mouse cell types. (b) Comparison of ScType with three recently 

developed cell-type annotation methods in terms of percentage of correctly annotated cells (upper 

panel) and running time (lower panel). (c) Detailed cell-type annotations of the human PBMC 

dataset by the methods under comparison.  

 

Single-cell SNV calling distinguishes between healthy and malignant cell types 

To enable genetic analyses in cancer applications, we further implemented an option for single-

nucleotide variation (SNV) calling directly from the scRNA-seq data. As an example, we re-

analyzed the scRNA-seq transcriptomic profile and cell-type composition of an AML patient sample 
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from our recent study18 using the ScType platform (Fig 3a). After performing automated single-cell 

SNV calling (see Methods), we investigated whether the number of SNVs within a cell-type could 

distinguish between healthy and cancerous populations present in the patient sample (Fig. 3b). 

More specifically, ScType quantified the percentage of cells in a cell-type above the median SNV 

in the cancer consensus genes across all cells within the sample (ScType_SNV score). As 

expected, we observed a higher SNV score in the CD34+ progenitor (HSC/MPP) cells and CD34+ 

interferon-stimulated gene (ISG)+ blast cells, as compared to CD24+ CD66b+ neutrophils and 

memory CD8+ T cells that are usually considered as non-malignant cell types in AML11 (Fig. 3c). 

As another validation for correctly distinguishing normal cells from malignant cells, we considered 

aneuploidy (unbalanced number of chromosomes), which is common for most human tumors36. To 

identify aneuploidy, we incorporated the recent Bayesian segmentation approach, CopyKAT36, that 

classified majority of CD24+ CD66b+ neutrophils and memory CD8+ T cells as diploid cells (Fig. 

3d), suggesting their non-malignancy. These two validations demonstrated how ScType correctly 

assigned CD24+ CD66b+ neutrophils and memory CD8+ T cells as non-malignant cells (ScType 

SNV score < 20 and the majority of cell within the cell-type are classified as diploid cells, Fig 3e). 

 

To further investigate the ScType cell population classification, we studied the associations 

between the various cell-types based on the occurrence of common SNVs in the cancer 

consensus genes, and observed that non-malignant cell-types (i.e. memory CD8+ T cells and 

CD24+ CD66b+ neutrophils) were closely similar to each other, while showing almost no SNV 

similarity with the malignant cell types (e.g. HSC/MPP and ISG+ blast cells, see Fig. 3f). These 

results demonstrate how the ScType platform enables one to distinguish between malignant and 

non-malignant cell populations, based directly on scRNA data from a given patient sample, which 

is critical for the selection of safe and effective targeted treatment regimens for individual AML 

patients. For other cancer types and malignancies, the platform similarly supports automated 

options for the marker selection and cell population classification into healthy and diseased cells. 

In addition, ScType enables the  visualization of the genome-wide copy number profiles from 

scRNA-seq data using CopyKAT to identify  larger-scale copy number alterations (CNAs), such as 

somatic gains or deletions of large segments of chromosomes (see Fig. S2 as an example in the 

AML patient sample). In the downstream analyses, the identified CNAs may explain difference in 

the cellular phenotypes of specific cell types and subclones, including their apoptotic potential or 

drug sensitivity. 
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Figure 3: ScType enables SNV calling directly from the scRNA-seq profiles. (a) UMAP plot of 

the cell types in the AML patient sample automatically annotated by ScType. (b) Distribution of 

somatic SNVs in the cancer consensus genes across the various cell types of the patient. (c) 

ScType SNV score summarizes the number of point mutations in the cancer genes for each cell 

type, shown as the percentage of SNVs above the median SNV value within the particular cell 

cluster. (d) UMAP showing aneuploid and diploid cell classification based on Bayesian 

segmentation approach CopyKAT36. (e) ScType assigns cell types as non-malignant when the 

ScType_SNV score is below 20 and more than 50% of cells within the cell-type are classified as 

diploid. (f) Chord diagram shows the associations between different cell types in terms of the 

similarity of the SNVs in the cancer genes (i.e., occurrence of common SNVs, see Methods for 

details). The width of a connection corresponds to the degree of SNV similarity between cell-types, 

while the connection color indicates a specific cell-type as shown in UMAP plot in Figure 3a. 

 

Discussion 

We presented ScType, a fully-automated platform for cell-type identification that enables accurate 

and ultra-fast single-cell-type annotations based solely on the given scRNA-seq data, using our 

comprehensive ScType marker databases as background information. To the best of our 

knowledge, ScType is currently the only unsupervised method that makes use of the marker gene 
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specificity across both cell clusters and cell types to automatically identify highly-specific positive 

marker genes, along with negative marker genes to provide evidence against cells being of a 

particular cell-type for cell-type selective annotations. To promote its wide application, either as a 

stand-alone tool or together with other popular single-cell data analysis software (e.g., Seurat37, 

MAST38, PAGODA39), we have deployed ScType both as an interactive web-platform 

(http://sctype.app), and as an open-source R implementation (http://sctype.app/source_code.php).  

We anticipate the ScType platform will accelerate unbiased phenotypic profiling of cells when 

applied either to large-scale single-cell sequencing projects or smaller-scale profiling of patient-

derived samples. For example, the integrative marker information in the ScType database may 

enable the identification of rare cell subtypes that have distinct combinations of molecular markers, 

suggesting specific functions and phenotypic profiles. We recently demonstrated how the ScType 

database provided information for patient-tailored identification of cancer-selective combinatorial 

therapies for relapsed AML patients, each with different genetic background and resistance 

mechanisms18. The ScType annotation algorithm, together with the novel methods to distinguish 

between malignant and non-malignant cells, are expected to enable design of targeted treatment 

regimens also for other cancer types.  

The existing computational methods for automatic identification of cell types can be broadly 

categorized into two groups: (1) supervised methods that require carefully-annotated training 

datasets labelled with correct cell populations to train the classifiers (e.g. CaSTLe40 and ACTINN41 

that annotate cell types based on pre-defined reference set of cells without the need of cell marker 

input), and (2) a prior knowledge-based methods that require either a marker gene set or a pre-

trained classifier for the selected cell populations (e.g. scSorter30, SCINA33,  and scCATCH34). The 

supervised methods may have severe limitations when annotating especially rare populations of 

cells, due to lack of reference data to train the machine learning algorithms. Furthermore, 

supervised methods are notoriously time-consuming to train, as well as error prone to technical 

artifacts in the training data, which affect their prediction ability for new scRNA-seq data42.  

Similarly, the prior knowledge-based cell classification approaches have certain limitations. For 

instance, their performance heavily depends on the available gene lists provided as markers for 

each cell type, typically obtained from manual literature search or matching to marker databases 

that are still suboptimal both in coverage and specificity. Ideally, one would like to use an 

appropriate number of specific markers to achieve a maximally accurate cell-type classification. 

However, most existing methods utilize a limited number of markers, thereby potentially masking 

the identification of a subpopulation of cells that do not express the selected marker genes. 

Furthermore, the use of inconsistent cell-type markers across experiments and laboratories may 

compromise the reproducibility of the findings42. These caveats become even more pronounced 

when the number of cell types and samples increases, thus preventing fast and reproducible 
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annotations. It has been therefore argued that prior information does improve the automated cell-

type identifications32,42.  

ScType implements a number of improvements compared to the existing cell-annotation tools. Our 

unsupervised approach outperformed the prior knowledge-based methods scSorter30, SCINA33, 

and scCATCH34 , which were recently shown to enable accurate annotation of multiple cell types42. 

Another group of supervised methods, such as CaSTLe40, ACTINN41, SingleR43 and CHETAH44, 

utilize reference bulk or single-cell transcriptomic data for cell-type predictions, and therefore 

require comprehensive, manually-annotated and high-quality reference datasets for training; 

furthermore, these methods do not allow identification of novel cell-type marker genes. In contrast, 

ScType requires neither reference scRNA-seq datasets nor manual selection of marker genes; 

instead, all the background information for established or de novo markers comes from the ScType 

database that is to date the most comprehensive database of specific markers for human and 

mouse cells.  

In comparison with many other computational approaches that require manual interference,31,32 

ScType takes a fully data-driven approach, and it annotates the cell-types at once in a totally 

unsupervised manner. The only input needed for the ScType tool is the raw sequencing data file, 

although uploading of pre-processed scRNA-seq data is also an option. This saves considerable 

time and costs in the scRNA-seq analysis, especially when searching for cell-types in a tissue that 

involves a large variety of cell-types with similar transcriptomic profiles (e.g. bone marrow samples 

from mixed lineage leukemia subjects). The running time of ScType is also orders of magnitude 

faster than the supervised methods. Furthermore, ScType implements options for SNV and CNV 

calling from the raw scRNA-seq profiles of individual samples. The users may compare SNV levels 

across different cell types, and study associations between cell clusters based on their SNV load.   

Using six scRNA-seq datasets from the human and mouse tissues, we demonstrated that ScType 

provides scalable and accurate identification of cell-clusters, and it is compatible with data formats 

from various sequencing techniques (e.g. Drop-seq and Smart-seq). These benchmarking results 

against the existing cell annotation approaches indicated that ScType is widely-applicable to 

various biomedical problems, and it provides fast and accurate cell-type classifications. 

Furthermore, we expect that the comprehensive ScType database will lead to the development of 

new and improved cell-type detection methods, as well as accelerate the implementation of single-

cell pipelines for translational applications, such as monitoring of therapy resistant cancer cell sub-

populations and designing of targeted combinatorial therapies to overcome the monotherapy 

resistance in cancer patients, which require fast and automated analyses for real-time clinical 

implementation.  
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In conclusion, ScType provides automated cell-type identification using its own in-built database, 

as well as identification of malignant cell populations and cancer targets based on SNV calling and 

aneuploidy identification, requiring only raw scRNA-seq data as an input. As increased number of 

scRNA-seq datasets from various tissue types become available from the Human Cell Atlas and 

other projects, the accuracy and coverage of the ScType platform is expected to increase 

accordingly.  
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ONLINE METHODS 
 

ScType database construction 

ScType database is the largest database to date of human and mouse cell-specific markers, 

compiled by integrating the information available in the CellMarker database 

(http://biocc.hrbmu.edu.cn/CellMarker/) and PanglaoDB (https://panglaodb.se), which are currently 

the two largest available databases for cell-type markers. In the CellMarker database, 13 605 cell 

markers for 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers for 389 cell 

types in 81 mouse tissues/sub-tissues were manually collected and curated from more than 100 

000 published papers8. In the PanglaoDB, 6631 gene markers mapping to 155 cell types have 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2021. ; https://doi.org/10.1101/812131doi: bioRxiv preprint 

http://biocc.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
https://doi.org/10.1101/812131
http://creativecommons.org/licenses/by-nc/4.0/


15 

 

been identified by differential expression analysis in the particular cell types using single-cell data 

and a community-based crowdsourcing approach for curation of gene expression markers9. 

However, these two databases differ in the number of tissues, cell types and marker numbers, as 

well as in the way the markers have been assigned to each cell type. Therefore, we firstly 

converted the non-uniform gene IDs to approved gene symbols within and between the databases. 

Next, we removed the low evidence marker genes from the CellMarker database (i.e., genes 

having only one reference to support the cell-type marker), and genes that appeared in less than 5 

clusters of specific cell-type from PanglaoDB. Additionally, we excluded genes showing no 

expression across all the datasets in PanglaoDB. Ultimately, we unified the cell and tissue naming 

from the two databases and excluded tissues comprising less than 5 cell types. Fifteen novel cell 

types with corresponding marker genes were added by manual curation of >10 papers to the 

current version of the compiled ScType database (https://sctype.app/database.php), as relatively 

few brain and eye tissue cell types were provided in the first version of the database. In total, the 

current version of the ScType database comprises 3980 cell markers for 194 cell types in 17 

human tissues and 4212 cell markers for 194 cell types in 17 mouse tissues.  

 

Cell-type specificity of markers 

 

Cell-type specificity (S) was calculated separately for each marker gene (Mi) across the cell types, 

hence providing a quantitative measure of how frequently the marker maps to the cell-type 

uniquely within a particlar tissue (t) using the cell-type specificity score: 𝑆𝑖
𝑡 =

 
|𝑀𝑖|𝑡−𝑚𝑖𝑛(|𝑀|𝑡)

𝑚𝑎𝑥(|𝑀|𝑡)−𝑚𝑖𝑛(|𝑀|𝑡)
, where 𝑀 = (𝑀1, … , 𝑀𝑖 , … , 𝑀𝑚), and m is the total number of marker genes M 

present across all the cell types of the tissue t, and i is the index of each unique marker. 

 

ScType workflow options 

ScType provides a complete pipeline for single-cell RNA-seq data analysis and cell-type 

annotation. We utilized Seurat v4.037 for data processing and normalization. For clustering 

analysis, the default option is Louvain clustering based on a shared nearest neighbor graph (using 

FindClusters function with the resolution parameter set to 0.8 and 20 principal components given 

as input), which was used to generate the current results; however, also SC345, DBSCAN46, 

GiniClust47 and k-means clustering options are available in ScType. The clusters are visualized 

using either principal components analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-

SNE), Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP), Isomap48, 

Diffusion Map49, largeVis50 or by means of expression heatmaps. For the integrated multi-scRNA-

seq dataset analysis, ScType uses FindIntegrationAnchors and IntegrateData functions from 

Seurat v4.0 that were shown to enable an effective identification of anchor correspondences 

across multiple single-cell datasets37. As a key unique component, ScType implements an ultra-

fast and fully-automated cell-type identification, using highly-specific marker genes (see above), 

and allows the user to explore each gene’s contribution to cell-type annotations (see Fig. S1). 

Finally, Sctype implements options for SNV calling and aneuploidy identification, and it 

automatically suggests separation between non-malignant and malignant cell types (see below). 

 

ScType cell-type annotation 

In order to assign each cell-type to a cluster (p), given the input scRNA-seq data (𝑋) with m genes 

and n cells, ScType first standardizes each gene expression profile into z-score across all genes. 

Only positive and negative markers genes corresponding to different cell types of the specified 

tissues are considered (extracted either from ScType database or using user-provided custom cell-
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type gene sets as an alternative option). Then, each gene expression level is multiplied with its cell 

type-specificity (𝑆𝑖
𝑡) score: 𝑋′ = ((𝑍(𝑋𝑇))

𝑇
⊆ M𝑡) · 𝑆𝑖

𝑡, where 𝑋′ is a transformed scRNA-seq 

expression matrix of n cells and |M𝑡| genes, M𝑡 is the vector of marker genes of all cell types within 

the tissue t, and 𝑍 denotes the z-score-transformation. The transformed expression values for 

each cell-type (c) are further summarized into cell type-specific marker-enrichment-score as the 

normalized sum of all the individual genes supporting a cell-type: x𝑐
′ =   

∑ 𝑥𝑖
′𝑗

𝑖=1

√𝑗
+

∑ 𝑥𝑘
′𝑙

𝑘=1

√𝑙
 , where x′ is 

the unique column of 𝑋′ corresponding to one cell, c is the specific cell-type within the tissue, and  

i,...,j are the indices corresponding to cell-type-specific marker genes, while k,...,l are the indices of 

negative marker genes that are not expected to be expressed in the cell type. Such transformation 

results in normalized expression matrix of c-by-n dimension, where each row represents one of the 

cell types and each column represents an individual cell. Finally, by summing up the values of 

each row (cell type) across the cells corresponding to a specific cluster p, the cluster summary 

enrichment-score (called ScType score) for each cell-type is calculated: 𝑆𝑐𝑇𝑦𝑝𝑒 𝑠𝑐𝑜𝑟𝑒𝑐 = ∑ 𝑥𝑐
𝑧

𝑧∈𝑝 . 

A cell-type with the highest ScType score is used for assignment to the cluster p. Such formulation 

guarantees marker gene specificity across both the cell-types (𝑆𝑖
𝑡) and cell clusters (∑ 𝑥𝑐

𝑧
𝑧∈𝑝 )  (Fig 

1b-c), thus allowing for a highly accurate cell-type annotation. In addition to the cell-type 

assignments, the ScType web-portal (http://sctype.app) allows users to view the metadata based 

on which the assignment was made, view the markers that are enriched in each specific cluster, 

and plot the cumulative gene-specificity for different cell types as bar graphs.  

 

Publicly available datasets 

In order to benchmark the ScType against the other cell-type annotation methods, we utilized six 

scRNA-seq datasets from public domain and re-analysed these using ScType platform. Five 

datasets were downloaded from Gene Express Omnibus (GEO): Human Liver (GSE124395), 

Human Brain (GSE67835), Human Pancreas (GSE85241), Mouse Lung (GSE63269) and Mouse 

Retina (GSE63473). Human PBMC dataset was downloaded from the 10x Genomics Dataset 

Repository (https://s3-us-west-

2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz).  

 

Comparison with other cell-type annotation tools  

We compared the accuracy, running time and requirement of hardware resources of ScType 

against scSorter30, SCINA33, and scCATCH34 using the six scRNA-seq datasets (see Publicly 

available datasets). We used the default parameters to run all the methods. To provide unbiased 

comparisons, we used the same cell-type marker gene information (based on our ScType 

database) in scSorter and SCINA. scCATCH has its own in-built database that was used in the 

analysis. 

 

SNV identification using single-cell RNA sequencing 

ScType utilizes raw scRNA-seq data to identify single-nucleotide variants (SNVs) present in each 
cell.  ScType processes the raw input scRNA-seq BAM file using samtools51 and call the SNVs 
using Strelka252. Next, ScType connects the SNV to each cluster using vartrix 
(https://github.com/10XGenomics/vartrix). As an extended feature, ScType also calculates the sum 
of total number of SNV present in the COSMIC  cancer census genes53 as the combined SNV 
score (ScType_SNV score) for each cluster in a cancerous tissue profile. More specifically, 
ScType_SNV score summarizes the number of point mutations in the cancer genes for each cell 
type, calculated as the percentage of SNVs above the median SNV value within the particular cell 
cluster. ScType also incorporates recently implemented Bayesian segmentation approach, called 
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CopyKAT36, to distinguish between aneuploid and diploid cells. Based on these two analysis, 
ScType automatically makes a classification between malignant and non-malignant cells. ScType 
assigns cells as non-malignant if ScType_SNV score < 20 and the majority of cell within the cell-
type (>50%) are classified as diploid and the others as malignant. Users can use these two 
analyses to assign healthy and cancerous cell-type labels to the cell clusters, based on the 
assumption that cancerous cell clusters tend to have more SNVs in the cancer genes and 
aneuploidy is common for most human tumors36. The list of cancer consensus genes was 
downloaded from the catalogue of somatic mutation in cancer database (COSMIC v92)53.   
 
Code and data availability 

The R source-code of the ScType algorithm is freely available at 

https://sctype.app/source_code.php to allow reproduction of the results and its further comparison 

against or integration with other algorithms. ScType is also freely available as an interactive web-

tool at http://sctype.app. The ScType database is freely available at 

https://sctype.app/database.php. 

 

 

SUPPLEMENTARY FIGURES 

 

 
 

Supplementary Figure 1. ScType cell-type annotation of mouse retina scRNAseq data23. (a) 

UMAP plot shows the automated cell-type annotations by ScType. (b) Violin plots show the 

expression levels of the high-specificity marker genes that were used as a validation of correct cell-

type assignments.  
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Supplementary Figure 2. Clustered heatmap of single-cell copy number profiles estimated by 

CopyKAT36 tool in the AML patient sample. 
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