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ABSTRACT 

  

Over the past decade, the data-independent acquisition mode has gained popularity for broad coverage of 

complex proteomes by LC-MS/MS and quantification of low-abundance proteins. However, there is no 

consensus in the literature on the best data acquisition parameters and processing tools to use for this 

specific application. Here, we present the most comprehensive comparison of DIA workflows on Orbitrap 

instruments published so far in the field of proteomics. Using a standard human 48 proteins mixture (UPS1 

– Sigma) at 8 different concentrations in an E. coli proteome background, we tested 36 workflows 

including 4 different DIA window acquisition schemes and 6 different software tools (DIA-NN, DIA-

Umpire, OpenSWATH, ScaffoldDIA, Skyline and Spectronaut) with or without the use of a DDA spectral 

library. Based on the number of proteins identified, quantification linearity and reproducibility, as well as 

sensitivity and specificity in 28 pairwise comparisons of different UPS1 concentrations, we summarize 

the major considerations and propose guidelines for choosing the DIA workflow best suited for LC-

MS/MS proteomic analyses. Our 96 DIA raw files and software outputs have been deposited on 

ProteomeXchange for testing or developing new DIA processing tools. 
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INTRODUCTION 

 

Over the past two decades, proteomics, or analysis of the protein content of a biological sample, has 

become an essential strategy for the comprehension of systems biology and molecular events involved in 

health and disease. Bottom-up proteomics, which relies on liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) to analyze peptides resulting from proteolysis, allows the identification and 

quantification of up to thousands of proteins in a whole cell extract1,2. 

The most widely used strategy to obtain broad coverage of the proteome, known as discovery proteomics, 

is based on data-dependent acquisition (DDA), in which MS1 survey scans containing accurate mass 

measurement of co-eluting peptides are acquired successively, followed by acquisition of fragmentation 

(or MS2) spectra of automatically selected precursor ions3. MS1 and MS2 spectra are used to query 

publicly available protein databases in order to obtain peptide identification and then infer the 

corresponding proteins. Moreover, quantification information can be obtained using, for instance, the area 

under peaks reconstructed from MS1 precursor ion intensities by label-free quantification (LFQ)4. The 

DDA method allows thousands of proteins to be identified and quantified relatively in fractionated or 

purified or whole-protein extracts. This large-scale analysis provides essential information on biological 

mechanisms. 

In targeted proteomics, a previously chosen list of proteins of interest is analyzed in a protein extract using 

selected reaction monitoring (SRM)5,6 or parallel reaction monitoring (PRM)7, by successive 

measurements of specific precursor/fragment transitions of a given peptide throughout the 

chromatographic elution. In this case, chromatographic elution profile overlap of several transitions of a 

same peptide validates detection, and the peptide is quantified by integrating the area under the 

chromatographic peak. Compared to discovery proteomics, sensitivity, quantification accuracy and 

reproducibility are improved across numerous samples. For these reasons, the targeted approach is well 

suited to monitoring protein candidates in large sample cohorts in biomarker validation studies. 

Although these two approaches have been adopted widely, both have drawbacks. Protein identification by 

DDA is based on a stochastic precursor selection event prior to the acquisition of fragmentation spectra, 

leading to a lack of run-to-run reproducibility when complex samples are analyzed. Although post-

acquisition bioinformatics tools are now better able to deal with this under-sampling effect by recovering 

the precursor MS1 signal in all runs of an experiment, the dynamic range of intensities in MS1 spectra is 

broad and often limits detection and quantification of low-abundance species. In contrast, by narrow 
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quadrupole filtering of the targeted precursor, SRM or PRM analyses generally avoid the concomitant 

selection of abundant species, making targeted proteomics more sensitive and more reproducible than 

DDA. However, even when SRM/PRM transitions signal acquisition is finely scheduled over the whole 

chromatographic run time, this strategy is limited to the analysis of few hundreds of peptides due to the 

number of transitions to be monitored in parallel without exceeding the appropriate cycle time for 

chromatographic peak reconstruction. 

To overcome these limitations, an alternative discovery proteomics strategy has been devised, combining 

the strengths of the DDA and targeted approaches to obtain reproducible and accurate quantification at 

proteome level (several thousands of proteins). Developed at the beginning of the millennium8–10 and 

popularized by Gillet et al.11,12, data-independent acquisition or DIA relies not on precursors selected 

individually, but on systematic windows of precursors and fragmentation of all peptide ions contained in 

each window. The main advantages of this strategy are the coverage of all detectable ions present in a 

sample and a smaller dynamic range of intensities within the spectra used for quantification. Indeed, DIA 

quantification uses MS2 spectra resulting from small precursor windows rather than acquisition over the 

full mass range as in MS1 spectra used for quantification in DDA. This makes the quantitative aspect of 

DIA analysis more reproducible than DDA, especially for low-abundance species, while identifying 

thousands of proteins12,13. However, the resulting fragmentation spectra made highly complex by selection 

of multiple precursors makes database search engines usually used for DDA analysis, unable to match 

experimental data to theoretical masses obtained from the public protein databases. To identify peptides 

in chimeric DIA-MS2 spectra, two main strategies have been devised: spectrum-centric and peptide-

centric. In spectrum-centric strategy, identifications are obtained by the deconvolution of the complex 

spectra and search against protein databases, whereas in peptide-centric identification, m/z and retention 

time information, in previously generated spectral libraries, are used to extract signal from DIA spectra14. 

In recent years, several open-source or proprietary software tools have been developed for DIA analysis15–

20. However, each has its own specificity, able to process data using a DDA spectral library and/or a 

FASTA file only, with or without normalization and missing values imputation algorithms, with or 

without a graphical user interface21. The DIA window acquisition scheme appears to be a critical point for 

DIA analysis since wide windows allow coverage of the whole mass range in a reasonable duty cycle time 

whereas narrow windows produce simpler spectra, facilitating subsequent analysis. Moreover, 

overlapping windows have been shown to increase the number of protein identifications while maintaining 

the proper cycle time for the quantification of each analyte22 and several studies mentioned the use of 
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variable window sizes19,23,24. Among the plethora of methods for DIA acquisition and processing 

mentioned in the literature, the user may find it difficult to choose the best strategy for complex proteomes 

analysis and especially for the detection and accurate quantification of less abundant species. In 2016, in 

a collaboration of software developers, several DIA tools were compared using a proteomic dataset 

acquired from a mixture of 3 protein extracts from human cells, yeast, and Escherichia coli in SWATH-

MS DIA mode on TripleTOF (Sciex) instruments23. Although the experimental design allowed relative 

quantification through measurement of different protein ratios for each organism, the concentration of 

each protein in the mixture remained unknown. It was not possible to draw any conclusions about software 

performance in relation to protein abundance in the sample. Since this study was published, new tools 

have been developed and the capabilities of others have been extended to library-free searches. In the 

present study, we compared the quantitative performance of DIA-NN, DIA-Umpire, OpenSWATH, 

ScaffoldDIA, Skyline and Spectronaut using a proteomic standard composed of 48 human proteins (a 

commercial mixture called UPS1, Sigma-Aldrich) spiked in a whole E. coli protein extract background. 

A similar proteomic standard has been used previously to test DDA spectral processing tools25–27. Data 

obtained at 8 UPS1 concentrations on an Orbitrap Fusion (Thermo) instrument with 4 different DIA 

window schemes (narrow, wide, mixed, overlapped) were analyzed and processed with or without a large 

spectral library containing about 2800 E. coli and UPS1 proteins. We thus compiled number of identified 

and quantified proteins, quantification linearity and reproducibility, ratio accuracy, sensitivity, and 

specificity in pairwise comparisons using a total of 36 acquisition and processing combinations: the 4 DIA 

window schemes with 4 DIA tools using a spectral library and with 5 DIA tools using a FASTA file (Fig. 

1). Our goal was to identify the best quantification strategy for proteins at different abundances in complex 

proteomes. Our 96 DIA raw data files, spectral library, intermediate files, software outputs and 

quantification tables may be accessed via ProteomeXchange for further statistical analyses or software 

testing and development. 

  

METHODS 

Sample preparation 

Bacterial culture and protein extraction 

Escherichia coli (#CCRI-12923) was obtained from the Collection du Centre de Recherche en 

Infectiologie, Université Laval (CCRI, Québec, Canada). It is registered as WDCM861 at the World Data 
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Centre for Microorganisms. Six aliquots (1 mL) broth culture in Brain Heart Infusion (BHI) medium at a 

concentration of (8x108 cfu/mL) were centrifuged at 10,000 x g for 15 min and the pellets were washed 

three times with 1 mL of 50 mM Tris. Dried pellets were frozen and stored at -20°C. 

For protein extraction, each aliquot was resuspended in 135 µL of extraction buffer (50 mM ammonium 

bicarbonate, 1% sodium deoxycholate and 20 mM 1,4 dithiothreitol. Bacteria were then inactivated by 

heating for 10 min at 95°C and lysis was achieved by sonication with Bioruptor® (Diagenode) for 15 

minutes with 30s/30s ON/OFF cycles at high intensity. 

Lysed cells were centrifuged at 13,000 x g for 10 min to remove debris, the 6 supernatants were then 

pooled, and the protein concentration was measured using the Bradford assay. Protein extracts were stored 

at -80°C. 

Proteomic standard 

Universal Proteomic Standard-1 (UPS1, Sigma) containing 48 human proteins (5 pmol each) was diluted 

serially in E. coli whole protein extract (previously diluted at 0.1 µg/µL in extraction buffer) to obtain 8 

different UPS1 concentrations: 50, 25, 10, 5, 2.5, 1, 0.25 and 0.1 fmol of UPS1 per µg of E. coli. Disulfide 

bridges were reduced by heating for 30 minutes at 37°C and alkylated with 50 mM iodoacetamide for 30 

minutes in darkness. Prior to trypsin (Promega) digestion, the pH was adjusted to 8.0 with sodium 

hydroxide. Proteolysis was carried out overnight at an enzyme/protein ratio of 1:50 at 37°C. The reaction 

was stopped by dropping the sample pH to 2.0 with formic acid. After centrifugation at 16,000 x g for 5 

minutes to remove the deoxycholate precipitate, the supernatants (peptides) were cleaned on an Oasis 

HLB cartridge 10 mg (Waters) according to the manufacturer instructions, aliquoted and dried under 

vacuum. 

  

Spectral library 

To generate a spectral library, 250 µg of E. coli protein extract were used. Reduction, alkylation, and 

trypsin digestion were performed under the conditions described above. Peptides were fractionated on an 

Agilent 1200 Series HPLC system equipped with an Agilent Extend C18 (1.0 mm x 150 mm, 3.5 µm) 

column. Peptides were loaded at 1 mL/min of solvent A (10 mM ammonium bicarbonate, pH 10) and 

eluted by addition of solvent B (90% acetonitrile/10% ammonium bicarbonate pH 10) with a gradient of 

5–35% B for 60 minutes and 35–70% B for 24 minutes. Fractions were collected in a 96-well micro-assay 

plate every 1 minute and finally pooled into 48 fractions and vacuum-dried. 
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A sample of 200 fmol UPS1 per µg of E. coli extract was prepared under the same conditions to complete 

the spectral library with UPS1 human proteins. 

  

Data acquisition 

NanoLC-MS/MS analysis 

Samples were resuspended at 0.2 µg/µL in loading buffer (2% acetonitrile/0.05% trifluoroacetic acid) 

containing 0.5X iRT peptides (Biognosys). Injected volume was 5 µL. The nano-LC-MS/MS system 

comprised a U3000 NanoRSLC liquid chromatography system (ThermoScientific, Dionex Softron 

GmbH, Germering, Germany) in line with an Orbitrap Fusion Tribrid – ETD mass spectrometer 

(ThermoScientific, San Jose, CA, USA) driven by Orbitrap Fusion Tune Application 3.0.2041 and 

equipped with a Nanospray FlexTM ion source. Peptides were trapped at 20 μL/min in loading solvent (2% 

acetonitrile/0.05% trifluoroacetic acid) on a 300 mm i.d x 5 mm, C18 PepMap100, 5 mm, 100 Å precolumn 

cartridge (Thermo Fisher Scientific) for 5 minutes. The pre-column was switched in line with a 

PepMap100 RSLC, C18 3 mm, 100 Å, 75 µm i.d. x 50 cm length column (Thermo Fisher Scientific) and 

the peptides were eluted with a linear gradient from 5–40 % solvent B (A: 0.1% formic acid, B: 80% 

acetonitrile/0.1% formic acid) in 90 minutes, at 300 nL/min. Spectra were acquired using Thermo 

XCalibur software version 4.1.50. Lock mass internal calibration on the m/z 445.12003 siloxane ion was 

used. 

  

DDA acquisition parameters – Spectral library 

Full-scan mass spectra (350–1800 m/z) were acquired in the Orbitrap using an AGC target of 4e5, a 

maximum injection time of 50 ms and a mass resolution of 120,000. Each MS scan was followed by 

acquisition of fragmentation MS/MS spectra of the most intense ions for a total cycle time of 3 seconds 

(top speed mode). The selected ions were isolated using the quadrupole analyzer in a window of 1.6 m/z 

and fragmented by higher energy collision-induced dissociation (HCD) with 35% collision energy. The 

resulting fragments were detected in the Orbitrap at a 15,000 resolution with an AGC target of 5e4 and a 

maximal injection time of 22 ms. Dynamic exclusion of previously fragmented peptides was set for a 

period of 30 sec and a tolerance of 10 ppm. 

  

DIA acquisition parameters – Proteomic standard 
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Full-scan mass spectra were acquired in the Orbitrap using an AGC target of 4e5, a maximal injection 

time of 50 ms and a resolution of 60,000. Each MS scan was followed by 75 DIA scans with different 

isolation window widths depending on each scheme: 8 m/z windows spanning the 350–950 precursor 

mass range for Narrow, two cycles of 8 m/z isolation windows shifted by 4 m/z spanning the 350–954 

range for Overlapped, a combination of 8 m/z for 455–711 and 15 m/z for 350–455 and 711–1251 for 

Mixed, and 15 m/z windows spanning 350–1475 for Wide (Fig. 1 and Supplementary Table S1). Precursor 

ions were selected in the quadrupole, fragmented by HCD with 35% collision energy and fragments were 

detected in the Orbitrap at a resolution of 15,000 and with an AGC target of 4e5 and a maximal injection 

time of 22 ms. 

Data processing and statistics 

Spectral library generation 

Raw data from E. coli fractionation and 200 fmol/µg UPS1 DDA acquisition were searched against an E. 

coli database (UniProt Reference Proteome – Taxonomy 83333 – Proteome ID UP000000625 – 4312 

entries – 2016.03.15) and to the UPS1 database (downloaded from Sigma – 48 entries), using Mascot 

search engine version 2.5.1 (Matrix Science) as a node in Proteome Discoverer 2.3.0.523. The trypsin 

enzyme parameter was set for two possible missed cleavages. Carbamidomethylation of cysteines was set 

as a fixed modification and methionine oxidation was set as a variable modification. Mass search 

tolerances were 10 ppm and 25 mmu for MS and MS/MS respectively. Peptide and protein identifications 

were filtered at 1% False Discovery Rate (FDR). 

Mascot .dat files were then used to generate a spectral library in Skyline software28 (version 20.2.0.343) 

through a .blib file. Another spectral library was generated in Spectronaut v14.10.20122 (Biognosys 

AG)19 using the .pdresults file of Proteome Discoverer. Detailed parameters used to generate both spectral 

libraries are listed in Table S1. 

DIA file processing 

The tools DIA-NN18 v02/04/2020, DIA-Umpire v2.017, OpenSWATH through diaproteomics workflow 

v.1.1.015,29, ScaffoldDIA v2.1.0 (Proteome Software, Inc.)20, Skyline v20.2.0.34328,  and Spectronaut 

v14.10.20122 (Biognosys AG)19 were used for extracting peptide signals from raw files using the 

previously generated spectral library (DIA-NN, OpenSWATH, ScaffoldDIA, Skyline, Spectronaut) 
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(Library mode) or using a single E. coli and UPS1 FASTA file (UniProt Reference Proteome – Taxonomy 

83333 – Proteome ID UP000000625 – 4312 entries – 2016.03.15 and the 48 sequences of UPS1) (DIA-

NN, DIA-Umpire, ScaffoldDIA, Spectronaut) (FASTA mode). The tools in the two processing modes 

(Library or FASTA) were used as recommended by the user manual or by the software developers (Table 

S1). 

Raw files were converted to .mzML files for analysis by DIA-NN, OpenSWATH and Skyline or to 

.mzXML files for analysis by DIA-Umpire. ScaffoldDIA and Spectronaut use the raw files as input and 

convert them with their own embedded tool (Table S1). 

For the Library mode, Spectronaut and Skyline were used with their own DDA spectral libraries, while 

the Skyline .blib file was also used in ScaffoldDIA. The precursor/fragment transitions corresponding to 

this .blib file were also exported in Skyline as a .tsv file to be used in DIA-NN and OpenSWATH. 

For analysis in FASTA mode, a DIA spectral library was generated from the DIA files in DIA-NN or DIA-

Umpire prior to signal extraction and quantification. For ScaffoldDIA, an in-silico Prosit library was 

generated and used for the processing of DIA files. Spectronaut was used in ‘DirectDIA’ mode. (Table 

S1). 

The following settings were common to all software: maximum of 2 missed trypsin cleavages, cysteine 

carbamidomethylation as fixed modification and methionine oxidation as variable modification, a 

minimum of 4 fragments and a maximum of 6 were used to consider a peptide for quantification and only 

peptides with charges of 2+ to 4+ were saved. Data were filtered out at a false discovery rate (FDR) of 

1% or at q value < 0.01 at precursor, peptide and/or protein level depending on the capabilities of each 

tool. The specific parameter settings for each software tool are detailed in Table S1. 

  

Data post-processing and evaluation of DIA label-free quantification 

All data post-processing and visualization was performed using R software30 (Fig. S1). After removing 

contaminants and decoy features, precursor table output of each tool corresponding to the validated 

proteins and peptides were used for subsequent analysis. OpenSWATH and Spectronaut reported a few 

extremely low outliers that were obviously extraction errors and were removed using an arbitrary intensity 

cut-off of 10 for Spectronaut and 1 for OpenSWATH. Since DIA-NN, ScaffoldDIA and Spectronaut 

perform their own data normalization, the normalized precursor intensity values were used. For the other 

tools (DIA-Umpire, OpenSWATH and Skyline) precursor intensity values were normalized by applying 

a factor calculated from the median of all precursor intensities of each sample injection. Each precursor 
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ion was then considered as having been identified by a tool if at least one intensity value for the 24 samples 

of a same dataset was reported. Each was considered quantifiable with a tool if 3 intensity values were 

reported in the 3 replicates in at least one of the 8 UPS1 concentrations. Missing values were then imputed 

by a noise value corresponding to the 1st percentile of all precursor intensities for each sample injection. 

Precursor intensities were finally summed by stripped sequences to obtain peptide quantification and by 

accession number for protein quantification. 

For each UPS1 concentration, the coefficient of variation over the three technical replicates was computed 

as CV (%) = 100 * standard deviation/mean. To evaluate linearity, only proteins corresponding to 

precursors having intensity values in all 3 injection replicates at 50 fmol/µg UPS1 before missing value 

imputation were considered. The quantification and imputed values of the 3 replicates of each 

concentration were then averaged and log2 transformed. Linear regression of log2(intensity) and 

log10(UPS1 concentration) was then used to obtain coefficients of determination (r2). 

All 28 possible pairwise comparisons between two UPS1 concentrations were performed to assess 

quantification accuracy, as well as the sensitivity and specificity of each workflow (combination of DIA 

acquisition scheme (Narrow, Overlapped, Mixed, Wide), and processing mode (Library or FASTA)) in 

differential expression analysis. For each comparison, only precursors having 3 quantification values 

before imputing missing values in one of the 2 groups being compared were summed to obtain protein 

quantification. Protein ratios and the corresponding log2 of the ratio, so-called “fold change” or FC, was 

calculated for each comparison and measurement accuracy was assessed by computing the mean absolute 

percentage error: MAPE = 1/n * (|expected FC – experimental FC| / expected FC) * 100 (with n = number 

of UPS1 proteins quantified). Welch test p values were also calculated and adjusted by the Benjamini-

Hochberg method for multiple testing, and the resulting q values were used to plot ROC curves using the 

pROC R package31. A protein was considered to differ from one sample to another (differentially 

expressed protein or DEP) between two groups of samples if q < 0.05 and |z| > 1.96 (z = (x-μ)/σ where x 

= log2 of the ratio; μ = average of all log2 ratios; σ = standard deviation of all log2 ratios). Proteins were 

classified as true positive (TP) if it varied coherently (UPS1), true negative (TN) if it did not vary (E. 

coli), false positive (FP) if an E. coli protein varied and false negative (FN) if a UPS1 protein 

concentration did not vary. Sensitivity (%) = TP / (TP+FN) * 100 and false discovery proportion (%) = 

FP / (FP+TP) * 100 were reported. 

Coefficient of variation (CV), coefficient of determination (r2), MAPE and AUC were also calculated for 

peptides and proteins quantified by all the tools. To obtain the lists of these for each UPS1 concentration 
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independently, the quantified precursor ions in common among all tools in each workflow (acquisition 

scheme and processing mode) were used. Since in most cases, the number of UPS1 peptides in common 

at 0.1 and 0.25 fmol/µg concentrations was zero, only UPS1 data for 1–50 fmol/µg concentrations were 

used for subsequent calculations. 

  

RESULTS AND DISCUSSION 

  

DIA analysis of the UPS1-E.coli proteomic standard 

The complex proteomic standard used in this study reflected the difficulty of analyzing whole proteomes 

by bottom-up proteomics, especially of detecting and quantifying species present at low concentrations. 

This standard comprises an E. coli proteome background spiked with 48 human proteins (UPS1, Sigma) 

at 8 concentrations ranging from 0.1 fmol to 50 fmol per µg of E. coli protein (Fig. 1A) and digested with 

trypsin. Prior to DIA experiments, a spectral library was generated by DDA analysis of 48 fractions of an 

E. coli protein extract alone, trypsin-digested and fractionated by high-pH reversed-phase 

chromatography. A single injection of 200 fmol/µg of UPS1 in E. coli background was acquired in DDA 

mode as well. The final spectral libraries contain a total of 2 655 proteins and 20 662 peptides when 

generated by Skyline, 2 592 proteins and 23 574 peptides when generated by Spectronaut, allowing deep 

proteome coverage for subsequent DIA analysis. 

The single injection of 200 fmol/µg UPS1 in E. coli was used to optimize the mass range and window 

sizes to be used in DIA experiments by plotting retention times in the LC gradient versus precursor m/z 

(Fig. 1B). This non-homogeneous distribution highlights the importance of adjusting DIA windows to 

maximize coverage of the eluted peptides. However, DIA acquisition parameters should represent a 

compromise between chromatographic resolution (cycle time), sensitivity (window size) and peptide 

sequence coverage (mass range). To determine if reducing DIA window size, and hence MS/MS spectrum 

complexity, could compensate for the loss of peptides when the mass range is reduced, we set the number 

of DIA windows constant at 75 to obtain the minimum of 10 measurements per chromatographic peak 

required for accurate quantification, considering that peptides elute in 25–30 s under our chromatographic 

conditions. Indeed, the transient length of the Orbitrap at a resolution of 15,000 is 32 ms, which results in 

a cycle time of 2.4 s when measuring 75 DIA windows. 

The first SWATH-MS analysis described11 used 32 scans of 25 m/z to sequence peptides in the 400–1200 

m/z range. These wide DIA windows allowed broad coverage of the mass range but at the cost of 
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fragmenting many co-eluting peptides, resulting in highly complex chimeric MS2 spectra. By setting 

narrower DIA windows, more ions of the same species are accumulated prior to fragmentation, increasing 

analytical sensitivity, and reducing MS2 spectrum complexity. However, the mass range covered must be 

reduced to conserve the proper cycle time. To distribute the number of precursors equally, setting the 

variable isolation windows across the mass range as a compromise between sensitivity (window size) and 

sequenced mass range coverage, has been proposed32. It has also been shown that sensitivity can be 

increased without sacrificing the mass range selected for fragmentation, while using overlapping windows 

including two different cycles of 20 m/z DIA windows shifted by 10 m/z22 . 

Considering the methodologies described in the literature and based on the observed precursor distribution 

during DDA chromatographic run of the 200 fmol/µg UPS1 in E. coli sample analysis (Fig. 1B), 4 DIA 

window schemes were selected having different window sizes but all composed of 75 windows: m/z = 8 

for Narrow, 15 for Wide, 8 and 15 for Mixed and 2 cycles of 8 shifted by 4 for Overlapped. It should be 

noted that Narrow and Overlapped provided 85.6% coverage of the precursors identified in DDA with the 

same gradient, while Mixed covered 98.7% and Wide 99.9%. These acquisition schemes allowed us to 

assess how the mass range selected for fragmentation and MS/MS spectrum complexity may influence 

DIA signal extraction and quantification. 

Using 6 proprietary or open-source software tools to identify and quantify proteins, a total of 36 proteomic 

workflows were compared, corresponding to Narrow, Wide, Mixed and Overlapped scheme acquisitions 

processed either in a library-free manner using only a FASTA file, FASTA mode, (DIA-NN, DIA-Umpire, 

ScaffoldDIA, Spectronaut) or with a previously acquired DDA spectral library, Library mode (DIA-NN, 

OpenSWATH, ScaffoldDIA, Skyline, Spectronaut). To compare all the workflows fairly, precursor data 

were processed (filtered and normalized, missing values imputed, peptides and proteins aggregated) the 

same way for each DIA tool using R. Normalization was skipped when the tool had this function 

embedded (Spectronaut, ScaffoldDIA and DIA-NN). Skyline, DIA-Umpire and OpenSWATH generate 

crude quantification that need to be normalized. Moreover, the 6 tools report variable proportions of 

missing values that need to be imputed prior to data analysis. We applied basic methods that are widely 

used in our field and can be easily implemented by users with limited bioinformatics expertise: global 

median normalization, and imputation of missing values by the first percentile (Fig. S1). These methods 

have been assessed in different studies, and although they may not be the best suited, they provide 

acceptable results33,34. The precursor intensity distributions before and after normalization and the 

proportions of missing values are reported in supplementary figures S2 A, B and C. 
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It should be noted that 3 of our runs (2.5 fmol/µg UPS1 replicate 2, 5 fmol/µg UPS1 replicate 3, 25 fmol/µg 

UPS1 replicate 2 of the Overlapped dataset) display lower overall precursor intensities, due likely to a 

technical problem during data acquisition. Although this does affect our results, these runs were saved to 

test the ability of the tools to correct for such occurrences. 

  

Protein and peptide identification and quantification 

Unlike DDA analysis for which the number protein/peptide identifications correspond to peptide-spectrum 

matches (PSM), and the number of protein/peptide quantifications corresponds to those having peak 

intensities, DIA relies on information extracted from MS/MS spectra acquired systematically. This 

requires defining the distinction between identified and quantified species. In our study, we chose to 

consider a precursor, peptide or protein as “identified” if the tool reported at least one intensity value 

among the 24 samples. For quantification, we considered only precursors with intensity values in all 3 

replicates at each UPS1 concentration. This strategy avoids quantification with mainly imputed values. 

We were thus able to quantify 39.6–93.3% of identified peptides and 64.6–94.4% of identified proteins 

using one acquisition scheme and processing tool combination or another (Fig. S3). Of interest is that we 

noted greater variability in the number of peptides or proteins identified than in the number quantified, 

regardless of data processing pipeline. This was the case particularly when a DDA spectral library was 

used and suggests that certain tools identify signals from low-abundance proteins but with not enough 

reproducibility to make the signals quantifiable. DIA-NN in FASTA mode generally reported the highest 

number of identifiable proteins and peptides as well as the highest percentage of quantifiable species. In 

the Library mode, Spectronaut reported the highest number of peptides but Skyline the highest number of 

proteins as identified. The latter result is likely due to no protein FDR filtering available in Skyline. 

Spectronaut, Skyline and OpenSWATH report the highest number of quantifications. 

Figure 2 shows the ability of the workflows to quantify proteins in a complex biological sample and to 

detect species present at low concentrations by reporting the number of E. coli and UPS1 quantified in 

each of the 8 concentrations. DIA acquisition scheme, software tool and processing mode (Library or 

FASTA) all appear to influence analytical efficiency. 

  

E. coli background 

Since the E. coli background was the same in all samples, we averaged its peptide and protein 

quantifications over the 8 UPS1 concentrations for each workflow (Fig. 2A and B, left panels). All 
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software performed slightly better with the Narrow window setting, for which 7.42% more proteins (on 

average) were quantified (Table S2A). A likely explanation is that despite its reduced precursor mass 

range coverage, the Narrow scheme yielded spectra that were less cluttered, making it easier for the 

algorithm to match MS2 spectra with the library or deconvolute them in library-free mode, thus improving 

detection. In this acquisition mode, an average of 2091 E. coli proteins were quantified with DIA-NN-

FASTA, 1956 with OpenSWATH, 1926 with Skyline, 1908 with Spectronaut-Library, 1903 with 

Spectronaut-FASTA, 1748 with ScaffoldDIA-Library, 1730 with ScaffoldDIA-FASTA, 1731 with DIA-

NN-Library and 1226 with DIA-Umpire. The Narrow and Overlapped window schemes allowed the 

highest protein sequence coverage with respectively 6.57 and 6.59 peptides per protein on average. DIA-

NN-FASTA generally reported the highest number of quantified proteins (2016 on average for all four 

window schemes) and the highest sequence coverage (8.44 peptides per protein on average) followed by 

Spectronaut-FASTA (1817 proteins quantified and 8.22 peptides per protein). The numbers of 

proteins/peptides that all software tools were able to quantify are shown in Figure S4A. Interestingly, we 

calculated that only 16.5–28.8% of peptides and 39–56.8% of proteins (depending on workflow) were 

quantified by all tools. 

  

UPS1 proteins 

Figure 2 (right panels) shows that most of the tools identified at least 40 of the 48 UPS1 proteins at the 3 

highest concentrations, whereas their success at the lower concentrations was variable revealing the 

difficulties for these tools to extract signals of low abundance species. At 1 fmol of UPS1 per µg of E. 

coli extract, ScaffoldDIA and Spectronaut in FASTA mode and ScaffoldDIA and OpenSWATH in Library 

mode fared better than the other workflows. At the two lowest concentrations (0.1 and 0.25 fmol/µg), 

these same tools still quantified more than 10 UPS1 proteins. It is interesting that the software tools 

reporting the highest number of proteins at low UPS1 concentration are also those having the lowest 

number of missing values before imputation (Fig. S2C). The number of peptides quantified dropped with 

concentration and the results are roughly similar for all tools except DIA-Umpire and OpenSWATH, 

which were less apt. Finally, the acquisition scheme did not affect the number of UPS1 proteins quantified 

significantly, even though Overlapped and Mixed might have been expected to perform better than the 

others. 

  

Reproducibility between technical replicates 
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Testing each concentration in triplicate allowed us to calculate a coefficient of variation (CV) of peptide 

and protein intensities to assess signal extraction reproducibility and workflow consistency (Fig. 3 and 

Table S2B). For E. coli peptides and proteins, only OpenSWATH had a CV above 15% for Narrow, Wide 

and Mixed acquisition, affirming the high reproducibility of DIA analysis for label-free quantification. 

Not unexpectedly, the CV was better for UPS1 proteins and peptides at high concentrations averaging 

respectively 3.78% and 8.35% at 50fmol/µg, versus 17.94% and 22.94% at 1 fmol/µg. In FASTA mode, 

the CV was below 20% at all concentrations above 1 fmol/µg, with Narrow, Wide and Mixed schemes. In 

Library mode, the CV was satisfactory at these concentrations except for OpenSWATH, which gave a CV 

below 20% only at the two highest concentrations. The Overlapped scheme dataset had technical issues 

during the acquisition of 3 DIA files for one replicate each at 2.5, 5 and 25 fmol/µg, which explains the 

higher CV obtained for E. coli proteins. However, it is interesting that certain tools (DIA-NN, Spectronaut 

and Skyline) were better than others (ScaffoldDIA, DIA-Umpire or OpenSWATH) at correcting for this, 

especially for UPS1 proteins. When only proteins and peptides that were quantified by all software were 

considered in the calculation, the CV was small for all schemes and tools, except for the Overlapped 

acquisition scheme (Fig. S4B). This suggests that the proteins and peptides shared by all the tools are also 

those having the highest MS signals in the analysis. 

  

Linearity over the range of UPS1 protein concentrations 

Another important parameter to consider when assessing the reliability of a quantification method is the 

linearity of the instrument response as a function of peptide concentration in the sample. To obtain 

accurate ratio measurements for pairwise comparisons, this response must be linear over a wide range of 

concentrations. Protein signal intensity distribution plotted as a function of UPS1 concentration follows 

the previously reported bi-linear shape35,36 for all workflows (Fig. S5A). It is composed of two segments: 

a signal segment at the highest UPS1 concentrations and a noise segment at the lowest concentrations. 

Since the protein intensity distributions at concentrations below 1 fmol/µg were in the noise range for 

most workflows, only the concentrations above this point were retained for the linear regressions, of which 

the coefficients of determination (r2) are shown in Fig. 4 and Table S2C. At these 6 concentrations, the r2 

values were highest for DIA-NN, ScaffoldDIA, Spectronaut and Skyline, with an average above 0.96 and 

suggesting a very strong correlation between UPS1 concentration and protein intensity extracted by the 

software. Linearity was better for data acquired with the Narrow than with the Wide DIA acquisition 

scheme, r2 averaging (all tools) respectively 0.967 and 0.957. This finding suggests again that the less 
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cluttered MS2 spectra acquired using narrower windows made it easier to detect and quantify low-

abundance signals and thus improved the overall linearity response. For narrow DIA windows, the tools 

able to work both in FASTA and Library modes had better r2 values in FASTA (0.984 versus 0.975, 

averaged for the three tools). Similar observations are made when only proteins quantified by all tools 

were considered (Fig. S4C). In addition, r2 increased for OpenSWATH and DIA-Umpire when the linear 

regression included only the 3, 4 or 4 highest concentrations, suggesting that more of the lower UPS1 

concentrations fall in the noise segment of the bi-linear plots for these tools but that the linearity is 

conserved at high concentrations (Fig.S5B). 

  

Ratio accuracy in pairwise comparisons 

Since the aim of most proteomics studies is to analyze differential protein expression by revealing 

significant quantitative differences between complex proteomes, ratio accuracy in pairwise comparisons 

is an important factor to consider. We therefore calculated the Fold Change (FC= log2(ratio) of protein 

intensities for each possible pair of the 8 UPS1 concentrations tested (a total of 28 pairwise comparisons) 

for the 36 experimental workflow conditions. The mean absolute percentage error (MAPE) to the expected 

FC (Fig. 5 and Table S2D) reveals an overall tendency for the error to increase when a very low UPS1 

concentrations (≦ 1 fmol/µg) is compared to a high concentration. The error averaged over all workflows 

was 9.1% when 50 fmol and 10 fmol (expected ratio = 5) were compared, and 35% when 50 fmol and 0.1 

fmol (expected ratio = 500) were compared. For comparisons of lower concentrations differing by 5-fold, 

(5 fmol and 1 fmol) the error averaged 33.4%. Such discrepancies in the errors might be due to the inability 

of the software to distinguish between signal and noise at low analyte concentrations. When both real 

concentrations were below 2.5 fmol/µg, the average MAPE ranged from 41.8% to 96.5%. Some 

workflows thus performed better than the others but nonetheless poorly. It therefore may be presumed that 

at 0.1 and 0.25 fmol/µg, most of the protein signals are in the noise range (Fig. S5A). However, in most 

studies, the protein concentration in the mixture is unknown and this error is embedded in the overall 

results. This weak signal recovery problem does not seem related to the DIA window width, since the 

MAPE did not differ significantly between Narrow and Wide. The Library and FASTA modes do not seem 

to be involved either, for the same reason. Based on MAPE, the workflows averaged over the ratios rank 

as follows (Table S2D): DIA-NN-FASTA (27.3%), ScaffoldDIA-Library (29.3%), Spectronaut-Library 

(29.4%), DIA-NN-Library (29.4%), Spectronaut-FASTA (30.9%). The more accurate tools have their own 

data normalization process. Although the simple normalization method that we chose (median 
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normalization) appears to have been adequate in most cases (Fig.S2B), other methods could be applied to 

improve overall post-processing and correct for aberrant conditions associated with injection and 

acquisition33,37. It should be noted also that for sample concentration pairings differing by 50-fold or more, 

Skyline had the lowest MAPE. But its accuracy suffered at UPS1 concentrations of 10 fmol/µg or less, 

especially with the Wide acquisition scheme (which was also the case for DIA-NN). This suggests that 

Skyline is an excellent peak integration tool but is more easily corrupted by background noise. 

  

Sensitivity and specificity in differential expression analysis 

The use of high-performance fast-scanning LC-MS/MS instruments now allows identification and 

quantification of hundreds or thousands of proteins in a single analysis, as was the case in this study. 

However, the goal of proteome analysis is to detect differential expression of as many proteins as possible 

with minimal false positives by controlling the false discovery rate (FDR). Since differentially expressed 

proteins are known in our study (UPS1), we can assess the impact of acquisition schemes and data 

processing on this using receiver operating characteristic (ROC) curves of the q values associated with 

protein fold changes and by reporting the corresponding areas under the curve (AUC) (Fig. 6 and Table 

S2E). An AUC of 1 represents a perfect distinction between the two classes compared, namely UPS1 

proteins (differentially expressed) and E. coli proteins (fixed background), whereas an AUC of 0.5 

represents a model that is unable to distinguish the two classes. In contrast, when AUC = 0, the model is 

mistaking one class for the other. As expected, the software tools all seem less able to differentiate the 

classes at USP1 concentrations of 2.5 fmol/µg or lower. The AUC dropped from 0.962 (averaged over all 

workflows and comparisons) for high concentrations (at least one of the compared UPS1 concentrations 

≥ 5 fmol/µg) to 0.800 for low concentrations (both ≤ 2.5 fmol/µg). This is likely due to less identification 

and less accurate quantification of UPS1 proteins at lower concentrations. Under these conditions, the 

AUC was highest using the Narrow windows (especially with DIA-NN, Skyline and Spectronaut) again 

highlighting the importance of reducing MS2 spectra complexity. We also note that the 3 aberrant MS 

acquisitions in the Overlapped dataset (due to unknown technical incidents) had an impact on AUC but 

not for all tools. As the reproducibility data appear to indicate (Fig. 3), Spectronaut and DIA-NN are 

capable of correcting for this kind of oddity and therefore report more uniform AUC values. It should also 

be mentioned that we used only 3 technical replicates for each sample and that better AUC values might 

have been obtained with more replicates, since the q values are influenced by this number. 
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Since using only q cut-off (often set at 0.05) to define differentially expressed protein in a proteomic 

analysis may lead to a high rate of false positives, in most published proteomic studies, another filtering 

criterion based on Fold Change or z-score is usually applied. The z-score (z = (FC - FC average / FC 

standard deviation) normalizes the fold change and thereby removes biases associated with uncentered 

distribution unlike when an arbitrary FC cut-off is set. To determine the adequacy of our workflows for 

distinguishing differential UPS1 protein expression from the background, we considered proteins as 

differentially expressed if they met both of the following criteria: q < 0.05 and |z| > 1.96 (corresponding 

to the FC distribution 95% external boundaries). We then plotted the sensitivity and false discovery 

proportion (FDP) obtained by counting the number of true and false positives and negatives for each of 

the 28 paired comparisons (Fig. S6 and Table S2F). As expected, we observed that the sensitivity of the 

software tool (its ability to detect differentially expressed proteins) was strongly reduced when two low 

UPS1 concentrations (≤ 2.5 fmol/µg) were compared, whereas certain tools (DIA-NN, Spectronaut) 

achieved nearly perfect performance (48 UPS1 proteins) in comparisons involving two high UPS1 

concentrations, unless those concentrations differed by a small ratio (50 and 25 fmol/µg). Averaged over 

all tools and pairwise comparisons, the sensitivity was best with the Narrow (60.7%) followed by Mixed 

(53.54%) and Wide (49.07%) window schemes, with FDP ranging from 10.97% to 12.91%. The sensitivity 

was also greater in the FASTA mode than in the Library mode (53.06% versus 46.88%) with FDP of 9.52% 

and 10.09% respectively. Finally, the three highest sensitivities averaged over the 28 paired comparisons 

were obtained with DIA-NN-Narrow-FASTA (71.76%), Spectronaut-Narrow-FASTA (73.16%) and 

Spectronaut-Narrow-Library (70.20%). Among these, Spectronaut-Narrow-FASTA had the lowest FDP 

(1.88%). 

  

Cross-compatibility between software tools 

The results presented above were computed using the standard or recommended functionalities of each 

software product. However, several of them accommodate spectral libraries generated using other tools. 

For example, Skyline and Spectronaut generate their own spectral libraries from DDA files, and these 

libraries are usable for quantification with DIA files in other tools. To determine whether the spectral 

library generation step or to the quantification step is the greater source of inconsistent results, we used 

our Narrow dataset to compare the performances of Skyline with a Spectronaut library and Spectronaut 

with a Skyline Library, in terms of the number of protein/peptides quantified, reproducibility (CV), 

linearity (r2), ratio accuracy (MAPE) and sensitivity (Fig. S7). Using the parameter settings recommended 
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for the tool, the Spectronaut library contained 23,574 peptides versus 20,663 in the library generated by 

Skyline from the same DDA files. However, the number of proteins did not differ nearly as much: 2655 

for Skyline and 2592 for Spectronaut (Fig. S7A). Thus, about 16% more E.coli peptides and 18% more 

UPS1 peptides were quantified using the Spectronaut library than the Skyline library whereas proteins 

were quantified in similar numbers (Fig. S7B). In contrast and as expected, linearity and ratio 

measurement accuracy seem related more to quantification performance of each tool than to the library 

used, with r2 = 0.971 for Skyline and 0.957 for Spectronaut (Fig. S7D). As previously observed, the MAPE 

was lower for Skyline than Spectronaut at UPS1 concentration ratios of 40 or higher, whereas the 

Spectronaut MAPE was lower when both concentrations were below 10 fmol/µg (i.e., middle low 

abundance proteins) with a smaller expected ratio (Fig. S7E). 

Another example of DIA software cross-compatibility is given by DIA-Umpire and DIA-NN. These tools 

are able to generate a spectral library using DIA files alone without prior DDA acquisitions. Since the 

Quant module included in DIA-Umpire 2.0 performed poorly compared to most other tools, the developers 

now recommend using the DIA-Umpire module to deconvolute the DIA signal followed by a database 

search in MSFragger to generate the spectral library and then quantify in DIA-NN, which is also able to 

generate a spectral library from DIA files for this purpose. We did this using our Narrow dataset either 

with the full DIA-Umpire 2.0 pipeline, with DIA-NN in FASTA mode or with the spectral library generated 

from DIA-Umpire and MSFragger (Fig. S8). The DIA spectral library generated with DIA-NN contained 

6% more peptides and 39% more proteins than that generated with DIA-Umpire. However, we note that 

the numbers of proteins and peptides quantified are roughly the same for both libraries when using DIA-

NN for signal extraction and quantification (Fig. S8B). The comparisons of CV, r2, MAPE and AUC 

corroborated these results, confirming the weakness of the DIA-Umpire Quant module but validating its 

use for the generation of DIA spectral libraries. 

  

Characteristics of six DIA software tools 

In addition to their performance, the choice of using a DIA software requires consideration of their cost, 

their user friendliness and their post-processing functionalities (Table 1). Regarding the cost, Spectronaut 

and ScaffoldDIA are proprietary, whereas the others are open source. The user friendliness can be 

determined through the presence, or not, of a graphical interface (OpenSWATH and DIA-Umpire require 

bioinformatics knowledge to execute the different steps in command lines) and through the ease of 

configuration. Some software tool configuration procedures are complicated and error prone, user manuals 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2020.11.03.365585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.03.365585


 

 

or reference articles may provide inadequate support and sometimes, the software development team 

needs to be contacted to ensure an appropriate use of the software. Therefore, the information on “ease of 

configuration” in Table1 represents our own experience with the different tools tested in this study. It can 

be different for other users depending on their experiments and knowledge of DIA methods. Another 

important consideration is the availability of post-processing functions: how the final data are to be 

reported and whether integrated intensity normalization is included. If not, presentation of the output 

might require bioinformatics knowledge (e.g., R language) to handle large datasets. Finally, the processing 

time of the software tools is also important for large-scale studies. However, the tools used in this study 

have different system requirements, therefore we were not able to run them in a similar environment 

allowing a fair comparison of their performances. Nevertheless, we observed, using software designed to 

accommodate both Library and FASTA analyses (DIA-NN, ScaffoldDIA and Spectronaut), that the 

analysis performed with a spectral library was always faster than with a FASTA file which could be an 

advantage while running large experiments. 

 

CONCLUSIONS 

  

In this study, we were able to assess the performance and reliability of several data-independent 

acquisition workflows for protein identification and quantification by processing thousands of 

measurements. Although certain software tools generally performed better than others under our 

conditions, each showed its own strengths and weaknesses in terms of protein identification and 

quantification, linearity, reproducibility and ratio accuracy. 

The use of four different acquisition schemes showed that the size of precursor windows is an important 

parameter to consider when performing DIA analyses. Narrow windows generally supported better system 

performance than did wide windows, despite a lower coverage of the mass range. This suggests that faster 

scanning on the most recent Orbitrap instruments in conjunction with the use of a larger mass range and/or 

reduced window width should contribute to improving DIA analysis performance. Our results also suggest 

that some published acquisition schemes (overlapped or mixed windows) do not perform significantly 

better than conventional settings when analyzing complex mixtures of proteins in our conditions, nor does 

the use of a very large spectral library acquired from 48 fractions of E. coli improve the number of proteins 

identified and quantified. Indeed, the signals of low-abundance peptides detected by this extensive 

fractionation are not easily recovered by DIA processing tools fed unfractionated DIA analyses. This 
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finding corroborates recent studies38,39 that question the usefulness of libraries generated prior to DIA 

analysis. However, we observed that post-acquisition analysis was always faster with a spectral library 

than with a FASTA file, which would be advantageous for large experiments. Other library types such as 

repetitive measurement of non-fractionated sample library39 or chromatogram library20 might improve the 

results shown here. Furthermore, publicly available libraries40, gas-phase fractionation41 or in silico 

generated libraries42 could also be used to avoid multiple injections per sample. 

This study shows that the choice of processing software is the greatest source of quality issues affecting 

DIA-based proteomics analyses, followed by the size and number of DIA windows and finally the decision 

to use or not a spectral library. In addition to performance, cost, user friendliness and post-processing 

functionalities must be considered. Finally, processing time is an important consideration for large-scale 

studies. Our only basis for evaluating this aspect was the comparison of FASTA and Libraries, since the 

tools used in this study were not used in a similar environment. 

Our analysis of 96 DIA raw files from 36 workflows and evaluation of quantification is so far the most 

comprehensive comparison available of DIA methods combined with Orbitrap mass spectrometers, the 

most widely used instruments in the proteomic research community. These results should help scientists 

choose the acquisition parameters and software processing that are best suited to their DIA application, 

and with all our data being available on ProteomeXchange repository, other teams will be able to reapply 

their own statistics or test other software tools. Moreover, it may help developers to improve their 

algorithms and therefore increase the capabilities of the DIA strategy in proteomics studies. 
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Figure 1 - Proteomic standard and processing workflows - (A) The proteomic standard, comprising 
UPS1 (Sigma) at 8 concentrations in E.coli protein extract background, was analyzed by LC-MS/MS with 
4 different DIA acquisition schemes. Raw data files were processed using 1 of 6 different software tools 
and a FASTA file only or/and a DDA spectral library. (B) Distribution of precursor ions from a sample 
containing 200 fmol of UPS1 per microgram of E.coli, over the mass range and run time (DDA mode). 
Window schemes for DIA analysis are shown below the graph. 
  
Figure 2 - Peptide and protein quantification - The number of E. coli (left) or UPS1 (right) proteins 
(A) or peptides (B) quantified in the three replicates of each sample (i.e. without missing values) by the 6 
software tools with each acquisition scheme (Narrow, Overlapped, Mixed, Wide) and data processing 
mode (FASTA or Library). For E.coli, the numbers are averaged over the 8 UPS1 concentrations. Error 
bars indicate the standard deviation. UPS1 numbers are averages of 3 sample replicates. 
  
  
Figure 3 - Reproducibility of quantification - Coefficient of variation of E. coli (left) or UPS1 (right) 
proteins (A) or peptides (B) based on the 3 sample replicates for the 6 software tools with each acquisition 
scheme (Narrow, Overlapped, Mixed, Wide) and data processing mode (FASTA or Library). Precursor 
intensities in the three replicates before missing values imputation were summed by stripped sequence to 
quantify peptides and by accession number to quantify proteins, for each UPS1 concentration 
independently. For E. coli, the coefficients are averaged over the 8 UPS1 concentrations. 
                                                         
  
Figure 4 - Linearity across UPS1 concentrations – Linear regression of UPS1 protein quantification 
over 6 concentrations (excluding the 2 lowest) in the E. coli protein background for each acquisition 
scheme (Narrow, Overlapped, Mixed, Wide), software tool and data processing mode (FASTA or Library). 
Each graph shows the coefficient of determination (r2) distribution and average (dashed vertical line and 
numerical value). Only proteins detected in the three replicates of the highest concentration (50 fmol/µg) 
before missing value imputation were included in the regression. 
  
  
Figure 5 - Accuracy of protein quantification - Mean absolute percentage error (MAPE) of detected 
UPS1 protein concentrations relative to the corresponding known concentrations for 28 paired 
comparisons for each acquisition scheme (Narrow, Overlapped, Mixed, Wide), software tool and data 
processing mode (FASTA or Library). MAPE (%) = 1/n * (|Expected FC - Experimental FC| / expected 
FC) * 100 where FC = Log2(intensity ratio) and n= number of UPS1 protein quantified. 
  
  
Figure 6 - Sensitivity and specificity of the differential expression analysis - Area under the curve 
(AUC) corresponding to receiver operating characteristic (ROC) curves on q values plotted for 28 pairwise 
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comparisons of two UPS1 concentrations for each acquisition scheme (Narrow, Overlapped, Mixed, 
Wide), software tool, and data processing mode (FASTA or Library). 
  
  
Table 1 - Characteristics of six DIA software tools - (****) methods/parameters are intuitive and/or 
well described in the documentation; (***) methods/parameters are described in the documentation but 
assistance (from the developer/software team) might be required to avoid error; (**) the documentation 
needs to be improved and/or assistance is required for first utilization(s); (*) no documentation is provided 
and/or bioinformatics skills are required; (-) no post-processing is offered; (+) only normalization is 
performed automatically, precursor data only are reported; (++) normalization is included, peptide and 
proteins reports are included as well as ratios and p values. 
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Table 1

DIA-NN DIA-Umpire OpenSWATH ScaffoldDIA Skyline Spectronaut

Open source yes yes yes no yes no

Graphical interface yes no no yes yes yes

Ease to configure *** * * *** ** ****

Post-processing included + - - ++ - ++
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