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Abstract

Neandertal DNA makes up 2-3% of the genomes of all non-African individuals. The patterns of
Neandertal ancestry in modern humans have been used to estimate that this is the result of gene
flow that occurred during the expansion of modern humans into Eurasia, but the precise dates
of this event remain largely unknown. Here, we introduce an extended admixture pulse model
that allows joint estimation of the timing and duration of gene flow. This model leads to simple
expressions for both the admixture segment distribution and the decay curve of ancestry linkage
disequilibrium, and we show that these two statistics are closely related. In simulations, we find
that estimates of the mean time of admixture are largely robust to details in gene flow models, but
that the duration of the gene flow can only be recovered if gene flow is very recent and the exact
recombination map is known. These results imply that gene flow from Neandertals into modern
humans could have happened over hundreds of generations. Ancient genomes from the time around
the admixture event are thus likely required to resolve the question when, where, and for how long
humans and Neandertals interacted.

Introduction

The sequencing of Neandertal (Green et al., 2010; Prüfer et al., 2013, 2017; Mafessoni et al., 2020)
and Denisovan genomes (Reich et al., 2010; Meyer et al., 2012) revealed that modern humans outside
of Africa interacted, and received genes from these archaic hominins (Vernot and Akey, 2014; Fu
et al., 2014; Sankararaman et al., 2014; Fu et al., 2015; Malaspinas et al., 2016; Sankararaman
et al., 2016; Vernot et al., 2016). There are two major lines of evidence: First, Neandertals are
genome-wide more similar to non-Africans than to Africans (Green et al., 2010). This shift can be
explained by 2-4% of admixture from Neandertals into non-Africans (Green et al., 2010; Prüfer
et al., 2013). Similarly, East Asians, Southeast Asians and Papuans are more similar to Denisovans
than other human groups, which is likely because of gene flow from Denisovans (Meyer et al., 2012).

As a second line of evidence, all non-Africans carry genomic segments that are very similar to
the sequenced archaic genomes. As these putative admixture segments are up to several hundred
kilobases (kb) long, it is unlikely that they were inherited from a common ancestor that predates the
split of modern and archaic humans (Sankararaman et al., 2014; Vernot and Akey, 2014). Rather,
they entered the modern human populations through later gene flow (Sankararaman et al., 2012,
2014; Vernot and Akey, 2014; Sankararaman et al., 2016; Vernot et al., 2016).

However, substantial uncertainty remains about when, where, and over which period of time this
gene flow happened. A better understanding of the location and timing of the gene flow would allow
us to place constraints on the timing of movements of early humans, and the population genetic
consequences of their interactions.

Archaeological evidence puts some temporal boundaries on the times when Neandertals and modern
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humans might have interacted. The earliest currently known modern human remains outside of
Africa are dated to around 188 thousand years ago (kya) (Hershkovitz et al., 2018; Stringer and
Galway-Witham, 2018) and the latest Neandertals are suggested to have lived between 37 kya and
39 kya old (Higham et al., 2014; Zilhão et al., 2017). Thus the time window where Neandertals and
modern humans might have been in the same area stretches over more than 140,000 years. However,
there is less direct evidence of modern humans and Neandertals in the same geographical location
at the same time. In Europe, for example, Neandertals and modern humans likely overlapped only
for less than 10,000 years (Bard et al., 2020).

Genetic Dating of Gene Flow

A common approach to learn about admixture dates from genetic data uses a recombination clock
model: Conceptually, admixture segments are the result of the introduced chromosomes being
broken down by recombination. The first generation offspring of an archaic and a modern human
parent will have one whole chromosome each of either ancestry. Thus, the genomic markers in these
individuals are in full ancestry linkage disequilibrium (ALD); all archaic variants are present on one
DNA molecule, and all modern human variants on the other one.

If this individual has offspring in a largely modern human population, in each generation meiotic
recombination will reshuffle the chromosomes, progressively breaking down the ancestral chromosome
down into shorter segments of archaic ancestry (Falush et al., 2003; Gravel, 2012; Liang and Nielsen,
2014), and ALD similarly decreases with each generation after gene flow (Chakraborty and Weiss,
1988; Stephens et al., 1994; Wall, 2000).

This inverse relationship between admixture time and either segment length or ALD is commonly
used to infer the timing of gene flow (Pool and Nielsen, 2009; Moorjani et al., 2011; Pugach et al.,
2011; Gravel, 2012; Sankararaman et al., 2012; Loh et al., 2013; Hellenthal et al., 2014; Liang and
Nielsen, 2014; Sankararaman et al., 2016; Pugach et al., 2018; Jacobs et al., 2019). Most commonly,
it is assumed that gene flow occurs over a very short duration, referred to as an admixture pulse,
which is typically modelled as a single generation of gene flow (e.g Moorjani et al., 2011). This
model has the advantage that both the length distribution of admixture segments and the decay of
ALD with distance will follow an exponential distribution, whose parameter is directly informative
about the time of gene flow (Pool and Nielsen, 2009; Gravel, 2012; Liang and Nielsen, 2014).

In segment-based approaches, dating starts by identifying all admixture segments, which can be
done using a variety of methods (Seguin-Orlando et al., 2014; Sankararaman et al., 2016; Vernot
et al., 2016; Racimo et al., 2017; Skov et al., 2018). The length distribution of inferred segments is
then used as a summary for dating when gene flow happened.

Alternatively, ALD-based methods use linkage disequilibrium (LD) patterns, without explicitly
inferring the segments (Chimusa et al., 2018) (Figure 1 B). Instead, admixture dates are estimated
by fitting a decay curve of pairwise LD as a function of genetic distance, implicitly summing over
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all compatible segment lengths (Moorjani et al., 2011; Loh et al., 2013).

Neandertal Gene Flow Estimates

Using this approach, Sankararaman et al. (2012) dated the Neandertal-human admixture pulse
to between 37–86 kya. Later, Moorjani et al. (2016) refined this date to 41 – 54 kya (C.I.95%)
using an updated method, a different marker ascertainment scheme and a refined genetic map
for European populations. A date of 50 – 60 kya was obtained from the analysis of the genome
of Ust’-Ishim, a 45,000-year-old modern human from western Siberia. The inferred Neandertal
segments in Ust’-Ishim are substantially longer than those in present-day humans, which makes
their detection easier, and adds further evidence that gene flow between Neandertals and modern
humans has happened relatively recently before Ust’-Ishim lived (Fu et al., 2014). In addition, we
have direct evidence of gene flow from early modern humans from Oase (Fu et al., 2015) and Bacho
Kiro (Hajdinjak et al., 2021), dated to 40ky and 45ky, respectively. In genomes from both sites,
segments of recent Neandertal ancestry less than ten generations before hint at admixture histories
with late gene flow in Europe.

Limitations of the Pulse Model

The admixture pulse model assumes that gene flow occurs over a short time period; however it is
currently unclear how long a time could still be consistent with the data. This makes admixture
time estimates hard to interpret, as more complex admixture scenarios might be masked, and so
gene flow could have happened tens of thousands of years before or after the estimated admixture
time.

That admixture histories are often complicated has been shown in the context of Denisovan
introgression into modern humans, where at least two distinct admixture events into East Asians
and Papuans were proposed (Browning et al., 2018; Jacobs et al., 2019; Choin et al., 2021). While the
length distributions of admixture segments are similar between populations, there are differences in
the genomic distribution of admixture segments, and their similarities to the sequenced high-coverage
Denisovan (Browning et al., 2018; Massilani et al., 2020). In contrast, all Neandertal admixture
segments are most similar to the Vindija Neandertal (Prüfer et al., 2017), but Neandertal ancestry
is slightly higher in East Asians than Western Eurasians (Meyer et al., 2012; Wall et al., 2013; Kim
and Lohmueller, 2015; Vernot and Akey, 2015; Villanea and Schraiber, 2019).

One way to refine admixture time estimates is to include two or more distinct admixture pulses.
The distribution of admixture segment lengths will then be a mixture of the segments introduced
from each event. This is especially useful if the events are very distinct in time, e.g. if one event is
only a few generations back, and the other pulse occurred hundreds of generations ago (Fu et al.,
2014, 2015). In this case, the admixture segments will be either very long if they are recent, or
much shorter if they are older.
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Zhou et al. (2017a) extended this model to continuous mixtures, using a polynomial function as a
mixture density. However, they found that even for relatively short admixture events, the large
number of parameters led to an underestimate of admixture duration (Zhou et al., 2017b).

Extended Pulse Model

One drawback of these approaches is that they introduce a large number of parameters. Even
a discrete mixture of two pulses requires at least three parameters (two pulse times and the
relative magnitude of the two events) (Pickrell et al., 2014), and the more complex models require
regularization schemes for fitting (Zhou et al., 2017b; Ralph and Coop, 2013).

Here, we propose an extended admixture pulse model (Figure 1 A) to estimate the duration of an
admixture event. It only adds one additional parameter, reflecting the duration of gene flow, while
retaining much of the mathematical simplicity present in the simple pulse model. The extended
pulse model assumes that the migration rate over time is Gamma distributed, so that the length
distribution of admixture segments has a closed form (Figure 1 C & D) with two parameters, the
mean admixture time and duration.

Conceptually, identifying an extended pulse requires us to establish that the length distribution
of admixture segments deviates from an exponential distribution. However, other sources of bias,
such as the demography of the admixed population, the accuracy of the recombination map or
details in the inference method parameters may also introduce similar biases. Thus, we have to
carefully evaluate other potential sources of bias on whether they might lead to confounding signals.
(Sankararaman et al., 2012; Fu et al., 2014; Moorjani et al., 2016).

Here, we first define the extended admixture pulse model and derive the resulting segment length
and ALD distributions, and introduce inference schemes for either data. We then evaluate under
which scenarios these two models can be distinguished. We show that power to distinguish these
scenario is higher for more recent events and longer pulses, but that accurate inference requires
high-quality data. Based on these results, we use data from European genomes (The 1000 Genomes
Project Consortium, 2015) and find that for the case of Neandertal admixture, a simple pulses
cannot be distinguished from continuous admixture over an extended period of time, and the data
are consistent with a multitude of durations, up to several tens of thousands of years.
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Figure 1: A) Neandertal introgression into non-Africans with a multitude of potential admixture
durations. B) The time and duration of admixture results in different length distributions of
introgressed chromosomal segments (grey) containing Neandertal variants (green circles) in high
LD to each other compared to the background (human variants white stars). The ALD approach
estimates linkage between the introgressed variants (green circles), whereas the haplotype approach
tries to estimate the segment directly (grey area). C) Migration rate per generation modeled using
the extended pulse model for different admixture durations (colored lines). The filled area under
the curve indicates the boundaries of the discrete realization of the duration of gene flow td. The
dotted line indicates the oldest possible time of gene flow (as defined in the simulations). D) The
expected LD decay under the extended pulse model.
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New Approaches

In this section, we present the mathematical description of the admixture models we use in this
paper, and introduce inference algorithms for estimating the admixture time and duration from
both segment data and ALD.

Admixture Models and Inference

We think of admixture as a series of “foreign” chromosomes introduced in a population (for a
mechanistic model, see e.g. Pool and Nielsen (2009). Throughout, we assume that alleles evolve
neutrally, and that recombination is independent of local ancestry. The simple pulse model assumes
that all admixture happens in the same generation, (i.e. all chromosomes are introduced to the
population at the same time). To extend this model, we allow chromosomes to enter at potentially
many different time points, such that the migration rate at time t in the past is given by the function
m(t) (Pool and Nielsen, 2009; Ni et al., 2016). For simplicity, we assume that the total amount
of introgressed material α =

∫∞
0 m(t)dt is small, so that segments do not interact, but we will

discuss violations of this assumptions later. For archaic introgression, α ≈ 0.03, so this assumption
is justified.

Over time, recombination splits up the introgressed genome into smaller pieces, while by the
neutrality assumption the expected amount of total ancestry remains approximately the same. Thus,
if we measure the size of chromosomes in recombination units, a chromosome of size G introduced
at time t gives rise to an expected number of tG segments.

Admixture Segment Lengths

We enumerate the admixture segments in a sample i = 1 . . .K. We denote the length of the i-th
segment as Li (measured in Morgan) and the time in the past when segment i entered the population
as Ti (measured in generations). We assume that the Li and Ti are both realizations from more
general distributions L and T that reflect the overall segment length and segment age distributions,
respectively.

To relate m(t) to T , we need to take into account that older fragments had more time to split up
(see e.g. Pool and Nielsen, 2009). Hence

P (Ti = t) = tGm(t)∫∞
0 tGm(t)dt . (1)

The denominator of the right-hand side term in equation 1 is the expected number of admixture
segments, E[K] =

∫∞
0 tGm(t)dt.

Given Ti, the segment length Li is exponentially distributed with rate parameter t:
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P (Li = l|Ti = t) = te−tl. (2)

Integrating over T yields the unconditional distribution of admixture segment lengths:

P (Li = l) =
∫ ∞

0
P (Ti = t)P (Li = l|Ti = t) dt,

= G

E[K]

∫ ∞
0

t2m(t)e−tldt (3)

and we can think of L as an exponential mixture distribution with mixture density proportional to
tm(t) (Ralph and Coop, 2013; Ni et al., 2016; Zhou et al., 2017a).

Ancestry Linkage Disequilibrium

Alternatively, the impact of gene flow is often characterized using ALD, particularly when accurate
identification of archaic segments is difficult. We follow Loh et al. (2013) and note that the ALD
from gene flow in a single event at time t generations in the past is

Dt = m(1−m)∆x∆y ≈ mA, (4)

where m is the fraction of immigrants and ∆x,∆y are the differences in allele frequencies between
markers in the admixing populations. We assume that terms of the order of m2 can be ignored and
that migration is low enough that changes in the allele frequencies in the admixing populations can
also be neglected (i.e. A = ∆x∆y remains a constant).

At a later generation t, the expected LD between two markers a distance l apart is

Ds ≈ Dt exp(−l(s− t)), (5)

due to the decay of LD (e.g. Sankararaman et al., 2012). If the migration rate mf is a function of
time, we can add up the LD introduced at each time s in the past and approximate D as

Ds = A

∫ s

−∞
mf (t) exp(−l(s− t))dt. (6)

As we show in the Appendix (Formal Motivation for ALD), equation 6 satisfies the differential
equation

dDs

ds
= −lDs +Amf (s), (7)

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.04.04.438357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438357
http://creativecommons.org/licenses/by-nc-nd/4.0/


where the−lDs-term models the exponential decay of LD due to recombination, and the Amf (s)-term
reflects the increase of LD due to admixture (Eq. 4).

To connect this equation more directly to the backward-in-time formulation used in the derivation
of the admixture segment distribution, we set s = 0 and invert the flow of time, such that
m(t) = mf (−t). We obtain

D(l) = A

∫ ∞
0

m(t) exp(−lt)dt. (8)

Thus, D can be interpreted as the tail function of an exponential mixture with mixture density m.
Alternatively, the integral in equation 8 is also the (scaled) moment-generating function of m with
argument −l.

The distribution of admixture segment lengths (equation 3) and the ALD function (equation 8) are
closely related – in the Appendix (Connection Between Admixture Segment Length Distribution
and ALD Function) we show that

D(l) = E(K)
G

∫ ∞
l

P (x)(x− l)dx (9)

P (l) ∝ D′′(l). (10)

It follows that both functions uniquely determine each other. Consequently they contain identical
information to estimate admixture dates.

Both for the segment and ALD models we use simplifying assumptions that ignore the effects
of genetic drift, the recombination between introgressed segments and the replacement of older
introgressed material. In the Appendix, we discuss these approximations and show that particularly
the replacement of admixed material can be accommodated by replacing m with

me(t) = m(t) exp
[
−
∫ t

0
m(s)ds

]
, (11)

which can be interpreted as the probability of the event that migration happened at time t, and no
more migration happened later on.

The Simple Pulse Model

Under the simple pulse model, all fragments enter the population at the same time tm, and T is a
constant distribution. We can formalize this model by using a Dirac delta function which integrates
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to one if the integration interval includes tm and zero otherwise:

m(t) = αδtm(Ti), (12a)

P (Ti) = δtm(Ti), (12b)

We obtain the exponential distribution of admixture fragments under this model (e.g. Moorjani
et al., 2011):

P (Li = l) = tme
−tml (13a)

D(l) ∝ e−tml, (13b)

where here and in the remainder of this section we omit the constant term from D, which is not
relevant for fitting the LD decay. The expected segment length under a simple pulse model is given
by

E[L] = 1
tm

(14a)

and the variance by
Var[L] = 1

t2m
. (14b)

The Extended Pulse Model

For the new extended pulse model, we assume that the migration rate m(t) follows a rescaled
Gamma distribution so that the total contribution of migrant alleles is α. It is convenient to
parameterize the migration rate as Γ(k, tm

k ). for t ≥ 0 and k ≥ 1.

Using this parameterization, the denominator of equation 1 is tmαG and

P (Ti = t) = t

tm
m(t) (15a)

= 1
Γ(k)( tm

k )k
tk−1e−t k

tm (15b)

for t ≥ 0 and k ≥ 2, which is is the density of a Γ(k + 1, tm
k )-distribution with moments
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E[T ] = k + 1
k

tm

V ar[T ] = k + 1
k2 t2m = k + 1

k

(
td
4

)2
.

(16)

Here, we define the admixture duration td = 4tmk−
1
2 , as a convenient measure for the duration

of gene flow. If k is low, then td will be large and gene flow extends over many generations. In
contrast, if k is large, then td ≈ 0 and we recover the simple pulse model (Figure 1 C & D).

The distribution of segment length is calculated by plugging equation 15b into equation 3 and
integrating:

P (L = l|k, tm) =
∫ ∞

0

1
Γ(k)( tm

k )k
tk−1e−t k

tm te−tldt

= t−k
m

(
k + 1
l + k

tm

)k+2

. (17)

The distribution in equation 17 is known as a Lomax or Pareto-II distribution, which is a
heavier-tailed relative of the Exponential distribution. Under the extended pulse model, the
expected segment length will be the same as under the simple pulse model (Eq. 14a):

E[L] = k

tm

1
(k + 1)− 1 = 1

tm
(18)

but the variance is larger:

V ar[L] = (k + 1)
(k − 1)

1
t2m

. (19)

We obtain the ALD-function from equation using the moment-generating function of m(t):

Dt(l) ∝
(

1 + tml

k

)−k

. (20)

The Constant Migration Model

The simple pulse model can be thought of as the extreme case of the extended pulse model when
k →∞, i.e. the pulse gets infinitely short. In the other extreme the extended pulse model approaches
a model of constant migration. In this case, the last migration event at a particular location is
exponentially distributed with rate m (Eq. 11), which is a model considered by Pool and Nielsen
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(2009). Setting tm = 2
m , k = 2, we obtain

m(t) = m exp(−mt) ∼ Γ(1,m) (21a)

P (Ti = t) ∼ Γ (2,m) (21b)

P (Li = l) = 2m2

(m+ l)3 (21c)

D(l) ∝ m

m+ l
(21d)

Equation 21c differs slightly from equation 6 in Pool and Nielsen (2009) because we approximate
the expected number of segments with n = Kt, versus theirs n = 1 +Kt (however they converge to
each other for large Kt).

Estimation of Admixture Times

For inference, either the admixture segment lengths or ALD can be used. Assuming the admixture
segment lengths are known, equation 17 is the likelihood function and can be used for inference.
For inference using ALD, we follow Moorjani et al. (2011) and use the decay of ALD with genetic
distance as a statistic. Following Moorjani et al. (2016), we add an intercept A and a constant c
modelling background LD:

ALD ∼ Ae−tm l + c (22)

ALD ∼ A

(
1 + tm

k
l

)−k

+ c (23)

Results

Here, we investigate under which scenarios we can distinguish the simple and extended pulse models,
and when we can infer parameters under either model. We start with an idealized scenario of
simulations under the model, and then continue with more realistic coalescent simulations using
msprime (Kelleher et al., 2016).

Power Analysis under the Model

In the easiest case, we assume that segments are known and we simulate directly under the model
(Eq. 17) and evaluate under which conditions we can tell the two models apart using likelihood-ratio
tests on the simulated segments. For this purpose, we compare two scenarios, one where gene flow
happened 1,500 generations ago, which reflects Neandertal gene flow inferred from present-day
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individuals. In the second scenario, which reflects inference from ancient modern human data, the
samples are taken 50 generations after gene flow ended. We vary pulse durations from one to 2,500
generations, and sample between 100 and 100,000 unique segments. As the simple pulse model is an
edge case of the extended pulse model with k →∞, standard likelihood theory does not apply, and
we use empirical significance cutoffs (Kozubowski et al., 2008).

The resulting log-likelihood ratios are given in Figure 2. In general, we find that power to distinguish
the model increases with pulse duration and the amount of data, and that it is easier to distinguish
the models when gene flow had been more recent. For example, with 10,000 unique segments we
need an event lasting around 1,000 generations before we are able to confidently distinguish an
extended from a simple pulse (Figure 2) using present-day data. In contrast, by sampling closer to
the admixture event we are able to distinguish an extended pulse already with a duration of 40-60
generations.
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Figure 2: Model comparisons on perfect data. Segments are either sampled at the present (purple)
or 50 generations after the end of gene flow (turquoise). Log-likelihood ratios bigger than ten are
rounded to ten.

Population Genetic Model Comparisons

In the previous section, we have shown that we can distinguish long pulses from instantenous gene flow
under idealized conditions. As a more realistic scenario, we perform population genetic simulations
using msprime (Kelleher et al., 2016). Throughout, we simulate 3% Neandertal admixture into
non-Africans using a demographic model of archaic introgression (Supplementary Figure 1B) with a
mean admixture time of 1,500 generations ago and varying durations. We simulate 20 chromosomes
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of length 150MB, using either a constant recombination map, or using the HapMap recombination
map (HapMap Consortium, 2007). This results in ∼ 10, 000 introgressed segments. We then
perform inference either using the simulated segments, segments inferred from the data (Skov et al.,
2018), or ALD calculated using ALDER (Loh et al., 2013). We further vary recombination rate
settings as i) inference and simulation under constant recombination rate (Constant/Constant),
ii) simulation using the HapMap genetic map (HapMap Consortium, 2007), and inference using
no correction (HapMap/Constant), iii) simulation using HapMap, correction using a different
map (HapMap/AAMap) (Hinch et al., 2011), iv) and inference using the same map used for the
simulations (HapMap/HapMap).

Using these simulations, we perform model comparisons (Figure 3A). For segments, we again
use the likelihood-ratio and find that the results for the simulated segments closely match the
simulations under the model (Figure 2), showing that our model is a good approximation in the
parameter range of interest. In contrast, we find that for inferred segments, results greatly depend
on the recombination rate used: For a constant recombination rate, results are similar, but for the
HapMap-recombination map, we do not have any power to distinguish these scenarios. As we fit
ALD using non-linear least squares, no formal model-comparison framework exists. Qualitatively,
we plot the normalized residual sum-of squares (RSS) and find that they increase with td for both
recombination scenarios, suggesting that the difference between the two models increase.

Next, we evaluate parameter inference. In Figure 3B, we present estimates of the mean admixture
times, admixture duration and the fitted segment and ALD distributions, respectively. We find that
the mean admixture times are reasonably accurately estimated in most scenarios, the exception
being the inferred segments when using the variable (HapMap) recombination map. The admixture
duration estimates are often less accurate, and in most cases has very large variation between
simulations.

We detect a slight, but consistent underestimate of the mean admixture times, which increases
with td. For the segments, this underestimate is likely due to the slight downward bias caused
by recombination and coalescence between admixed segments (Liang and Nielsen, 2014, see also
Appendix Genetic Drift and Recombination). For ALD, this bias is much less severe, particularly
for inference under the extended pulse model. For scenarios where the recombination map is
misspecified, tm is estimated to be only around half of its true value (Supplementary Figure 2).
However, we find that in some cases, the extended pulse model provides a better estimate of tm by
estimating the pulses to be extremely long.

In Figure 3C we show examples of the estimated segment length and ALD distributions compared
to the simulated data. For these log-plots, the slope of the curve corresponds to the estimate of tm,
and the deviation from linearity reflects the duration of gene flow. In all cases, we find that the
expected decay is very close to linear, matching our finding that power to differentiate these old
events is limited. We find that particularly when using a constant recombination map, all three
summaries give a very close fit, and the segment length and ALD-decay distribution closely follow
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their expectations, which is consistent with the generally good parameter estimates under these
conditions. In the case of a variable recombination map, we find that particularly inferred fragments
perform poorly, which is reflected by a substantial downward bias of tm and td.
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Figure 3: Model Choice, Model Fit and Parameter Estimates. A) Log-likelihood ratios and RSS
difference between the simple and extended pulse models for segment data and ALD, respectively.
Simulation and inference were done using constant(purple) and an empirical (teal) recombination
map. B) Estimates of tm and td. Solid black line indicate simulation values, the red dotted line adds
a migration corrected (tm(1− α)). C) Model fit for a single simulation in each scenario. Estimated
segment density or weighted LD (grey) is compared with the expected (turquoise) and fitted single
pulse (yellow) and extended pulse (purple).
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Comparing Effect Sizes for Technical Covariates

As we find that ALD performs as good or better than inferred segments (Figure 3), we focus on ALD
for the remainder of this paper. Our next goal is to more carefully evaluate the relative importance
of common assumptions made in the inference of admixture times, under both the simple and
extended pulse model in the ALD framework on the bias and accuracy of estimates of tm under
either model.

In particular, we use a Bayesian Generalized Linear Model (GLM) framework to contrast the effect of
extended gene flow on admixture time inference with i) the effects of a simple/complex demographic
history (Supplementary Figure 1), ii) recombination map variation , iii) the ALD ascertainment
scheme, iv) ,d0, the minimum genetic distance between variants and v) the number of makers used
to estimate the ALD curve (see Methods for details). For each modelling parameter and gene
flow model, we use a simple model as the base case, and we study the impact of a more “realistic”
alternative model.

In Figure 4, we present the estimated effect sizes for these six variables and four key interaction
terms. To model bias, we fit a model to the standardized difference between the true and estimated
mean admixture time, and to model accuracy (Methods, Supplementary Table 1, Supplementary
Figure 3, Supplementary Table 2). These effect sizes are estimated using simulations under all
possible parameter combinations on a scenario with admixture happening 1,500 generations ago.
(Supplementary Figures 4 and 5).

As a baseline, for comparison, we define a standard model using a simple demography (Supplementary
Figure 1A) and a constant recombination rate. This baseline model results in unbiased estimates
of tm under the single pulse model with low deviation of 0.08 (0.02 – 0.14 C.I.95%), and a slight
upward bias 0.21 (0.15 – 0.28) for the extended pulse model.

The effect of simulating an extended-pulse gene flow only results in a slight bias of -0.17; -0.21 –
-0.13) for the simple pulse and no bias for inference under the extended pulse model (-0.11; -0.15 –
0.07). In contrast, uncertainty in the genetic map causes by far the largest downward bias (Simple
pulse: -1.22, -1.29 – -1.16; Extended Pulse: -0.74, -0.80 – -0.67) with high deviation in the estimates
(Supplementary Figure 3). The more complex demography results in an underestimate of tm,
presumably because of increased genetic drift, for both the simple pulse ( -0.27, -0.33 – 0.22 and
extended pulse models (-0.43, -0.49 – -0.38). The remaining parameters largely only have very minor
effects, the biggest of which is changing the minimum cutoff from 0.05cM to to 0.02 cM.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.04.04.438357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438357
http://creativecommons.org/licenses/by-nc-nd/4.0/


S
ta

nd
ar

d 
M

od
el

E
xt

en
de

d 
P

ul
se

V
ar

yi
ng

R
ec

om
bi

na
tio

n

C
om

pl
ex

D
em

og
ra

ph
y

d0
 =

 0
.0

2

H
E

S

n 
S

N
P

 =
 5

%

In
te

ra
ct

io
n

n 
S

N
P

 =
 5

%
/H

E
S

In
te

ra
ct

io
n

C
om

pl
ex

 D
./V

ar
yi

ng
 R

.

In
te

ra
ct

io
n

d0
 =

 0
.0

2/
H

E
S

In
te

ra
ct

io
n

d0
 =

 0
.0

2/
V

ar
yi

ng
 R

.

bias

−1.0

−0.5

0.0

0.5

S
ta

nd
ar

di
ze

d 
di

f.
 e

st
./s

im
. t

im
e

Model Simple Pulse Extended Pulse

Figure 4: GLM effect sizes for the bias between simulated and estimated mean admixture
time and 95% C.I. for the parameters between the simple and extended pulse model: gene flow
(simple/extended), recombination rate (constant/varying), demography (simple/complex), minimal
genetic distance (0.02/0.05 cM), SNPs used for ALD calculation (100 % / 5 %) and ascertainment
scheme (LES/HES). Estimates are calculated across all possible combinations of parameters. Dotted
horizontal line indicates unbiased admixture estimates.

Application to Neandertal Data

Our next aim is to apply our model on the case of Neandertal gene flow into Eurasians. We
estimate the Neandertal admixture pulse from the 1000 genomes data (The 1000 Genomes Project
Consortium, 2015) and three high-coverage Neandertal genomes (Prüfer et al., 2013, 2017; Mafessoni
et al., 2020) by fiting pulses with durations ranging from one generation up to 2,500 generations
to the ALD decay curve (Figure 5, Supplementary Table 3). Plotting these best-fit ALD curves
shows the extremely slight difference predicted under these drastically different gene flow scenarios
(Figure 5A). The difference between scenarios becomes more apparent if we log-transform the y-axis
(Figure 5B), where we see that ongoing gene flow results in a heavier tail in the ALD distributions.
However, these LD values are very close to zero, and are thus only very noisily estimated.

For short gene flows (less than 1,000 generations), our estimates for tm are very similar and identical
to the simple pulse, at around 1,682 (1,526 – 1,839 C.I.95%) generations. Extremely high values of
td result in slightly higher values of tm with overlapping compatibility intervals; but all predict that
Neandertals would have survived until 30kya, for which the archaeological evidence is extremely
sparse (Hublin, 2017). From the residual sum-of-squares, the models perform equally well, with
longer extended pulses of gene flow achieving marginally better fits (Supplementary Table 4).
Therefore, we find that all scenarios are compatible with the observed data, and that there is little
power to differentiate these cases from genetics alone.
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Figure 5: Neandertal Gene Flow in Modern Humans. We fit models with fixed td from one to 2,500
generations of gene flow to the ALD-curve calculated from CEU individuals on A) natural and B)
log-scale.

Sampling Closer to the Admixture Event

Since Neandertal gene flow happened long in the past, much of the signal has been lost, and we
have shown that in this scenario, power to distinguish different scenarios is low.

However, we have also shown in Figure 2 that inference is easier for more recent gene flow, a case
that is relevant for many study systems. We investigate this in a series of simulations where the
time between sampling and gene flow is smaller (Figure 6). We use the simple demographic scenario
with a constant-sized populations (Supplementary Figure 1), and use ALD for inference using the
optimised settings for the Neandertal case (ascertainment scheme = LES and d0 = 0.05 cM).

In Figure 6A and B, we show the accuracy of estimating td and tm for increasingly longer pulses,
sampled 50 generations after gene flow ended. The corresponding comparison of model fit is depicted
in Supplementary Figure 6. For these cases, we find that inference of tm under the simple pulse
model works well for the shortest pulses, but becomes increasingly downward biased as td increases.
Estimates of tm are less biased for inference under the extended pulse model, where we get accurate
estimates particularly if recombination is constant. In the scenarios with a variable recombination
rate, we find that for short, recent pulses, all corrections give good results, but for longer pulses,
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particularly assuming a constant recombination rate leads to a stronger bias. We also find that
we are able to accurately infer the admixture duration, particularly if the recombination rate is
constant.

In 6 C and D, we keep the pulse duration constant at td = 800, but move it successively further into
the past. For the first two cases of tm = 450 and tm = 500 where the pulse is recent, we again obtain
good parameter estimates, but performance deteriorates for tm ≥ 600, which also results in low
power to distinguish the simple and extended pulse model (Supplementary Figure 6, lower panel).
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Figure 6: Parameter estimation using ALD from recent admixture pulses. We show estimates of
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Discussion

In this paper, we introduce a new population genetic model for dating extended pulses of gene flow.
Our model has just two parameters, that can be interpreted as the mean time and duration of gene
flow; and has simple closed form solutions for the segment length and ALD distributions. We show
that both the instantaneous pulse and constant migration models are special cases of our model,
where the duration is extremely short or long, respectively. We also demonstrate that the segment
length distribution and ALD-decay can be directly transformed into each other; in particular the
segment-length distribution is proportional to the second derivative of the ALD-decay curve. This
makes our theory and models generally applicable beyond gene flow between Neandertals and
humans. In fact, we find that we have little resolution for the parameter settings relevant for archaic
gene flow, as the data resulting from simple and extended pulses long in the past is extremely
similar. In contrast, we have much more power to estimate the duration of gene flow from events in
the recent past, a scenario relevant for many hybridizing species. One limitation of our approach
is that we assume that the overall amount of introduced material is low, and that we ignore the
effects of genetic drift and selection.

Previous approaches to date Neandertal-human gene flow have focused almost entirely on the mean
time of gene flow using a simple pulse model, for which reasonably tight credible intervals can
be estimated (Sankararaman et al., 2012; Moorjani et al., 2016). Under this model, the credible
intervals of this time are bounds of when gene flow between Neandertals and early modern humans
could have happened.

Our estimate of the tm for Neandertal gene flow of 1,682 generations corresponds to a mean time
estimate of 49ky (assuming a generation time of 29 years Moorjani et al. (2016)), with bounds of
44-54ky. This is in almost perfect agreement with the previous result of (Moorjani et al., 2016),
(41-54ky), which is based on largely the same method. However, here we show that models of
extended gene flow with td up to a thousand generations provide very similar fits to the data;
and that marginally better fits are achieved with very long gene flows. However, these models all
would have Neandertals survive until around 30kya, whereas archaeological evidence for Neandertals
surviving beyond 40ky is increasingly sparse (Hublin, 2017), so that these models of extremely long
gene flow might be rejected on these grounds.

Our finding that the observed data is compatible with models involving hundreds of generations of
gene flow means that while likely substantial amounts of gene flow happened around these mean
times, gene flow might have also happened tens of thousands of years before or after. This is of great
practical importance, as it makes linking genetic admixture date estimates with biogeographical
events much more difficult (Sankararaman et al., 2012; Lazaridis et al., 2016; Douka et al., 2019;
Jacobs et al., 2019; Vyas and Mulligan, 2019).

The discovery of early modern human genomes dated to 40,000 - 45,000 ya with very recent
Neandertal ancestors less than ten generations ago (Fu et al., 2014; Hajdinjak et al., 2021) illustrates
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that gene flow likely happened over at least several thousand years. In general, inference based on
ancient genomes (Fu et al., 2014, 2015; Moorjani et al., 2016; Hajdinjak et al., 2021) promises to
resolve some of these dating issues, as inference is substantially easier when admixture is more recent,
as the time difference between gene flow and sampling time is much lower (Figures 2, 6). However,
using these genomes for dating leads to further hurdles, particularly pertaining to the spatial
distribution of admixture events; whereas we can assume that the spatial structure present in initial
upper paleolithic modern humans is largely homogenized in present-day people, the introgression
signals observed in Bacho-Kiro and Oase could be partially private to these populations, and thus
these populations may have a different admixture time distribution than present-day people.

The uncertainty over the duration of Neandertal gene flow also has some implications for selection
on introgressed Neandertal haplotypes. Neandertal alleles have been suggested to be deleterious
in modern human populations due to an increased mutation load (Harris and Nielsen, 2016; Juric
et al., 2016). Some details of these models may be affected if migration occurred over a longer time.
For example, Harris and Nielsen (2016) suggested that an initial pulse of gene flow of up to 10%
Neandertal ancestry might be necessary to explain current amounts of Neandertal ancestry, with very
high variance in the first few generations after gene flow. More gradual gene flow could mean that
such high admixture proportions were never reached, but rather a continuous migration-selection
balance process persisted for the contact period, where deleterious Neandertal alleles continually
entered the modern human populations, but were selected against immediately. However, in terms
of the overall frequencies, there is likely little difference. For example, Juric et al. (2016) showed
using a two-locus model that the frequencies of Neandertal haplotypes alone cannot be used to
distinguish different admixture histories.

In addition, we find that modelling and method assumptions have an impact on admixture time
estimates that are of a similar or larger magnitude than the effect of assuming a one-generation
pulse. In particular, recombination rate variation poses a practical limitation to the accuracy
of admixture date estimates for old gene flow, and has to be very carefully considered when
making inferences about admixture times. A possible reason is that both an extended pulse, as
well as a non-homogeneous recombination map, lead to an admixture segment distribution that
deviates from the expected exponential distribution. Throughout, we measure segment lengths and
LD-decay distance in recombination units. Misspecification of the recombination rate will increase
the variance in ALD or segment lengths, which might be confounded with a longer admixture
pulse (Sankararaman et al., 2012). Therefore, population-specific fine-scale recombination maps are
needed for accurate admixture time estimates, at least for admixture that happened more than a
thousand generations ago. Estimates of more recent admixture appear to be more robust, perhaps
because coarser-scale recombination maps are better estimated, differ less between populations
(Hinch et al., 2011) and the error relative to fragment length is substantially lower.

To further refine admixture time estimates, time series data from more admixed early modern human
and Neandertal genomes are needed. In particular, measures based on population differentiation
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(e.g Wall et al., 2013; Browning et al., 2018; Villanea and Schraiber, 2019) hold much promise to
understand the different events that contributed to archaic ancestry in modern humans. While
Neandertal ancestry in present-day people has been largely homogenized due to the substantial gene
flow between populations, samples from both the Neandertal and early modern human populations
immediately involved with the gene flow could refine when and where this gene flow happened.

Material & Methods

Power Analysis under the Model

To test the power to distinguish the simple from an extended pulse we simulated 100, 1000,
10,000 and 100,000 unique times Ti form a Gamma distribution, with shape parameter k + 1
and scale k/tm, setting tm to 1,500 generations. Segment lengths Li are obtained by sampling
for each Ti from an exponential distribution with rate parameter Ti for present day samples and
T

(closer)
i = Ti − tm − td/2− 50 for sampling 50 generations after the end of gene flow. We obtain

maximum-likelihood estimates for the simple (Eq. 13a) and extended pulse (Eq. 17) using the
optim function implemented in R (R Core Team, 2019).

Coalescent Simulations

We further test our approach on coalescence simulations using msprime (Kelleher et al., 2016).
We focus on scenarios mimicking Neandertal admixture, and choose sample sizes to reflect those
available from the 1000 Genomes data (The 1000 Genomes Project Consortium, 2015). For ALD
simulations, we simulate 176 diploid African individuals and 170 diploid non-Africans, corresponding
to the number of Yoruba (YRI) and Central Europeans from Utah (CEU). For inference based on
segments we simulated 50 diploid non-Africans. Since three high coverage Neandertal genomes are
available (Prüfer et al., 2013, 2017; Mafessoni et al., 2020) we simulate three diploid Neandertal
genomes.

The demographic parameters are based on previous studies dating Neandertal admixture
(Sankararaman et al., 2012; Fu et al., 2014; Moorjani et al., 2016; Skov et al., 2018). In the “simple”
demographic model (Supplementary Figure 1 A), the effective population size is assumed constant
at Ne = 10, 000 for all populations, the split time between modern humans and Neandertals is
10,000 generations and the split between Africans and non-Africans is 2,550 generations. The
migration rate from Neandertals into non-Africans was set to zero before the split from Africans, to
ensure that there is no Neandertal ancestry in Africans. For a more complex scenario of human
population history, we followed the demographic model simulation setup of Skov et al. (2018), but
only simulated the Europeans. The split time of non-Africans are kept the same as in the ALD
simulations (2550 generations ago) (Supplementary Figure 1B).

For each individual we simulate 20 chromosomes with a length of 150 Mb each. The mutation rates
are set to 2 ∗ 10−8 and 1.2 ∗ 10−8 per base per generation for the “simple” and “complex” models,
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respectively. The recombination rates are set to 1 ∗ 10−8 per base pair per generation for the simple
demography and 1.2 ∗ 10−8 per base pair per generation for the complex demographic model, unless
specified otherwise.

Since inferring archaic segments is slow, we use 25 replicates for scenarios where we compare
segment-based and ALD-based inference, and use 100 replicates when we only perform ALD-based
inference.

Simulating Admixture

We specify simulations under the extended pulse model using the mean admixture time tm and
the duration td. We recover the simple pulse model by setting td = 1, up to errors due to discrete
generations. To obtain the migration rates in each generation, we use a discretized version of the
migration density (Eq. 15b), which we then scale to the approximate amount of Neandertal ancestry
in non-Africans (α = 0.03).

Recombination Maps

Uncertainties in the recombination map were previously shown to influence admixture time estimates
(Sankararaman et al., 2012; Fu et al., 2014; Sankararaman et al., 2016). To investigate the effect of
more realistic recombination rate variation, we perform simulations using empirical recombination
maps. For the GLM, we use the African-American map (Hinch et al., 2011) for simulations and
for the remaining simulations we use the HapMap phase 3 map (HapMap Consortium, 2007). For
simplicity, we use the same recombination map (150 Mb of chromosome 1, excluding the first and
last 10 Mb) for all simulated chromosomes. When simulating under an empirical map, with the
analysis assuming a constant rate (i.e. no correction), we use the mean recombination rate from the
respective map to calculate the genetic distance from the physical distance for each SNP. The mean
recombination rate is calculated from the 150 Mb map (1.017 cM

Mb AAMap, 0.992 cM
Mb HapMap). For

inference, each segment is either assigned a lengths based on its physical length (“constant”), the
African-American map or HapMap recombination map, depending on the inference scenario.

Estimating Admixture Time from Simulated Segment Data

For estimating admixture time and duration from introgressed segments, we either used the simulated
segment lengths directly, or alternatively added an inference step using the HMM from Skov et al.
(2018). We only considered inferred segments with an average posterior probability of 0.9 or higher.
Furthermore, we use an upper and lower cutoff for inferred segment length of 0.05 cM and 1.2 cM.
We fit the simple (Eq. 13a) and extended pulse (Eq. 17) using the optim function implemented
using R 4.0.3 (method="L-BFGS-B") with lower and upper constrains being 1, 5000 for tm and
2, 1e8 for k, respectively.
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Estimating Admixture Time from ALD Data

Ascertainment Scheme

Since ALD for ancient admixture events can be quite similar to the genomic background, SNPs need
to be ascertained to enrich for Neandertal informative sites in the test population. This removes
noise and amplifies the ALD signal (Sankararaman et al., 2012). We evaluate the impact of the
ascertainment scheme by contrasting two distinct schemes (Sankararaman et al., 2012; Fu et al.,
2014). The lower-enrichment ascertainment scheme (LES) only considers sites that are fixed for the
ancestral state in Africans and polymorphic or fixed derived in Neandertals. The higher-enrichment
ascertainment scheme (HES) is more restrictive in that it further excludes all sites that are not
polymorphic in non-Africans.

ALD Calculation

The pairwise weighted LD between the ascertained SNPs a certain genetic distance d apart is
calculated using ALDER (Loh et al., 2013). A minimal genetic distance d0 between SNPs is set
either to 0.02 cM and 0.05 cM. This minimal distance cutoff removes extremely short-range LD,
which might also be due to inheritance of segments from the ancestral population (incomplete
lineage sorting ILS) and not gene flow.

Parameter Estimates

We estimate parameters by fitting the ALD-curve to equations 22 and 23 using a non-linear least
square approach implemented in the nls function in R 4.0.3 (algorithm="port") with lower and
upper constrains being 1 and 5000 for tm and 1/1e10 and 1/2 for 1/k, respectively. To achieve better
conversion we pre-fit the functions using the estimates of the DEoptim optimization (Ardia et al.,
2016) as starting parameters for the nls function. To improve estimates for td, we run the fitting
using 10 iterations to avoid local optima. We select the model with the lowest residual-sum-of-squares.

Modeling Parameter Effect Sizes

To estimate the effect size of the different parameters (Eq. 24) we use a Bayesian Generalized Linear
Model, where E is the response, and A,M,D,R, S and G are binary predictors.

The model can be written as
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Ei ∼ Normal(µi, σ)

µi = α+ βaAi + βmMi + βdDi + βrRi + βsSi+

βgGi + βsaSiAi + βmaMiAi + βdrDiRi + βmrMiRi

α ∼ Normal(0, 2)

βa, βm, βd, βr, βs, βg, βsa, βma, βdr, βmr ∼ Normal(0, 2)

σ ∼ Exponential(1)

(24)

where the variables define

• ascertainment scheme: Ai = LES/HES

• minimal genetic distance: Mi = 0.02cM/0.05cM

• demography: Di = simple/complex

• recombination rate: Ri = constant/variable

• n SNPs used: Si = 100 %/5 %

• gene flow model: Gi = simple pulse (SP)/extended pulse (EP)

We fit two models, a primary model aimed at investigating the bias of our estimates, and a second
model aimed at investigating the deviation. In the first case, the response variable Ei is

Ei = test − tsim

σtest

,

and in the second case we use the absolute error

Ei = | test − tsim |
σtest

,where σ is the standard deviation of test. We also modeled the interaction between number of used
SNPs and the ascertainment scheme (βsa), minimal distance and ascertainment (βma), demography
and recombination (βdr) and minimal distance and recombination(βmr).

We perform simulations using all possible parameter combinations. For the effect of the amount of
SNPs i.e. accuracy of the ALD estimates, we downsampled the data by randomly choosing 5 % of
the overall SNPs for ALD calculation. We define a standard model having a constant recombination
rate, simple demography and gene flow, LES ascertainment and d0 = 0.05. The genetic distance is
assigned from the physical position using the average recombination rate of the African-American
genetic map (i.e., assuming the recombination rate is constant over the simulated chromosome given
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by this value) for simulations under a variable recombination rate. For each of the possible sets of
parameters, we simulate 100 replicates each and fit ALD decay curves. We excluded a small number
of simulations for which either the simple pulse or extended pulse curve could not be estimated (87
out of 6,400).

We assume a Normal likelihood because it is the maximum entropy distribution in our case.
We obtained the posterior probability using a Hamiltonian Monte Carlo MCMC algorithm, as
implemented in STAN (Carpenter et al., 2017) using an R interface (Stan Development Team,
2018; McElreath, 2020). The Markov chains converged to the target distribution (Rhat = 1) and
efficiently sampled from the posterior (Supplementary Table 1 and 2).

Estimating Neandertal Admixture Time

We estimate the Neandertal admixture time distribution using ALD from the 1000 Genomes data
(The 1000 Genomes Project Consortium, 2015), together with the Altai, Vindija and Chagyrskaya
high coverage Neandertals. We include the 107 unrelated individuals from the YRI as representatives
of unadmixed Africans and all CEU as admixed Europeans. We only consider biallelic sites, and
determine the ancestral allele using the Chimpanzee reference genome (panTro4). We used the
CEU specific fine-scale recombination map (Spence and Song, 2019) to convert the physical distance
between sites into genetic distance.
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Appendix: Derivation and Approximation Details

Formal Motivation for ALD

In the main text, we motivate the ALD decay using the intuitive argument of “adding up” ALD
introduced at different generations in the past. Here we present a more formal derivation: In one
generation, LD changes due to LD-decay through recombination, and through the introduction of
new ALD through migration.

D(t+ 1) = (1− r −m(t))D(t) + ∆X∆Y m(t)

≈ (1− r)D(t) +Am(t) (A1)

where A is a constant and r the map distance between the pair of markers. The approximation in the
second line is valid if we ignore the effect of new introgressed material replacing older introgressed
material.

This leads to the following linear differential equation:

dD

dt
= −rD +Am(t). (A2)

It is straightforward to verify that equation 6 is a solution to this equation:
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D(t) = A

∫ t

−∞
m(s) exp(−r(t− s))ds

dD

dt
= d

dt

[
A

∫ t

−∞
m(s) exp(−r(t− s))ds

]
= Am(t) +

∫ t

−∞

[
d

dt
Am(s) exp(−r(t− s))

]
ds

= Am(t)− r
∫ t

−∞
Am(s) exp(−r(t− s))ds

= Am(t)− rD(t) (A3)

where the third line follows from Leibniz’ integral rule.

Replacement During Pulse

The “old”-LD also changes due to addition of new introgressed material, which is accomodated
using

dD

dt
= −(r +m(t))D +Am(t). (A4)

This equation has solution

D(t) = A

∫ t

−∞
exp

[
− r(t− s)−M(s, t)

]
m(s)ds (A5)

where
M(s, t) =

∫ t

s
m(x)dx,

which can be interpreted as contributing how much LD has decayed from introgression time s to
the observation time t due to replacement from new introgressed material.
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This follows from

D(t) = A

∫ t

−∞
m(s) exp

[
−r(t− s)−

∫ t

s
m(x)dx

]
ds

dD

dt
= d

dt

[
A

∫ t

−∞
m(s) exp

(
−r(t− s)−

∫ t

s
m(x)dx

)
ds

]
= Am(t) +

∫ t

−∞
Am(s)

[
d

dt
exp (−r(t− s)) exp

(
−
∫ t

s
m(x)dx

)]
ds

= Am(t)− (r +m(t))
∫ t

−∞
Am(s) exp (−r(t− s)) exp

(
−
∫ t

s
m(x)dx

)
ds

= Am(t)− (r +m(t))D (A6)

where the derivative can be evaluated using the product rule:

d

dt
exp (−r(t− s)) = −r exp(−r(t− s))

d

dt
exp

(
−
∫ t

s
m(x)dx

)
= −m(t) exp

(
−
∫ t

s
m(x)dx

)

Changing the flow of time and setting t = 0 as in the main text, times, this results in

D(l) = A

∫ ∞
0

exp[−lrt] exp[−Mb(t)]mb(t)dt (A7)

where again mb(t) = m(−t) and
Mb(t) =

∫ t

0
mb(x)dx.

This motivates the “effective” migration rate

me(t) = mb(t) exp[−Mb(T )];

for the case of constant migration, Mb(t) = mt and mb(t) = me−mt, which is an exponential density
(Pool and Nielsen, 2009).

Connection Between Admixture Segment Length Distribution and ALD
Function

Here we describe how the admixture segment length distribution P (l) and the ALD function D(l)
are interconnected (under the assumptions of this work) and in fact uniquely determine each other
as claimed in the main text (Eq. 9 and Eq. 10).

Following the models outlined in the main text, throughout we assume that admixture is rare and
that consequently admixture segments do not interact. Using these assumptions, we first describe
how the admixture segment length distribution uniquely determines the ALD function, and second
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how the ALD function in reverse uniquely determines the admixture segment length distribution.

From the Admixture Segment Length Distribution to the ALD Function

Without loss of generality, we assume that derived allele frequencies are 0 in the target and 1 in the
admixture source population, otherwise the resulting ALD curve can be re-weighted with a constant
factor A as in Eq. 4.

We start by noting that two-point ALD between two loci can be written as:

D = x11 − p · q,

where x11 denotes the frequency of 11-haplotypes and p and q the allele frequencies at these two loci.
Under the assumption that introgressed segments do not interact with each other, genome-wide
excess 11 haplotypes beyond random association (p · q for each pair of loci) originate from pairs of
markers on the same introgressed segments. To get the genome-wide average D we therefore have
to sum over the contribution of 11 haplotypes from introgressed segments of all lengths.

For all pairs of markers a map distance l apart, only segments of length x > l contribute pairs of
markers at distance l. Let us first describe a single introgressed segment of length x. In the limit
of long chromosome (of length G) and of high marker density, a fraction (x− l)/G of all pairs of
markers at distance L fall both onto this segment. Then, denoting the expected number of segments
of length x as E(x), we sum over all segment lengths x > l to get:

D(l) = 1
G

∫ ∞
l

E(x)(x− l) dx (A8)

The expected number of segments of a given length E(x) can be directly derived from the segment
length distribution via E[K], the total number of all introgressed segments:

E(x) = P (x)E[K] (A9)

Plugging A9 into Eq. A8 yields:

D(l) = E[K]
G

∫ ∞
l

P (x)(x− l) dx. (A10)

Eq. A10 now allows one to directly calculate D(l) from P (l), which shows that P (l) uniquely
determines D(l).
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From the ALD Function to the Admixture Segment Length Distribution

To derive the inverse relationship, we start by differentiating D(l) twice with respect to l ( d
dl ). Using

Eq. A10 and the Leibniz integral rule yields:

D′(l) = −E[K]
G

∫ ∞
l

P (x) dx

D′′(l) = E[K]
G

P (l).

Simple rearrangement and plugging in the re-weighting of LD with A (that we omitted above) yields:

P (l) = 1
A

G

E[K]D
′′(l) (A11)

Thus, D(l) uniquely determines P (l).

For the Continuous Admixture Model

For the concrete case of the continuous admixture model we derived explicit formulas for both
the ALD function and the admixture segment length distribution (Eq. 3 and (Eq. 8). We can
validate the above derived functional relationships (Eq. A10) directly and show that the more
general derivation above holds for these specific formulas central for this work.

To check the relationships, we start with reiterating the explicit formulas: (Eq. 3) and (Eq. 8):

P (l) = G

E[K]

∫ ∞
0

t2m(t) exp(−lt) dt (A12)

D(l) = A

∫ ∞
0

m(t) exp(−lt) dt. (A13)

First, plugging Eq. A12 into the functional relationship Eq. A10 yields:

E[K]
G

∫ ∞
l

P (x)(x− l) =
∫ ∞

l
dx
∫ ∞

0
dt t2m(t) exp(−xt)(x− l)

=
∫ ∞

0
dt t2m(t)

∫ ∞
l

dx exp(−xt)(x− l)︸ ︷︷ ︸
1

t2 exp(−lt)

=
∫ ∞

0
m(t) exp(−lt) dt
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If we reweight the right-hand side with the allele-frequency differences A, it becomes D(l) from
Eq. A13, which finishes the validation that the first functional relationship Eq. A10 holds.

To verify the second functional relationship (Eq. A11) we differentiate D(l) twice and multiply with
1
A

G
E[K] :

1
A

G

E[K]D
′′(l) = G

E[K]

∫ ∞
0

m(t) d2

dl2 exp(−lt) dt = G

E[K]

∫ ∞
0

t2m(t) exp(−lt) dt = P (l)

Genetic Drift and Recombination

Our model assumes that Neandertal segments in the human population always recombine with
non-Neandertal haplotypes, and that the effect of genetic drift can be neglected. In this appendix,
we discuss some possible extensions of the model to incorporate aspects of genetic drift and
recombination between admixture segments.

Single Pulse Theory of Recombination Between Fragments Under our modelling
assumptions, we show that ELi = t−1

m , but this ignores recombination between introgressed material.
Under a single pulse, Liang and Nielsen (2014) showed that under the SMC model (McVean and
Cardin, 2005) the expectation is reduced as

ELi = [tm(1− α)]−1 , (A14)

and under the SMC’ model (Marjoram and Wall, 2006) this is

ELi =
[
2N(1− α)(1− exp

(
− tm2N

)]−1
.

Using a Taylor expansion around N → ∞ and ignoring terms of the order 1
N2 , this can be

approximated as

ELi ≈
[
tm(1− α)

(
1− tm

4N

)]−1
, (A15)

which makes the similarity to the SMC model more apparent.

This is compared to ELi = 1
tm

as we obtained from equation 14a. The (1 − α)-term models
recombination between adjacent introgressed segments; and the

(
1− tm

4N

)
can be thought of reflecting

genetic drift.

The justification for both of these formulas is that they are geometric mixtures of exponential
distributions (Liang and Nielsen, 2014), which are themselves exponential. Under the extended
pulse model, the segment length distribution is no longer exponential, so the segments may have a
more complicated mixture distribution.

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.04.04.438357doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.04.438357
http://creativecommons.org/licenses/by-nc-nd/4.0/


For the case of Neandertal admixture, assuming gene flow happened over a short duration, these
equations can be used to estimate the error made from ignoring drift and recombination between
Neandertal segments. As α ≈ 0.03, tm ≈ 1600, N ≈ 10, 000, and so the expected combined error of
these two terms is on the order of 10%.

Effect of Reduced “Effective” Recombination and Coalescence

In the ALD framework, we can take further complications into account. For example, we can
motivate

• an “effective” recombination rate r(t) = r(1− α(t)) that takes into account as the admixture
fraction increases, some recombination events will be between introgressed material, and we
denote the total amount of introgressed material by time t as α(t).

• the allele frequencies in the admixing populations may change, so that we replace the constant
A = ∆x∆y by A(t) = ∆x(t)∆y(t).

• genetic drift will fix some haplotypes, which then can no longer decay. This happens at rate
1

2N(t)

Taken together, the analogous equation is

dD

dt
= −

[
r(1− α(t)) +m(t) + 1

2N(t)

]
D +A(t)m(t). (A16)

This equation is still a first-order non-homogeneous linear differential equation, so the solution will
have the same form

D(t) =
∫ t

−∞
exp[−F (s, t)]m(s)A(s)ds (A17)

where

F (s, t) =
∫ t

s

[
r(1− α(x))−m(x)− 1

2N(x)

]
dx (A18)

= r(t− s)− r
∫ t

s
α(x)dx+

∫ t

s
m(x)dx+

∫ t

s

1
2N(x)dx,

For example, if we assume N , A(t) and α are all constant, and migration is a simple pulse at tm
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Dt(l) = A

∫ t

0
δtm(s) exp

(
− s

2N

)
exp (−l(1− α)s) ds

D′′t (l) ∝ exp(ltm(1− α))

(A19)
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