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Mathematical modelling of ecDNA dynamics 1 
 2 
Introduction  3 
 4 
Here we develop and analyse a baseline mathematical model of random ecDNA segregation 5 
in exponentially growing tumour populations. This will allow us to work out a set of dynamic 6 
predictions to distinguish ecDNA behaviour under neutral or positive selection. We will see 7 
that certain properties, such as the mean ecDNA copy number per cell and the fraction of 8 
cells with and without ecDNA fundamentally differ between these two scenarios.  9 
 10 
We first present stochastic computer simulations using an agent-based model and compare 11 
the simulations against experimental data. Next, we develop a complete and fine-grained 12 
picture of ecDNA dynamics and work out the theoretical dynamics of moments as well as the 13 
expected scaling of the ecDNA copy number distribution. This is followed by a simplified 14 
deterministic approximation that will allow us to follow the change of cell populations with 15 
and without ecDNA copies in time. These analytical results are compared both against 16 
experimental data as well as stochastic simulations. 17 
 18 
Our mathematical model is based on five assumptions: (i) ecDNA copies are segregated 19 
randomly between daughter cells; (ii) the cell population is exponentially growing; (iii) ecDNA 20 
replicates at the same rate as chromosomal DNA doubling during the cell cycle; (iv) the 21 
population starts with a single cell carrying a single copy of ecDNA; (v) a cell that has lost all 22 
ecDNA does not regain them. 23 
 24 
Our reasoning for these assumptions is as follows: (i) We have experimentally verified this 25 
property across different cell lines with different ecDNA amplified genes. This is the 26 
fundamental dynamic property that distinguishes ecDNA copy number evolution from the 27 
evolution of somatic copy number alterations on chromosomes. (ii) We are interested in 28 
ecDNA evolution in growing tumour populations. (iii) This assumption can be justified 29 
retrospectively. If ecDNA is amplified with any coefficient > 2 the ecDNA copy number per 30 
cell explodes within a few generations and each cell would be expected to carry thousands of 31 
ecDNA copies. This ecDNA copy number inflation is not observed in any of the cell line or 32 
patient data. (iv) Here we are interested in specific types of ecDNA amplifications. If we say a 33 
cell carries 𝑘 copies of ecDNA, we mean exactly 𝑘 copies of one particular complex 34 
amplification, e.g. EGFR in Glioblastoma or MYCN in Neuroblastoma. These are large and 35 
complex genomic structures, and we assume that their origin is a single catastrophic event in 36 
the evolutionary history of a tumour and a repeated production of the exact same circular 37 
DNA structure containing millions of base pairs is extremely unlikely. There very well can be 38 
situations, where cells carry multiple types (species) of ecDNA, e.g. an EGFR and MYC 39 
amplification. In this situation, we would introduce two copy numbers 𝑘1 and 𝑘2 that keep 40 
track of the temporal evolution of those two species independently. (v) ecDNA formation is a 41 
rare, random event. Most ecDNA impose a metabolic load on the cell, are deleterious to its 42 
fitness and lost rapidly. Very rarely, an ecDNA is created that carries a proliferative element 43 
(e.g. an oncogene) which provides a growth and proliferative advantage to the cell. 44 
 45 
Our notation will be as follows. 𝑁(𝑡) refers to the number of cells 𝑁 at any particular time 𝑡 46 
during the growth of the tumour. 𝑁𝑘(𝑡) refers to the number of cells with exactly 𝑘 copies of 47 
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ecDNA at time 𝑡. The copy number per cell, 𝑘, can in principle range from zero to infinity. With 48 
this we can formulate the equation for the expected temporal change of cells with 𝑘 ecDNA 49 
copies. For simplicity, we first explain the case of neutral ecDNA dynamics (cell with and 50 
without ecDNA have the same properties). 51 
 52 
1.1 Agent based stochastic computer simulations of ecDNA segregation 53 
 54 
 55 

 56 
 57 
Figure SI 1. Schematic of the stochastic simulations for random ecDNA segregation in exponentially growing 58 
tumour populations.  59 
 60 
 61 
A schematic of the simulations can be found in Figure SI 1. All simulations are exact agent-62 
based implementations of the underlying stochastic process. Simulations are initiated with a 63 
single cell carrying a single copy of ecDNA. Upon proliferation, the number of ecDNA copies 64 
in a cell are doubled and distributed between two daughter cells following a Binomial trial 65 
with success probability 1/2. From thereon, the next cell to proliferate is chosen following a 66 
Gillespie algorithm. Briefly, we draw two random numbers 𝜁1 and 𝜁2 from a Uniform 67 
distribution in the interval [0,1] and calculate the corresponding reaction times for cells with 68 

ecDNA (𝑁+) and cells without ecDNA (𝑁−), given by 𝜏1 = −
1

𝑠𝑁+ ln[𝜁1] and 𝜏2 = −
1

𝑁− ln[𝜁2]. 69 

Whichever reaction time is smaller, is the next cell chosen for proliferation. Again, the ecDNA 70 
copy number of the cell is doubled and distributed into two daughter cells following a 71 
Binomial trial with success rate 1/2. This process is iterated until the cell population reaches 72 
a predefined number of cells 𝑁. The same stochastic process can be used to simulate related 73 
dynamics for non-random ecDNA segregation. We just need to replace the Binomial trial by a 74 
segregation probability of interest, e.g. we could have non-random biased segregation with 75 
𝑝 > 1/2, or strict chromosomal segregation where each daughter cell always receives equal 76 
number of ecDNA copies. These simulations introduce two sources of stochasticity. The next 77 
cell to proliferate is picked at random, but proportional to fitness. The Gillespie algorithm 78 
(Gillespie, Journal of Physical Chemistry 1977) offers an exact stochastic implementation of 79 
the underlying Markov Chain and its implementation is standard in these types of individual 80 
based simulations. The second source of randomness emerges from the segregation of ecDNA 81 
copies into daughter cells after division. Computer simulations of (non)random ecDNA 82 
segregation have been implemented in C++ and the code to run the simulations is available 83 
https://github.com/BenWernerScripts. 84 
 85 
1.2 Comparison of stochastic simulations and experimental observations 86 
 87 
The final output of our stochastic simulations is a population of cells, each cell with a 88 
particular ecDNA copy number. These copy number distributions can be followed over time, 89 
and all information of interest, e.g. the population of cells with and without ecDNA, the mean 90 
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and variance of the ecDNA distribution, the actual ecDNA copy number distribution as well as 91 
the power law scaling of the ecDNA distribution can be constructed.  92 
 93 
We use a Kolmogorov-Smirnov test to compare the ecDNA copy number distributions from 94 
stochastic computer simulations and experimentally observed distributions in patients or cell 95 
line experiments.  The test first gives the 𝐾𝑆𝑑  distance, with smaller values indicating better 96 
agreement. It also allows us to calculate a 𝑝𝐾𝑆 value. The test compares two probability 97 
distributions for distance d, the 𝑝-value corresponds to the probability of obtaining d or 98 
smaller given the that the two distributions are different. For the ecDNA copy number 99 
distributions, we also use the Shapiro-Wilk statistics, to test for deviations from a normal 100 
distribution. In addition, to show goodness of fits, we added Quantile-Quantile plots for all 101 
comparisons of experimental and theoretical distributions.  102 
 103 

Sample 𝐊𝐒𝐝
𝐫𝐚𝐧𝐝𝐨𝐦 𝒑𝑲𝑺

𝐫𝐚𝐧𝐝𝐨𝐦 𝐊𝐒𝐝
𝐧𝐨𝐧−𝐫𝐚𝐧𝐝𝐨𝐦 𝒑𝑲𝑺

𝐧𝐨𝐧−𝐫𝐚𝐧𝐝𝐨𝐦 𝒑𝐒𝐡𝐚𝐩𝐢𝐫𝐨𝐖𝐢𝐥𝐤 #samples 

PC3_Myc 0.065 0.375 0.46 0 0.758 200 

SNU16_Myc 0.039 0.918 0.49 0 0.939 194 

SNU16_fgfr2 0.063 0.415 0.49 0 4.2 × 10−9 196 

GBM39_EGFR 0.072 0.221 0.46 0 0.001 210 

COLO_Myc 0.033 0.973 1 0 0.196 206 

 104 
Table SI 1. Test statistics to compare the theoretical distributions with experimental observations for the single 105 
cell ecDNA segregation probabilities as presented in Figure 1c in the main text. The similarity of the two 106 
distributions is tested by a Kolmogorov-Smirnov test for two competing hypothesis, random ecDNA segregation 107 
and non-random chromosomal segregation. We also test for normality using the Shapiro-Wilk statistics.  108 
 109 

Sample 𝐊𝐒𝐝
𝐫𝐚𝐧𝐝𝐨𝐦 𝒑𝑲𝑺

𝐫𝐚𝐧𝐝𝐨𝐦 𝐊𝐒𝐝
𝐧𝐨𝐧−𝐫𝐚𝐧𝐝𝐨𝐦 𝒑𝑲𝑺

𝐧𝐨𝐧−𝐫𝐚𝐧𝐝𝐨𝐦 𝒑𝐒𝐡𝐚𝐩𝐢𝐫𝐨𝐖𝐢𝐥𝐤 #samples 

PC3_Myc 0.091 0.074 0.986 0 3.1 × 10−13 200 

SNU16_Myc 0.052 0.662 0.999 0 9.9 × 10−4 194 

SNU16_fgfr2 0.066 0.359 1 0 1.9 × 10−12 196 

GBM39_EGFR 0.071 0.237 0.977 0 6.6 × 10−9 210 

COLO_Myc 0.075 0.196 0.994 0 2.4 × 10−11 206 

GBM1 0.141 0.073 0.882 0 0.019 85 

GBM2 0.082 0.914 0.757 0 0.028 46 

GBM3 0.138 0.131 0.843 0 0.003 72 

GBM4 0.254 0.004 0.759 0 0.014 101 

GBM5 0.163 0.01 0.831 0 0.004 103 

GBM6 0.159 0.124 0.833 0 0.057 55 

Chp212 0.193 0.048 0.963 0 1.2 × 10−10 154 

TR14_MYCN 0.047 0.681 0.987 0 1.6 × 10−8 232 

TR14_CDK4 0.091 0.174 0.855 0 1.7 × 10−13 284 

NB4 0.098 0.177 1 0 1.2 × 10−8 126 

NB7 0.129 0.313 0.999 0 4.8 × 10−3 56 

NB8 0.074 0.375 0.983 0 1.3 × 10−6 151 

NB10 0.176 0.004 0.996 0 3.3 × 10−6 98 

NB13 0.271 0.001 0.999 0 0.004 155 

 110 
Table SI 2. Test statistics to compare the theoretical ecDNA copy number distributions with experimental 111 
measured ecDNA copy number distributions in patient and cell line data as presented in Figure 2 b and c in the 112 
main text. The similarity of the two distributions is tested by a Kolmogorov-Smirnov test for two competing 113 
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hypothesis, random ecDNA segregation and non-random chromosomal segregation. We also test for normality 114 
using the Shapiro-Wilk statistics.  115 
 116 
 117 

 118 
Figure SI 2.  Quantile-Quantile plots to compare the theoretical and experimental distributions from single 119 
cell ecDNA segregation probabilities presented in Figure 1c in the main text.  120 
 121 
 122 
 123 

 124 
Figure SI 3.  Quantile-Quantile plots to compare the theoretical and experimental ecDNA copy number 125 
distribution in cell lines presented in Figure 2b in the main text.  126 
 127 
 128 
 129 
 130 
 131 
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 132 

 133 
 134 
Figure SI 4.  Quantile-Quantile plots to compare the theoretical and experimental ecDNA copy number 135 
distribution in samples of Glioblastoma and Neuroblastoma patients presented in Figure 2c in the main text.  136 
 137 
 138 
 139 
1.3 Finite sampling and resolution limits 140 
 141 
In our stochastic simulations, we have the freedom to in principal sample and analyse as many 142 
single cell ecDNA copy number profiles as we want. This is obviously not the case in our 143 
experimental data due to technical and financial limitations. We thus tested if we can 144 
reconstruct the ecDNA copy number distribution with limited single cell resolutions. We 145 
generated a distribution of ecDNA copy numbers by simulating a tumour with 107 cells and 146 
ecDNA under positive selection 𝑠 = 2. We then sampled 10,000 times 25, 50, 100 and 500 147 
cells respectively, constructed the ecDNA copy number distribution and calculated the 148 
Kolmogorov distance  149 
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 150 
 151 
Figure SI 5.  Sampling of the ecDNA copy number distribution. We took 104 samples with 25, 50, 100 and 500 152 
cells respectively from a single simulation of the ecDNA distribution of 107 cells. Shown are the corresponding 153 
distributions of Kolmogorov distances. Resolution increases with sample size. Kolmogorov distances for samples 154 
of 100 cells are comparable to our experimental observations.  155 
 156 
 157 
of the sampled distribution to the true (non-sampled) distribution. As expected, the 158 
resolution increases with sample size. More importantly, we find Kolmogorov distances that 159 
are comparable to experimental data comparisons and a sample size in the order of 100 cells 160 
already allows us to capture important aspects of the ecDNA copy number distribution.  161 
 162 
 163 
2.1 Stochastic dynamics of ecDNA copy numbers under neutral selection 164 
 165 
The dynamic equation for the number of cells 𝑁𝑘(𝑡) with 𝑘 neutral copies of ecDNA with time 166 
𝑡 becomes  167 

d𝑁𝑘(𝑡)

d𝑡
= −𝑁𝑘(𝑡) + 2 ∑ 𝑁𝑖(𝑡) (

2𝑖

𝑘
)

1

22𝑖

∞

𝑖=⌈𝑘/2⌉

 168 

 169 
This is a set of, in principal, infinitely many coupled differential equations, formally known as 170 
the Master equation of the underlying Markovian stochastic process. It describes the 171 
evolution of all states the system at question can be in. In our case, all possible states 172 
correspond to the number of cells with 𝑘 copies of ecDNA. The left-hand side is the time 173 
derivative of the number of cells with 𝑘 ecDNA copies. The right-hand side collects all possible 174 
events (rates) that change this number. If a cell with 𝑘 copies divides, its copies are amplified 175 
and randomly distributed between both daughter cells. This reduces the number of cells with 176 
exactly 𝑘 copies, reflected by the first term −𝑁𝑘(𝑡). The second term on the right-hand side 177 
of the equation collects all cells of the system that gain 𝑘 copies of ecDNA due to random 178 
segregation amongst daughter cells. Upon cell proliferation, 2𝑖 copies are randomly 179 
segregated amongst two daughter cells. The number of ecDNA copies 𝑘 in a daughter cell 180 
follows a Binomial distribution with success rate 1/2 181 
 182 

𝐵 (𝑘 | 𝑛 = 2𝑖, 𝑝 =
1
2) =  (

2𝑖

𝑘
)

1

22𝑖
 183 

 184 
It turns out that working with cell densities 𝜌𝑘rather than total cell numbers 𝑁𝑘  is 185 
advantageous. We therefore decouple population growth and demographic changes and 186 
write 𝑁𝑘(𝑡) = 𝑁(𝑡)𝜌𝑘(𝑡) with ∑ 𝜌𝑖(𝑡)∞

𝑖=1 = 1 and 𝑁(𝑡) = ∑ 𝑁𝑘(𝑡)𝑘  denotes the total 187 
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number of cells at time t. We first can check that the structure of our equations is correct and 188 
we recover an exponentially growing population for 𝑁(𝑡) as we have claimed in our initial 189 
assumptions. We can write:  190 
 191 

d𝑁(𝑡)

d𝑡
= −𝑁(𝑡) + 2𝑁(𝑡) ∑ ∑ 𝜌𝑖(𝑡) (

2𝑖

𝑘
)

1

22𝑖

∞

𝑖=⌈
𝑘
2⌉

∞

𝑘=0

 192 

= −𝑁(𝑡) + 2𝑁(𝑡) ∑ 𝜌𝑖(𝑡)
1

22𝑖
∑ (

2𝑖

𝑘
)

2𝑖

𝑘=0

∞

𝑖=0

 193 

= −𝑁(𝑡) + 2𝑁(𝑡) ∑ 𝜌𝑖(𝑡)
1

22𝑖
22𝑖 = 𝑁(𝑡)

∞

𝑖=0

 194 

 195 
And we do find that the total population grows exponentially in time 𝑁(𝑡) = 𝑁(0)𝑒𝑡. This 196 
allows us to write for the temporal change of cell densities 𝜌𝑘  with 𝑘 ecDNA copy numbers: 197 
 198 

d𝜌𝑘(𝑡)

d𝑡
= −2𝜌𝑘(𝑡) + 2 ∑ 𝜌𝑖(𝑡) (

2𝑖

𝑘
)

1

22𝑖

∞

𝑖=⌈𝑘/2⌉

 199 

 200 
 201 
2.2 Dynamics of Moments of ecDNA copies under neutral selection 202 
 203 
The Master equations above describe the full dynamics of the probability densities of the 204 
ecDNA copy number distribution. They therefore encode in principle all properties of the 205 
underlying stochastic process. However, a complete analytical treatment is challenging. 206 
Nevertheless, many aspects of the system are analytically tractable. We first discuss the 207 
dynamics of the moments of the ecDNA copy number distribution. In particular we are 208 
interested in the first and second moment, as they are directly related to the mean ecDNA 209 
copy number per cell and the expected variance of the ecDNA copy number distribution.  210 
 211 
With above equation for the density of cells with 𝑘 ecDNA copies, we can calculate the 212 
moments of the underlying probability density function. In general, the 𝑙-th moment is 213 
calculated via 214 

𝑀(𝑙)(𝑡) = ∑ 𝑖𝑙𝜌𝑖(𝑡)

∞

𝑖=0

 215 

 216 

The moment 𝑀(0)(𝑡) is just the sum over the density and by definition constant. The first 217 
moment corresponds to the average number of ecDNA copies per cell and we can write: 218 
 219 

d𝑀(1)(𝑡)

d𝑡
= −2𝑀(1)(𝑡) + ∑ ∑ 𝑘𝜌𝑖(𝑡) (

2𝑖

𝑘
)

1

22𝑖

∞

𝑖=⌈𝑘/2⌉

∞

𝑘=0

 220 

= −2𝑀(1)(𝑡) + ∑ 𝜌𝑖(𝑡)
1

22𝑖
∑ 𝑘

2𝑖

𝑘=0

(
2𝑖

𝑘
)

∞

𝑖=0

 221 
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= −2𝑀(1)(𝑡) + ∑ 𝜌𝑖(𝑡)
1

22𝑖
(2𝑖)22𝑖−1 = 0

∞

𝑖=0

 222 

 223 
 224 

We therefore find 𝑀(1)(𝑡) = const and the constant is given by the initial conditions. In most 225 

cases discussed here, we will have 𝑀(1)(𝑡) = 𝑀(1)(𝑡 = 0) = 1. In the case of neutral ecDNA 226 
dynamics starting from a single cell containing a single copy of ecDNA, on average the 227 
population maintains one copy of ecDNA per cell.  228 
  229 

Next, we are interested in the second moment 𝑀(2)(𝑡). Following our calculations for the first 230 
moment we can similarly write: 231 
 232 

d𝑀(2)(𝑡)

d𝑡
= −2𝑀(2)(𝑡) + ∑ ∑ 𝑘2𝜌𝑖(𝑡) (

2𝑖

𝑘
)

1

22𝑖

∞

𝑖=⌈𝑘/2⌉

∞

𝑘=0

 233 

= −2𝑀(2)(𝑡) + ∑ 𝜌𝑖(𝑡)
1

22𝑖
∑ 𝑘2

2𝑖

𝑘=0

(
2𝑖

𝑘
)

∞

𝑖=0

 234 

= −2𝑀(2)(𝑡) + ∑ 𝜌𝑖(𝑡)
1

22𝑖
(2𝑖 + (2𝑖)2)22𝑖−2 = 𝑀(1)(𝑡)

∞

𝑖=0

 235 

 236 
With the initial conditions for the mean ecDNA copy numbers above we find the expression 237 

𝑀(2)(𝑡) = 𝑡 + const. The constant can be fixed by the realisation that the variance of the 238 
ecDNA copy number distribution at time 𝑡 = 0 should equal 0 and we get Var(𝑡 = 0) =239 
const − 12 = 0, and therefore const = 1 and simply have that the variance increases linearly 240 
in time for neutral ecDNA copies, Var(𝑡) = 𝑡.  241 
 242 

 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
 251 
 252 
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 253 
Figure SI 6. a) First and b) second moment of the ecDNA copy number distribution under neutral selection 254 
(𝑠 = 1). The mean number of ecDNA copies remains constant and the variance increases linearly in time. 255 
Stochastic simulations (points) are in very good agreement to theoretical predictions of polynomial increasing 256 
moments with time (dashed lines). 257 
 258 
 259 
2.3 The scaling of the ecDNA copy number distribution in the continuous limit wave 260 
approximation 261 
 262 
In the following, we are interested in the scaling behaviour of the ecDNA copy number 263 
distribution, e.g. what is the probability for a single cell to carry many copies of ecDNA. We 264 
will find that the right-hand tail of the ecDNA distribution towards large copy number scales 265 
with a power law inversely proportional to the copy number 𝑘.  266 
 267 
Our general time dynamics describe discrete copy number states. To make further analytical 268 
progress, we now consider continuous states in the following calculations. This is an 269 
approximation that works well for the case of many ecDNA copies, but might be inaccurate 270 
for cells with very few copies of ecDNA. Under this continuous assumption, the change of the 271 
ecDNA copy number distribution becomes  272 
 273 

d𝜌𝑘(𝑡)

d𝑡
= −2𝜌(𝑘, 𝑡) +

2

√𝜋
∫ d𝑦

𝜌𝑦(𝑡)

√𝑦

∞

𝑘/2

𝑒
(𝑘−𝑦)2

𝑦  274 

 275 
Where we replaced the Binomial with a Normal distribution. Given the exponential character 276 
of the ecDNA distribution, we proceed with an Ansatz in the form of a scaling wave solution 277 
 278 

𝜌𝑘(𝑡) = 𝑒−𝑣𝑡Ω(𝑘𝑒−𝑣𝑡). 279 
 280 

Plugging our ansatz into the differential equation for the density 𝜌 and setting 
𝑘

2
→ 0, we get 281 

 282 

d

d𝑡
[𝑒−𝑣𝑡Ω(𝑘𝑒−𝑣𝑡)] = −2𝑒−𝑣𝑡Ω(𝑘𝑒−𝑣𝑡) +

2

√𝜋
∫ d𝑦

𝑒−𝑣𝑡Ω(𝑘𝑒−𝑣𝑡)

√𝑦

∞

𝑘/2

𝑒
(𝑘−𝑦)2

𝑦  283 

 284 
With 𝑧 = 𝑘𝑒−𝑣𝑡 and 𝑣 = 2, this transforms into 285 
 286 

−𝑧
d

d𝑧
 Ω(z) =

1

√𝜋
∫ d𝑚 Ω(z)

1

√𝑧

∞

−∞
𝑒

−𝑚2

𝑧 = Ω(z). 287 
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 288 
This has the solution Ω(z) = 𝑐/𝑧 with an undetermined integration constant 𝑐. Plugging this 289 
back into our original ansatz and reversing all substitutions, this gives us for the scaling of the 290 
ecDNA copy number distribution 291 
 292 

𝜌𝑘(𝑡) =
𝑐

𝑘
. 293 

 294 
This predicts a power law scaling of the right-hand side tail of the ecDNA copy number 295 
distribution. Cells with very large copy number status become increasingly less likely for 296 
increasing 𝑘, for a sufficiently large tumour population, a considerable fraction of cells is 297 
expected to have large ecDNA copy number. This is indeed supported by observations both 298 
in cell line and patient data, where we recover these power law dependencies.  299 
 300 
3.1 Stochastic dynamics of ecDNA copies under constant positive selection 301 
 302 
In the previous sections, we discussed the stochastic dynamics of extra-chromosomal DNA 303 
under neutral selection. In that scenario, ecDNA is present in cells, but does not change the 304 
proliferative fitness of the cell. Next, we consider the case of ecDNA that is under positive 305 
selection, or in other words, ecDNA that gives a positive fitness advantage to cells. This will 306 
be of particular interest to the dynamics and diversification of ecDNA in cancerous tissues.  307 
 308 
In order to model a selection advantage, we introduce a selection coefficient 𝑠 > 0. In this 309 
notation, 𝑠 = 1 corresponds to neutral dynamics, 𝑠 > 1 to a selection advantage of cells with 310 
ecDNA and 0 ≤ 𝑠 < 1 to a selection disadvantage of cells without ecDNA. The Master 311 
equation then needs to be modified in the following way 312 
 313 
 314 
  315 

d𝑁𝑘(𝑡)

d𝑡
= −𝑠𝑁𝑘(𝑡) + 2𝑠 ∑ 𝑁𝑖(𝑡) (

2𝑖

𝑘
)

1

22𝑖

∞

𝑖=⌈𝑘/2⌉

 316 

d𝑁0(𝑡)

d𝑡
= 𝑁0(𝑡) + 2𝑠 ∑ 𝑁𝑖(𝑡)

1

22𝑖

∞

𝑖=1

 317 

 318 
 319 
It can easily be checked that for 𝑠 → 1, we recover the Master equation in the neutral 320 
selection case. Above general Master equation for the selection case can also be written in a 321 
more compact form. Changing to the densities again, this compact form is given by 322 
 323 

d𝜌𝑘(𝑡)

d𝑡
|

𝑘>0

= 𝑠
d𝜌𝑘(𝑡)

d𝑡
|

𝑠=1

+ (𝑠 − 1)𝜌𝑘𝜌0 324 

d𝜌0(𝑡)

d𝑡
= 𝑠

d𝜌𝑘(𝑡)

d𝑡
|

𝑠=1
+ (𝑠 − 1)(1 − 𝜌0)𝜌0 325 

 326 
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 327 
Figure SI 7. Distribution and scaling of the ecDNA copy number distribution. a) Distribution of the ecDNA copy 328 
number distribution for neutral (grey) and positively selected (blue) ecDNA evolution for 1000 repeats of 329 
stochastic simulations for tumours of 104 cells. Overall, more cells carry copies of ecDNA if positively selected 330 
compared to the neutral case. b) The scaling of the right-hand tail of the ecDNA distribution follows the predicted 331 
1/k scaling (dots = stochastic simulations, lines = theoretical expectation). 332 
 333 
 334 
Allowing for selection adds an additional non-linear term to the original Master equation. We 335 
can also check the growth of the tumour population with ecDNA under positive selection. The 336 
equation for the total population now becomes  337 
 338 

d𝑁(𝑡)

d𝑡
= 𝑠𝑁(𝑡) − (𝑠 − 1)𝜌0(𝑡)𝑁(𝑡). 339 

 340 
The second term on the right-hand side of the equation contains the density of cells without 341 
ecDNA 𝜌0(𝑡). We do not have a general solution for this expression, but we will see later 342 
that 𝜌0(𝑡 → ∞) → 0. Consequently, for sufficiently large 𝑁 the tumour population will grow 343 
exponentially with 𝑁𝑠>1 = 𝑒𝑠𝑡. Or, if we compare the relative change of fitness at any given 344 
time 𝑡 we get  345 
 346 

Log[𝑁𝑠>1(𝑡)] − Log[𝑁𝑠=1(𝑡)] = (𝑠 − 1)𝑡. 347 
 348 

In the initial phase of tumour growth, the term −(𝑠 − 1)𝜌0(𝑡)𝑁(𝑡) in above equation cannot 349 
be neglected and the growth will be in the interval   350 
 351 

𝑡 ≤ Log[𝑁𝑠>1(𝑡)] ≤ 𝑠𝑡 352 
 353 
slowly approaching the slope of 𝑠𝑡 with increasing time.  354 
 355 
3.2 Dynamics of Moments of ecDNA copies under positive selection 356 
 357 
In the following we discuss the dynamics of Moments for ecDNA under positive selection.  358 
Following the steps above and using the generalised Master equation for the selection case, 359 
we find the following dynamic equation for the Moments 360 
 361 

d𝑀(𝑙)(𝑡)

d𝑡
= 𝑠

d𝑀(𝑙)(𝑡)

d𝑡
|

𝑠=1
+ (𝑠 − 1)𝜌0𝑀(𝑙)(𝑡). 362 

 363 
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 364 
 365 
Figure SI 8. a) First and b) second moment of the ecDNA copy number distribution. In the neutral case (𝑠 = 1, 366 
grey) the mean number of ecDNA copies remains constant and the variance increases linearly in time. Under 367 
positive selection (𝑠 = 2, blue) the mean number of ecDNA copies increases in time. Stochastic simulations 368 
(points) are in very good agreement to theoretical predictions of polynomial increasing moments with time 369 
(dashed lines). 370 
 371 
 372 

This implies for the first moment 
d𝑀(1)(𝑡)

d𝑡
= (𝑠 − 1)𝜌0𝑀(1)(𝑡), which then can be solved for 373 

the first moment 374 
 375 

𝑀(1)(𝑡) = 𝑒(𝑠−1) ∫ 𝑑𝜏𝜌0(𝜏)
𝑡

0 . 376 
 377 

Importantly, for positive selection we have 𝑠 > 1 and therefore 𝑠 − 1 > 0. Furthermore, the 378 
integral is strictly positive, such that the first moment is expected to increase over time. In 379 
other words, in a growing tumour population with ecDNA under positive selection, we expect 380 
the average ecDNA copy number per cell to increase in time. This is in contrast to the neutral 381 
case, where the average ecDNA copy number is expected to remain constant over time.  382 
 383 
Similarly, the dynamic equation for the second moment becomes 384 

 
d𝑀(2)(𝑡)

d𝑡
= 𝑀(1)(𝑡) + (𝑠 − 1)𝜌0𝑀(2)(𝑡) and we find  385 

 386 

𝑀(2)(𝑡) = 𝑡𝑀(1)(𝑡). 387 
 388 
 389 
The second moment is increasing as well, but now with an additional factor 𝑡 compared to 390 
the neutral case. Similar to the argument above, it follows that higher moments follow the 391 
form 392 
 393 

𝑀(𝑙)(𝑡) = 𝑃𝑙(𝑡)𝑒(𝑠−1) ∫ 𝑑𝜏𝜌0(𝜏)
𝑡

0 ~𝑡𝑙−1𝑀(1)(𝑡). 394 
 395 
 396 
 397 
4.1 Deterministic population dynamics  398 
 399 
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We have in the chapters above discussed stochastic aspects of the ecDNA copy number 400 
distribution for positive and neutral selection. Another question of interest is how the fraction 401 
of cells with and without ecDNA change in a growing tumour population. We therefore 402 
change the formulation of our mathematical model to a more coarse-grained picture and only 403 
consider cells with ecDNA 𝑁+(𝑡) and cells without ecDNA 𝑁−(𝑡). For cells with ecDNA, we 404 
do not distinguish between different copy number states. With the notation of the former 405 
chapters, we identify 𝑁−(𝑡) = 𝑁0(𝑡) and 𝑁+(𝑡) = ∑ 𝑁𝑘(𝑡)∞

𝑘=1 .  406 
 407 
We can write for the change of these cells in time 𝑡  408 
 409 

d𝑁−(𝑡)

d𝑡
= 𝑁−(𝑡) + 𝜐(𝑁+(𝑡))𝑁+(𝑡) 410 

d𝑁+(𝑡)

d𝑡
= 𝑁+(𝑡) − 𝜐(𝑁+(𝑡))𝑁+(𝑡) 411 

 412 
where 𝜐(𝑁+(𝑡)) is the rate at which cells with ecDNA lose all ecDNA copies by chance due to 413 
complete asymmetric random ecDNA segregation (one daughter cell inherits all copies of 414 
ecDNA, while the other cell does not inherit any). Looking at the fraction of cells with ecDNA 415 

𝑓−(𝑡) =
𝑁−(𝑡)

𝑁+(𝑡)+𝑁−(𝑡)
, we can write 416 

 417 
d

d𝑡
(

𝑁−(𝑡)

𝑁+(𝑡) + 𝑁−(𝑡)
) =

d

d𝑡
𝑓−(𝑡) = (1 − 𝑓−(𝑡)) 𝜐(𝑁+(𝑡)) 418 

 419 
Rearranging terms gives  420 
 421 

𝜐(𝑁+(𝑡)) = 1 −
1

𝑁+(𝑡)

d𝑁+(𝑡)

d𝑡
 422 

 423 
and thus we can find for the fraction of cells without ecDNA the following relation 424 
 425 

1

1 − 𝑓−(𝑡)

d𝑓−(𝑡)

d𝑡
+

1

𝑁+(𝑡)

d𝑁+(𝑡)

d𝑡
= 0. 426 

 427 
 428 
This equation can be integrated by separation of variables. With the initial condition 𝑁+(0) =429 
1 and 𝑓−(0) = 0 the number of cells with ecDNA is given by 430 
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 431 
 432 
Figure SI 9. Comparison of average deterministic dynamics of cells a) without and b) with copies of ecDNA for 433 
neutral ecDNA dynamics (𝑠 = 1). Dots show the average dynamics of neutral stochastic simulations, lines are 434 
individual realisation of the same neutral stochastic process and dashed lines show analytical predictions. 435 
Between tumour variation is considerable, especially for small tumour populations. c) Fraction of cells without 436 
ecDNA over time. In the neutral case 𝑠 = 1 the tumour will be dominated by cells without ecDNA, also the fitness 437 
of cells with and without ecDNA is the same. Under strong positive selection, where cells with ecDNA have a 438 
selection advantage 𝑠 = 2, the frequency of cells without ecDNA approaches 0. Even for strong positive selection 439 
we observe a transient increase of cells without ecDNA.  440 
 441 
 442 

𝑁+(𝑡) = (1 − 𝑓−(𝑡))𝑒𝑡 . 443 

 444 

Stochastic simulations show that for neutral dynamics, 
𝑁−(𝑡)

𝑁+(𝑡)
=

1

2
𝑡 and therefore the fraction 445 

of cells without ecDNA changes according to  446 
 447 

𝑓−(𝑡) =
𝑁−(𝑡)

𝑁+(𝑡) + 𝑁−(𝑡)
=

1

𝑁+(𝑡)
𝑁−(𝑡)

+ 1
=

1

2
𝑡 + 1

=
𝑡

2 + 𝑡
. 448 

 449 
 450 
We see that 𝑓−(0) = 0 and 𝑓−(𝑡 → ∞) → 1, in the long run a growing population with 451 
neutral ecDNA elements will be dominated by cells without ecDNA. This can also be seen from 452 
the fraction of cells carrying ecDNA. From the simple condition 𝑓−(𝑡) + 𝑓+(𝑡) = 1 we find 453 
 454 

𝑓+(𝑡) = 1 −
𝑡

2 + 𝑡
=

2

2 + 𝑡
=

2

2 + Log[𝑁]
. 455 

 456 
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Also, the number of cells with ecDNA continuously decreases in the neutral case, the decrease 457 
is proportional to ~Log−1[𝑁] and thus relatively slow. For example, in a population of 103 458 
cells, the expected fraction would be 22%,  in a population of 106 cells the fraction becomes 459 
13% and in a population of 1011 cells it is 7%. With single cell resolution, we might expect to 460 
detect low levels of neutral ecDNA copies in tumour populations.  461 
  462 
The population dynamics changes when ecDNA is under positive selection. As previously, we 463 
introduce a selection coefficient 𝑠 > 0, with 𝑠 = 1 corresponding to neutral selection and 464 
𝑠 > 1 to a selective advantage of cells carrying ecDNA. The population level dynamics now 465 
changes to  466 
 467 

d𝑁−(𝑡)

d𝑡
= 𝑁−(𝑡) + 𝑠𝜐(𝑁+(𝑡))𝑁+(𝑡) 468 

d𝑁+(𝑡)

d𝑡
= 𝑠𝑁+(𝑡) − 𝑠𝜐(𝑁+(𝑡))𝑁+(𝑡) 469 

 470 
Following the same steps as above, this can be transformed in a single set of equations  471 
 472 

(𝑠 − 1)𝑓−(𝑡) +
1

1 − 𝑓−(𝑡)

d𝑓−(𝑡)

d𝑡
+

1

𝑁+(𝑡)

d𝑁+(𝑡)

d𝑡
= 𝑠 473 

 474 
Again, this equation can be formally integrated by the separation of variables and we get 475 
 476 

𝑁+(𝑡) = (1 − 𝑓−(𝑡))𝑒𝑠𝑡−(1−𝑠) ∫ 𝑓−(𝜏)d𝜏
𝑡

0  477 
 478 
A closed solution is more challenging in the selection case as we do not have a closed 479 

expression for ∫ 𝑓−(𝜏)d𝜏
𝑡

0
. However, we find numerically 𝑓−(𝑡 → ∞) → 0 and thus for 480 

sufficiently long time, the number of cells with ecDNA grows with 𝑁+(𝑡) ≈ 𝑒𝑠𝑡. A tumour 481 
population with ecDNA copies under positive selection, will be dominated by cells carrying 482 
ecDNA.  483 
 484 
4.2 Dynamic predictions of ecDNA under neutral vs positive selection 485 
 486 
In the previous chapter, we have discussed the stochastic dynamics of the ecDNA copy 487 
number distribution as well as the deterministic aspect of the population dynamics of cells 488 
with and without ecDNA in exponentially growing populations. This leads to three major 489 
predictions that differ between cell populations under neutral dynamics or positive selection.  490 
 491 

(i) Fraction of cells with and without ecDNA: Theory predicts that the fraction of cells 492 
with ecDNA approaches 0 under neutral dynamics and approaches 1 if ecDNA is 493 
under positive selection. The rate of convergence depends on the strength of 494 
selection. In all patient and cell line samples, we find a very high fraction of cells 495 
with ecDNA, suggesting positive selection.  496 
 497 

(ii) Average ecDNA copy number per cell: Theory predicts that the average ecDNA 498 
copy number per cell increases in time, if ecDNA is under positive selection and 499 
remains on average at 1 if ecDNA is under neutral selection. In all patient and cell 500 
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line samples we find average ecDNA copy numbers ≫ 1, suggesting positive 501 
selection. 502 

 503 
(iii) Power law scaling of the ecDNA copy number distribution: Theory predicts a 504 

1/copy number scaling of the ecDNA copy number distribution for both neutral 505 
and positive selection. We find this scaling in patient and cell line experiments. 506 
However, the ecDNA copy number distribution shifts towards higher copy number 507 
under positive selection and consequently, the power law tail is shifted towards 508 
higher ecDNA copy number as well. We observe these behaviours in patient and 509 
cell line experiments.  510 

 511 
.  512 

 513 


