

Stage 10: top 10 named genes as sorted by adjusted P-value

ets2

tfap4

pygm

(0-2050)
eif2s2

gcfc1

irx2

dgka

asxI1

prpf6
Stage 10 UC

Stage 15: top 10 named genes as sorted by adjusted P-value

pax8

fgfr4

masp1

mapre2

vsig8

mcm3ap

per2

gpr110

DeJong et al.
Supplemental Fig 3

SUPPLEMENTAL FIGURE AND TABLE LEGENDS

Supplemental Figure 1. TAF15 depletion by splice-blocking morpholino specifically targets zygotic taf15. Western blot analysis of TAF15 in 2-cell (pre-zygotic genome activation) through stage 11 (post-zygotic genome activation) embryos from the following conditions: uninjected, splice-blocking morpholino (Z TAF15 depletion), and mismatch morpholino.

Supplemental Figure 2. TAF15 depletion by translation-blocking morpholino leads to various types of intron retentions at stage $\mathbf{1 0}$. Visualization of RNAseq reads with Integrative Genomics Viewer aligned with gene model in blue. Top 10 genes with differential exon usage (DEU) as sorted by their adjusted P value at stage $10 . \mathrm{UC}=$ uninjected control; $\mathrm{MO}=\mathrm{M}+\mathrm{Z}$ TAF15-depleting morpholino. * = intron with affected DEU according to DEXseq and does not indicate the number of DEU within an intron.

Supplemental Figure 3. TAF15 depletion by translation-blocking morpholino leads to various types of intron retentions at stage 15. Visualization of RNAseq reads with Integrative Genomics Viewer aligned with gene model in blue. Top 10 genes with differential exon usage (DEU) as sorted by their adjusted P value at stage $15 . \mathrm{UC}=$ uninjected control; $\mathrm{MO}=\mathrm{M}+\mathrm{Z}$ TAF15-depleting morpholino. $*=$ intron with affected DEU according to DEXseq and does not indicate the number of DEU within an intron.

Supplemental Figure 4. TAF15 depletion by translation-blocking morpholino leads to single intron retention in ils1. (A) Visualization of isll RNA-seq reads with Integrative Genomics Viewer aligned with gene model in blue. $\mathrm{UC}=$ uninjected control; $\mathrm{MO}=\mathrm{M}+\mathrm{Z}$ TAF15-depleting morpholino. $*=$ intron with affected DEU according to DEXseq and does not indicate the number of DEU within an intron.

Supplemental Table 1. Differential Exon Usage, stage 10. DEXseq analysis of sequenced RNA from M+Z TAF15-depleted X. tropicalis embryos, stage 10; two-fold increase in expression cutoff; sorted by padj value.

Supplemental Table 2. Differential Exon Usage, stage 15. DEXseq analysis of sequenced RNA from M + Z TAF15-depleted X. tropicalis embryos, stage 15; two-fold increase in expression cutoff; sorted by padj value.

Supplemental Table 3. Stage-persistent Differential Exon Usage, Stage 10 and 15. Genes with conserved differential exon usage from stage 10 to 15 . DEXseq analysis of sequenced RNA from M+Z TAF15-depleted X. tropicalis embryos; two-fold increase in expression cutoff; sorted by gene name.

Supplemental Table 4. Increased Gene Expression, stage 15. DESeq analysis of sequenced RNA from M+Z TAF15-depleted X. tropicalis embryos, stage 15; two-fold increase in expression cutoff; sorted by padj value.

Supplemental Table 5. All changes in Gene Expression, stage 10. DESeq analysis of sequenced RNA from M+Z TAF15-depleted X. tropicalis embryos, stage 10; sorted by padj value.

Supplemental Table 6. Increased and Decreased Gene Expression, stage 15. DESeq analysis of sequenced RNA from M+Z TAF15-depleted X. tropicalis embryos, stage 15; two-fold increase or decrease in expression cutoff; sorted by fold change.

Supplemental Table 7. Differential Exon Usage Characteristics, stages 10 and 15. Number and location of retained introns within the top 10 genes with differential exon usage (DEU) following DEXseq analysis, as sorted by adjusted P value.

