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ABSTRACT 13 

Efforts to understand the genetic underpinnings of phenotypic variation are becoming more and 14 

more frequent in molecular ecology. Such efforts often lead to the identification of candidate 15 

regions showing signals of association and/or selection. These regions may contain multiple genes 16 

and therefore validation of which genes are actually responsible for the signal is required. In 17 

Atlantic salmon (Salmo salar), a large-effect locus for maturation timing, an ecologically important 18 

trait, occurs in a genomic region including two genes, vgll3 and akap11, but data for clearly 19 

determining which of the genes (or both) contribute to the association have been lacking. Here, we 20 

take advantage of natural recombination events detected between the two candidate genes in a 21 

salmon broodstock to reduce linkage disequilibrium at the locus, and thus enabling delineation of 22 

the influence of variation at these two genes on maturation timing. By rearing 5895 males to 23 

maturation age, of which 81% had recombinant vgll3/akap11 allelic combinations, we found that 24 

vgll3 SNP variation was strongly associated with maturation timing, whereas there was little or no 25 

association between akap11 SNP variation and maturation timing. These findings provide strong 26 

evidence supporting vgll3 as the primary candidate gene in the chromosome 25 locus for 27 

influencing maturation timing. This will help guide future research for understanding the genetic 28 

processes controlling maturation timing. This also exemplifies the utility of natural recombinants to 29 

more precisely map causal variation underlying ecologically important phenotypic diversity. 30 

 31 

  32 
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INTRODUCTION 33 

The identification of genetic variation underlying phenotypic variation is a common goal in 34 

biology. A first step towards this goal is commonly a ‘genome scan’, where variation across the 35 

entire genome, or significant proportion of it, is scanned for signatures of selection and/or genotype-36 

phenotype associations. When phenotype measurements are unavailable, or if there is no prior 37 

knowledge of adaptive phenotypes, genome scans identify loci potentially under selection via 38 

outlier testing (Pritchard et al. 2018; Kardos et al. 2015; Sinclair-Waters et al. 2017). Whereas when 39 

phenotypic measurements are available, genome scans can be used to search for associations 40 

between genetic and phenotypic variation (Barson et al. 2015; Johnston et al. 2014; 2011). When 41 

successful, signals of association and/or selection often lead to the identification of genomic regions 42 

including multiple candidate genes. In cases where a signal is particularly strong, a logical follow-43 

up aim is to better validate which genes are actually linked to the signal. Such validation of 44 

candidate genes in model systems can be done via knock-outs (e.g. The International Mouse 45 

Knockout Consortium 2007; Varshney et al. 2013), and CRISPR (Sander and Joung 2014). 46 

Recently, candidate gene validation using CRISPR has been achieved in some free-living taxa such 47 

as butterflies (Livraghi et al. 2018; Concha et al. 2019; Woronik et al. 2019), sticklebacks 48 

(Gasterosteus aculeatus) (Wucherpfennig, Miller, and Kingsley 2019) and some crops (Rodríguez-49 

Leal et al. 2017; Sedeek, Mahas, and Mahfouz 2019), but this is not yet feasible in many free-living 50 

species and likely will not enable testing of candidate variation in the wild. However traditional 51 

mapping approaches, where natural recombination events can be exploited to delineate the effects 52 

of linked genes, can be used when such natural recombinants are identified and where controlled 53 

crossing, followed by phenotypic assessment is feasible. Here, we use Atlantic salmon (Salmo 54 

salar) as a model system for how this approach can be applied to delineate the effects of linked 55 

genes at a locus associated with a trait of ecological relevance. 56 

Atlantic salmon are an anadromous species that can spend one to seven years in freshwater, 57 

before migrating to the ocean where they can spend another one to five years before reaching 58 

maturation and returning to their natal rivers to spawn. Furthermore some (mostly) male 59 

individuals, known as mature parr, reach maturation in the freshwater environment without having 60 

migrated to sea. This age at maturity can vary both within and among populations, and contributes 61 

markedly to the diversity of life-history strategies of this species (Mobley et al. 2021; Erkinaro et al. 62 

2019). Late maturation is associated with larger size, and therefore increased fecundity in females 63 

and greater reproductive success in males. Maturing at a later age, however, also increases the risk 64 

of mortality prior to reproduction (Mobley et al. 2020; Fleming and Einum 2011). Many loci with a 65 
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variety of effect sizes are associated with Atlantic salmon maturation timing (Sinclair-Waters et al. 66 

2020). One locus on chromosome 25, of particular interest due to its large effect size, explains close 67 

to 40% of the variation in age at maturity in both wild populations and aquaculture strains from 68 

Northern Europe (Barson et al. 2015; Ayllon et al. 2015). The SNP with the strongest association at 69 

this locus was located 7.9kb downstream of the vgll3 gene and 45.4kb upstream of the akap11 gene 70 

(Barson et al. 2015). In another association study using individual-level sequencing data capturing 71 

more sequence variation, Sinclair-Waters et al. (2021) also found that the SNP with the strongest 72 

association was located in the region between these two genes, however, slightly further 73 

downstream of vgll3 (10.3kb) and closer to akap11. Additionally, two missense mutations occur 74 

within vgll3 and one missense mutation occurs within akap11. Although not the most strongly 75 

associated SNPs with age at maturity, all three missense mutations showed a significant association 76 

signal in wild populations (Barson et al. 2015; Ayllon et al. 2015).  77 

In addition to the strong association signals observed on chromosome 25, both vgll3 and 78 

akap11 are plausible candidates for influencing maturation timing given their reported functions. 79 

The vgll3 gene, vestigial-like family member 3, is a transcription cofactor that inhibits adipogenesis 80 

and is associated with mouse weight and total fat mass (Halperin et al. 2013). In many species, 81 

including salmon, sufficient fat storage is needed to provide energy for maturation (Good and 82 

Davidson 2016), thus suggesting vgll3 is a good candidate gene for Atlantic salmon maturation. 83 

Additionally, VGLL3 is associated with age at maturity in humans (Cousminer et al. 2013; Day et 84 

al. 2017; Perry et al. 2014). The akap11 gene encodes A-kinase anchoring protein 11. Evidence 85 

showing that A-kinase-anchoring proteins are expressed in testes during spermatogenesis and are 86 

important for sperm motility in humans (Reinton et al. 2000; Luconi et al. 2004) and mice (Miki et 87 

al. 2002) suggests that akap11 may be important for sperm function and thus also a good candidate 88 

gene for involvement in Atlantic salmon maturation. Further, the expression patterns of vgll3 and 89 

akap11 have been shown to be correlated in various Atlantic salmon juvenile life history stages 90 

(Kurko et al. 2020). Both genes are plausible candidates for maturation and therefore determining 91 

whether the locus’ association with maturation timing is linked to vgll3, akap11 or both genes is an 92 

important step for understanding the genetic process underlying variation in maturation timing in 93 

Atlantic salmon. 94 

Here, we capitalize on the occurrence of a recombination event between the vgll3 and akap11 95 

genes in a large number of individuals from a captive Atlantic salmon broodstock to delineate the 96 

effects of these two adjacent and physically linked genes, on maturation timing. Progeny from 16 97 

independent families were bred using controlled crosses where at least one parent carried the 98 
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recombinant alleles, and 5895 males were reared to maturation age. This allowed testing of whether 99 

the association of this chromosomal region with maturation is driven by SNP variation linked to 100 

vgll3 or akap11, or a combination of both. The results provide greater resolution of the association 101 

signal at a known large-effect locus and help to narrow down the possible genomic location of 102 

causal variation underlying maturation timing in Atlantic salmon.   103 

 104 

METHODS 105 

Animal material 106 

We reared 16 families using parental Atlantic salmon (Salmo salar) from a Neva river strain 107 

maintained at a Natural Resources Institute Finland hatchery in Laukaa, Finland (62°24’N, 108 

25°57’E) (See Debes et al. 2019 for more broodstock details). Parents were chosen from a total of 109 

702 broodstock individuals that had earlier been genotyped for 177 SNPs on Ion Torrent or Illumina 110 

(Miseq or Next-Seq) sequencing platforms as outlined in Aykanat et al. (2016). These SNPs 111 

included two missense SNPs in vgll3, the top-associated SNP from Barson et al. (Barson et al. 112 

2015) located 7.9kb downstream of vgll3, and one missense SNP in akap11. We selected parents 113 

based on their vgll3 and akap11 genotypes that would maximize the proportion of offspring with a 114 

recombination event between the vgll3 and akap11 genes. For example, individuals carrying a 115 

haplotype with an L allele for vgll3 and an E allele for akap11, or vice versa. We avoided crossing 116 

closely related individuals (those with grandparents in common) by using SNP-based pedigree 117 

reconstruction as in Debes et al. (2019). Additionally, we selected only parents that had the same 118 

genotype at the two vgll3 missense mutations and top-associated non-coding SNP identified in 119 

Barson et al. (2015). From this point onwards, four character genotypes will be used to describe an 120 

individual’s genotype at the focal loci, vgll3 and akap11. The first two characters indicate the 121 

genotype at the vgll3 locus and the last two characters indicate the genotype at the akap11 locus. 122 

The locus is indicated in subscript text after the genotype. Details of the 16 crosses are outlined in 123 

Table 1 (Supplementary Table 1). 124 

Fish husbandry 125 

Eggs were fertilized in November 2019 and incubated in mesh-separated compartments (to 126 

keep families separate) in vertical incubators with re-circulated water at a mean water temperature 127 

of 7.1°C. Compartments were randomly organized in the incubator. At the eyed-egg stage, each 128 

family was transferred to one of sixteen 285L tanks equipped with two water recirculation systems 129 

that have controlled water temperature, oxygen, and light conditions. Water parameters such as pH, 130 
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ammonia, nitrite and nitrate were also monitored. Tank water temperature ranged from 5.2°C to 131 

17.6°C (Supplementary Figure 1). Tank lighting followed the natural cycle that would occur at 132 

62°24’N and 25°57’E. Fish were fed live Artemia for ten days and then fed commercial aquaculture 133 

feed ad libitum (Raisio Baltic Blend) for the remainder of the experiment. Size of feed pellets 134 

increased over time according to fish size. In 12 of the 16 tanks (those with the largest family sizes) 135 

12mm passive integrated transponder tags were inserted into the body cavity, and a fin clip taken, 136 

during June-July 2019 following anaesthesia with methanesulfonate to enable re-identification and 137 

genotyping. Water temperature was decreased to 13°C for this period to reduce stress of fish due to 138 

handling. In order to keep the biomass of these 12 tanks at an acceptable level towards the end of 139 

the experiment, females were identified based on genotypic sex and culled July to September 2020. 140 

This strategy was chosen as only male Atlantic salmon are able to mature at one year of age in 141 

captivity (Debes et al. 2019) and therefore maximizing male numbers also maximizes sample sizes 142 

for the maturation phenotype. Nevertheless, a minimum of 40 females were retained in each tank. In 143 

some cases biomass levels became too high even following culling of females and therefore some 144 

males were randomly culled between September and November 2020. 145 

DNA Extraction & Genotyping 146 

Fin clips from all individuals were placed directly into Lucigen QuickExtract DNA Extraction 147 

Solution 1.0 to extract DNA. The vgll3, akap11 and SDY loci were genotyped using the 148 

Kompetitive allele-specific polymerase chain reaction (KASPTM) method (He, Holme, and Anthony 149 

2014). Two alternative allele specific forward primers and one reverse primer were designed by 150 

LGC Biosearch Technologies for the vgll3 and akap11 loci. An amplification/non-amplification 151 

assay was designed for the male specific SDY locus, and this assay also included primers for 152 

amplification of a region of the 18S locus as a positive control for assay performance 153 

(Supplementary Table 2). The reaction mix for each reaction consisted of 2.5 µl of sample DNA, 154 

2.5 µl KASP 2x Master mix, 0.07 µl KASP Assay mix which contains the locus-specific primers. 155 

The reactions were performed with qPCR machines (C1000 Thermal cycler with CFX384 Real-156 

Time System, Bio-Rad) and the following thermal cycling conditions: 94°C for 15 minutes (1 157 

cycle); 94°C for 20 seconds, 61°C for 1 minutes and decreasing temperature by 0.6°C per cycle (10 158 

cycles); 94°C for 20 seconds, 55°C for 1 minute (29 cycles); 37°C for 1 minute; 94°C for 20 159 

seconds, 57°C for 1 minute (3 cycles); 37°C for 1 minute, read plate; and 4°C for 3 minutes. 160 

Genotypes of the vgll3 and akap11 SNPs were called using allelic discrimination implemented in 161 

the CFX Maestro software (Bio-Rad). Genotypic sex was determined by analyzing the per-162 

individual difference between ROX-standardized FAM and HEX florescence values using the 163 
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normalmixEM function in mixtools R package. Florescence of the FAM alleles indicates the 164 

presence of the SDY locus (Supplementary Table 2), which is male-specific in Atlantic salmon 165 

(Yano et al. 2012). An individual with a FAM-HEX value within two standard deviations from the 166 

mean of the upper normal distribution was considered a male. In contrast, individuals with a FAM-167 

HEX value within two standard deviations of the lower normal distribution mean were considered 168 

female. 169 

Data collection 170 

At the completion of the experiment during November and December, 2020, we recorded 171 

length (fork length), mass and maturity status (immature/mature) for all male individuals. To 172 

identify males, individuals were dissected and checked internally for the presence of male or female 173 

gonads. Maturity status was determined via examination of the gonads size and colour. Individuals 174 

were considered mature if the gonads were a milky white colour and enlarged so that they filled at 175 

least 75% of the body cavity. For a subset of individuals (N=632) that were kept alive for a different 176 

experiment and could not be dissected, we relied on genotypic sex. Maturity status for these males 177 

was determined by pressing on the abdomen and checking for the release of milt, which would 178 

indicate the male was mature. 179 

Data analysis 180 

We tested for an association between maturation status in male Atlantic salmon and the 181 

genotypes of two adjacent genes, vgll3 and akap11. Maturation status was modelled as a binary trait 182 

(immature=0, mature=1) using mixed-effect logistic regression implemented in lme4 R package. 183 

We first identified the most parsimonious null model, with no genetic terms, to fit the data. Fork 184 

length, Fulton’s condition factor and their interaction were included as fixed effects and family was 185 

included as a random effect. Fork length and Fulton’s condition factor were mean-centred. Using 186 

the dredge function in the MuMin package in R (Barton 2020), the most parsimonious model was 187 

selected based on each models corrected Akaike Information Criterion (AICc) scores. Genetic terms 188 

for the focal loci, vgll3 and akap11, are then added to the selected model to test for an effect of 189 

these loci on maturation odds. We first modelled the effect of both genes on maturation status by 190 

including each locus as its own genetic term. The genetic terms were included as a categorical 191 

effect, rather than numerical, in order to not assume an additive genetic effect. We then examined 192 

the effect of combined genotypes on maturations odds by including genotypes at each gene as a 193 

single term in the model. We compared combined genotypes where alleles at one gene were the 194 

same and alleles at the other gene varied. Two models included genotypes where akap11 genotype 195 
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remained consistent but vgll3 genotype varied: 1) EEvgll3EEakap11, ELvgll3EEakap11, LLvgll3EEakap11 and 196 

2) ELvgll3ELakap11, LLvgll3ELakap11. The other two models included genotypes where vgll3 genotype 197 

remained consistent but akap11 genotype varied: 3) ELvgll3EEakap11, ELvgll3ELakap11 and 4) 198 

LLvgll3EEakap11, LLvgll3ELakap11, LLvgll3LLakap11.  199 

 200 

RESULTS 201 

A total of 5895 males were raised until the end of the experiment. The overall maturation rate 202 

was 2.87%. Average mass, length and maturation rate of each family is listed in Supplementary 203 

Table 1. Of these 5895 individuals, 4769 had recombinant genotypes (i.e. carrying a haplotype with 204 

an L allele for vgll3 and an E allele for akap11, or vice versa). The E allele frequencies of vgll3 and 205 

akap11 were 0.30 and 0.69, respectively.  206 

The most parsimonious model explaining maturation status included length as a fixed effect 207 

and family as a random effect. Vgll3 had a much stronger effect than akap11 on maturation status, 208 

where the vgll3 EE and EL genotypes increased the log(odds ratio) of maturing relative to the LL 209 

genotype by 4.21 and 1.79, respectively. Contrastingly, only the akap11 EE genotype had a 210 

marginally significant negative effect on the odds of maturation, whereby it decreased the log(odds 211 

ratio) of maturing by 1.30 (Figure 1, Supplementary Table 3). Similarly, the effects of combined 212 

genotypes on the odds of maturation suggested a strong effect of all vgll3 genotypes and a weak 213 

effect of the akap11 EE genotype. Allele changes at vgll3 alter the odds of maturation for all 214 

observed genotype combinations, whereby genotypes with vgll3 E alleles increased the odds of 215 

maturation relative to those with the L allele (Figure 2a, b). In contrast allele changes at akap11 216 

altered the odds of maturation for only one genotype combination (ELvgll3EEakap11), whereby the 217 

ELvgll3EEakap11 genotype slightly decreased the odds of maturation relative to ELvgll3ELakap11 218 

genotype (Figure 2c, d, Supplementary Tables 4-7).  219 

 220 

DISCUSSION 221 

Previous genome-wide association studies (GWAS), found a strong association between 222 

maturation timing in Atlantic salmon and a region on chromosome 25. These studies have shown 223 

that significantly associated SNPs span a ~250kb genomic with the strongest association signal 224 

occurring between two genes, vgll3 and akap11. Due to linkage disequilibrium within the region, it 225 

remained unclear which SNPs were potentially causal and which were spuriously associated via 226 

linkage. Here, we took advantage of existing recombination events to breed a large set of progeny 227 
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with reduced linkage disequilibrium between potential causal SNPs at the candidate locus. We 228 

found that SNP variation within akap11 has little to no effect on maturation timing and therefore the 229 

effect of the locus is primarily driven by variation in closer proximity to vgll3. This refines the 230 

genomic location of SNP variation affecting Atlantic salmon maturation timing at a key large-effect 231 

locus and improves our understanding of the gene variation most likely underlying differences in 232 

maturation timing. These findings will help guide future experimentation determining the role of 233 

this large-effect locus in genetic processes involved in Atlantic salmon maturation. 234 

Here, we measured the effect of vgll3 based on the genotype of a SNP 7.5kb downstream of 235 

vgll3 that showed the strongest association in 57 wild Atlantic salmon populations (Barson et al. 236 

2015). This genotype was in complete linkage disequilibrium with the genotypes of the two 237 

missense mutations within vgll3 due to our parent selection criteria. Regardless of the 238 

accompanying akap11 genotype, the vgll3 genotype had a strong effect on maturation timing, with 239 

the E allele showing similar strong positive effects on early maturation. In contrast, akap11 240 

genotype showed a relatively small effect on maturation where maturation odds unexpectedly 241 

decreased in EL and EE individuals relative to LL individuals. If the effect of akap11 variation is 242 

true, its relative contribution to controlling maturation timing would be minimal given the effect is 243 

both small and found in only one genotype class. These results provide convincing evidence that 244 

variation closer to vgll3 than akap11 is linked with maturation timing, at least in male parr. 245 

However, it is important to recognize that we do not yet know if any of the vgll3-SNPs are causal 246 

themselves, or simply linked to causal variation. Additionally, we cannot rule out the possibility 247 

that the causal variation driving the vgll3 genotype effect alters the functioning of a different gene, 248 

however given the tight genetic linkage of the vgll3-SNPs and vgll3, vgll3 variation is nevertheless 249 

strongly associated with maturation timing. Recent functional research also supports this notion - 250 

vgll3 expression in immature testes of Atlantic salmon differs between vgll3 genotypes, EE and LL 251 

(Verta et al. 2020), which suggests that SNP variation linked with vgll3 also associates with altered 252 

vgll3 function. Further, we cannot exclude the possibility that the causal variation may regulate both 253 

vgll3 and akap11 given their close proximity. Shared regulatory regions are prevalent in the human 254 

genome (Trinklein et al. 2004). Interestingly, expression of vgll3 and akap11 are correlated during 255 

early development (Kurko et al. 2020). Examining genotype-specific expression levels of akap11 256 

and vgll3 in recombinant individuals may help to further resolve the functional significance of the 257 

causal variation at this large-effect locus. 258 

No recombination events introducing haplotypes with the vgll3 E and akap11 L alleles were 259 

found in the parental source. Therefore, there were no progeny with genotypes EEvgll3EL and 260 
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EEvgll3LL and we were thus unable to test the effect of these genotype combinations. Furthermore, it 261 

is unclear whether the haplotypes with vgll3 L and akap11 E alleles found here arose via a single 262 

recombination event, or multiple events. Sequencing of this region in the parental individuals would 263 

identify the location of recombination breakpoint(s) and therefore the number of recombination 264 

events. The location of breakpoint(s) also helps to narrow down the causal region, as any variation 265 

downstream of the breakpoint can be ruled out. 266 

A further caveat of our study is that due to large number of individuals raised, we did not have 267 

resources for genotyping a sufficient number of loci for parentage assignment and were thus unable 268 

to randomize individuals across tanks. For this reason, we are unable to tease apart tank effects and 269 

family effects and therefore the effect of the term “family” in our models also includes any tank 270 

effects. To help account for this we included multiple families for most of the cross types, which 271 

ensured each of the genotype combinations were raised in multiple tanks. We also expect that 272 

family effects would account for a substantial portion of the variation explained by the family/tank 273 

model term given the polygenic architecture of Atlantic salmon maturation (Sinclair-Waters et al. 274 

2020). Additionally, Debes et al. (2019) randomized individuals from many families across multiple 275 

tanks and found inter-family variation in maturation rate and no effect of tank. 276 

Our findings suggest that vgll3 would be an appropriate target for knockout with CRISPR to 277 

further resolve the effect of vgll3 on Atlantic salmon maturation. Genome editing with CRISPR-278 

Cas9 has successfully generated Atlantic salmon with gene knock-outs (Wargelius et al. 2016; 279 

Edvardsen et al. 2014). Further, in other species, the variants causing trait variation have been finely 280 

mapped to a single or set of mutation(s) with CRISPR-Cas9 genome editing (Karageorgi et al. 281 

2019; Li et al. 2020; Ward et al. 2021). Given the large-effect of the vgll3 locus, it would be an 282 

interesting focus for fine-mapping with genome editing technology, whereby effects of the two 283 

missense mutations and the top-associated SNPs from previous association studies could be 284 

delineated. Single base editing of the known missense mutation and top-associated SNPs could 285 

introduce novel genotype combinations and help to more finely map and/or validate causal 286 

mutations at the vgll3 locus. Some success with single base editing in Atlantic salmon has been 287 

accomplished, whereby 30% to 60% efficiency was achieved (Straume et al. 2021), suggesting 288 

editing of vgll3 SNPs may be feasible. Alternatively, identifying individuals carrying natural 289 

recombinant alleles at the vgll3 locus may be possible, however this may require genotyping and 290 

scanning a large number individuals from many source populations, followed by rearing of males 291 

and females to maturation age.  292 
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As genome assembly and genomic data production for species in the wild becomes easier, the 293 

number of candidate loci linked to association and/selection signals is likely to rise. Our findings 294 

demonstrate how, when identified, natural recombinants can be used to more precisely map causal 295 

variation underlying such signals when phenotypic data can be obtained. Furthermore, offspring, 296 

from controlled crosses maximizing the number of recombinants, could potentially be released into 297 

the wild, which would allow for follow-up studies in the wild. Such follow-up studies in the wild 298 

are unlikely possible if CRISPR or other genome editing technology is used. Another approach that 299 

takes advantage of natural recombination events, admixture mapping (Vasemägi and Primmer 2005; 300 

Mckeigue 1998), can be applied in a natural setting and is thus a promising method in systems 301 

where raising individuals in captivity is not feasible. Admixture mapping, however, relies on 302 

hybridization between populations with different allele frequencies at trait-associated loci and 303 

therefore can only be applied under these specific conditions. In conclusion, using natural 304 

recombination events to narrow down the genomic location of causal variation of ecologically 305 

relevant traits is in effective approach and can be especially useful in systems where genome editing 306 

is particular challenging or not feasible. 307 
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Table 1. Description of the six types of crosses used including parental genotypes, number of 335 

families per cross type and proportions of offspring genotypes. The first and last two alleles listed 336 
indicate the vgll3 and akap11 genotypes, respectively, where E and L are the alleles found to be 337 

associated with earlier and later maturation, respectively, in Barson et al. (2015). 338 

Cross type # of families Offspring genotypes 

ELvgll3EEakap11 x ELvgll3ELakap11 3 ~25% EEvgll3EEakap11, ~25% ELvgll3EEakap11, 

~25% ELvgll3ELakap11, ~25% LLvgll3ELakap11 

LLvgll3ELakap11 x ELvgll3ELakap11 6 ~25% ELvgll3EEakap11, ~25% ELvgll3ELakap11, 

~25% LLvgll3ELakap11, ~25% LLvgll3LLakap11 

LLvgll3ELakap11 x ELvgll3EEakap11 3 ~25% ELvgll3EEakap11, ~25% LLvgll3EEakap11, 

~25% ELvgll3ELakap11, ~25% LLvgll3ELakap11 

LLvgll3LLakap11 x LLvgll3ELakap11 2 ~50% LLvgll3ELakap11, ~50% LLvgll3LLakap11 

LLvgll3EEakap11 x ELvgll3EEakap11 1 ~50% ELvgll3EEakap11, ~50% LLvgll3EEakap11 

ELvgll3EEakap11 x EEvgll3EEakap11 1 ~50% EEvgll3EEakap11, ~50% ELvgll3EEakap11 

 339 

340 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.04.26.441431doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.26.441431
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

 341 

Figure 1. Ratio of the odds of maturation on the logarithmic scale and the respective 95% 342 

confidence intervals of the EE and EL genotypes for vgll3 and akap11, relative to the LL genotype. 343 

Asterisks denote level of significance (* p-value < 0.05, *** p-value < 0.001). The E and L refer to 344 

the alleles associated with earlier and later maturation, respectively, in Barson et al (2015). 345 
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 347 

Figure 2. Ratio of the odds of maturation on the logarithmic scale and the respective 95% 348 

confidence intervals of the combined genotypes. Each comparison is plotted separately: a) 349 

EEvgll3EEakap11, ELvgll3EEakap11, LLvgll3EEakap11; b) ELvgll3ELakap11, LLvgll3ELakap11; c) ELvgll3EEakap11, 350 

ELvgll3ELakap11; and d) LLvgll3EEakap11, LLvgll3ELakap11, LLvgll3LLakap11. Estimates within each 351 

comparison are relative to the genotype with the most L alleles. Asterisks denote level of 352 

significance (* p-value < 0.05, *** p-value < 0.001). The first and last two alleles listed indicate the 353 

vgll3 and akap11 genotypes, respectively, where E and L are the alleles found to be associated with 354 

earlier and later maturation, respectively, in Barson et al. (2015). 355 
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