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Abstract 
 
Prior work suggests that complementary white matter pathways within the hippocampus 
differentially support learning of specific versus general information. In particular, while the 
trisynaptic pathway (TSP) rapidly forms memories for specific experiences, the monosynaptic 
pathway (MSP) slowly learns generalities. However, despite the theorized significance of such 
circuitry, characterizing how information flows within hippocampus (HPC) to support learning 
in humans remains a challenge. We leveraged diffusion-weighted imaging as a proxy for 
individual differences in white matter structure linking key regions along TSP (HPC subfields 
CA3 and CA1) and MSP (entorhinal cortex and CA1) and related these differences in 
hippocampal structure to category learning ability. We hypothesized that learning to categorize 
the “exception” items that deviated from category rules would benefit from TSP-supported 
mnemonic specificity. Participant-level estimates of TSP- and MSP-related integrity were 
constructed from HPC subfield connectomes of white matter streamline density. Consistent with 
theories of TSP-supported learning mechanisms, we found a specific association between the 
integrity of CA3-CA1 white matter connections and exception learning. These results highlight 
the significant role of HPC circuitry in complex human learning. 
 
 
Keywords: humans, hippocampus, diffusion magnetic resonance imaging, learning, memory, 
white matter 
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Introduction 
 
Our memories must contain both specifics of individual events and generalizations that span 
experiences to be maximally useful. Longstanding theories (McClelland et al., 1995) on the 
complementary nature of hippocampal and cortical memory processes have highlighted the role 
of the hippocampus—a structure long known to be critical for normal episodic memory (Scoville 
and Milner, 1957)—as one of recording the specific details of individual episodes. However, 
recent modelling work suggests that the hippocampus itself is capable of forming both specific 
and general memories (Schapiro et al., 2017)—but that critically, it may do so through distinct 
anatomical pathways that exist within the structure (Norman and O’Reilly, 2003; Ketz et al., 
2013). 
 
The monosynaptic (MSP) and trisynaptic (TSP) intra-hippocampal pathways are thought to 
underlie the relatively slower (Gall et al., 1998; Lee and Kesner, 2002; Rolls and Kesner, 2006) 
accumulation of generalizations and rapid storage of specifics, respectively (Lee et al., 2004; 
Nakashiba et al., 2008). Such functional differences might be the product of the distinct anatomy 
of these pathways: MSP connects inputs from entorhinal cortex (ERC) to the cornu ammonis 1 
(CA1) subfield of hippocampus directly, while such connections in TSP are via dentate gyrus and 
CA3. The inclusion of DG and CA3 in the TSP intra-hippocampal pathway is thought to underlie 
the more precise, relational representations that facilitate pattern completion-based learning. 
Therefore, it might be the case that the structural integrity of one’s TSP—rather than other 
features like hippocampal volume—might be most predictive of learning, particularly when such 
learning primarily taxes TSP. However, to our knowledge the integrity of connections between 
subfields along the TSP has been neither measured nor related to behaviour among healthy 
young adults using diffusion weighted imaging (DWI), leaving a large gap between theoretical 
frameworks highlighting the importance of intra-hippocampal pathways and empirical studies 
largely focussing on hippocampal volume (Chadwick et al., 2014; Travis et al., 2014; Daugherty 
et al., 2016; Canada et al., 2019) or morphology (Voineskos et al., 2015; DeKraker et al., 2020).   
 
Recent work has begun to appreciate the widespread role of the hippocampus in cognition 
(Shohamy and Turk-Browne, 2013), including in the domain of category learning (Mack et al., 
2018; Zeithamova et al., 2019). Building upon previous research showing the involvement of 
hippocampus (Davis et al., 2012) and its representations (Mack et al., 2016; Bowman and 
Zeithamova, 2018) in supporting such behaviours, here we asked whether performance 
variability across individuals (Little and McDaniel, 2014; Shen and Palmeri, 2016) might be 
explained by the integrity of connections between TSP-related regions in particular. We set up 
our category structure such that while a simple similarity-based calculation would yield 
successful categorization for most items, some items—termed “exceptions”—violate the simple 
rule and therefore must be learned separately. Informed by the predictions of a computational 
model (SUSTAIN; Love et al., 2004; Love and Gureckis, 2007) that we and others have 
previously shown is reflected in neural response (Davis et al., 2012; Mack et al., 2016, 2020), we 
reasoned that exceptions might preferentially be supported by TSP-based mechanisms. In 
particular, SUSTAIN suggests that exception learning is accomplished by computing the 
discrepancy (i.e., mismatch) between the stored memories that are reactivated—that is, pattern 
completed, presumably through CA3-based operations (Neunuebel and Knierim, 2014)—and the 
current experience in light of corrective feedback (Sakamoto and Love, 2004; Davis et al., 2012). 
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Because exceptions are by design more similar to the alternate category, such pattern completion 
will yield retrieval of alternate-category memories and incorrect categorization. It is this 
mismatch computed from the feedback that will therefore promote encoding of these exception 
items. 
 
In the context of this theoretical framework, we set out to test the hypothesis that the ability to 
learn to successfully categorize exception items—but not rule-following ones—would be 
accounted for in part by the structural integrity of TSP-related—but not MSP-related—
connections as measured with DWI. We leveraged sophisticated automated tools both for 
segmenting HPC subfields and medial temporal lobe (MTL) cortex (Yushkevich et al., 2015) and 
for estimating structural connectivity (Smith et al., 2012; Tournier et al., 2019) between key 
regions along TSP (CA3 to CA1) and MSP (ERC to CA1). This approach potentially sacrifices 
precision relative to more traditional manual methods for segmentation and tractography, but 
provides a more efficient and flexible data-driven approach for investigating brain-behaviour 
relationships in larger samples. Importantly, in employing these methods, we find that the 
density of TSP-related connections (CA3 to CA1) are associated with individual variability in 
exception learning. 
 
Results 
 
Thirty-seven healthy young adults performed a feedback-based category learning task in which 
they classified a set of highly similar visual stimuli (flowers) into two categories (shade- or sun-
preferring). Stimuli varied along three dimensions (inner petal shape, outer petal shape, and petal 
colour; Fig. 1A), but the category structure was such that there was no simple rule that separated 
the categories. Rather, each category included an “anchor” item, two “similar” items (which 
differed from the anchor on one dimension), and one “exception” item (which differed on two 
dimensions) (Shepard, 1961; Nosofsky et al., 1994). Critically, while categorization of anchor 
and similar items could be based on visual features alone, exception items were in fact more 
similar to the anchor for the alternate category (Fig. 1B). We hypothesized that because 
participants would need to form separate, specific memories for how to classify these non-rule-
following items, rapid encoding mechanisms would be uniquely related to categorization task 
(Fig. 1C) performance for exceptions. 
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Figure 1: Example stimuli, task schematic, and learning performance. A) Flower stimuli varied in (1) width of outer 

(pink) petals, (2) shape of inner (yellow) petals, and (3) colour and texture of brown centre. B) Subway plot 
depicting all task stimuli as a function of distance from both shade- and sun-preferring flower anchors (circles at 

left- and rightmost positions on map, respectively). Shade-preferring flowers are denoted with dark outer circle; sun-
preferring denoted with white outer circle. Similar items (squares) are one step in feature space (i.e., one “subway 

stop”) away from their own category anchor. Exception items (triangles) are two steps away from their own 
category anchor, and only one step from the opposite category anchor. C) Participants decided whether an individual 

flower presented on the screen was either sun- or shade-preferring, and then received feedback about their choice. 
D) Final categorization performance, operationalized as the average accuracy in categorizing anchor (anc.), similar 

(sim.), and exception (exc.) items during the last third of the category learning task. 

End of learning performance (Fig. 1D) differed by item type (χ22=194.07, p=7.224x10-43), being 
highest (and near-perfect) for anchors, lowest for exceptions, and intermediate for similar items, 
as expected (Davis et al., 2012). With evidence of all participants showing learning for the more 
frequently presented anchors, we focus the following analyses on similar and exception items 
which were matched to one another in terms of number of presentations. Importantly, 
participants exhibited a range of performance for both similar (range: 43.75-87.5%) and 
exception (0-100%) items, allowing us to ask how individual differences in brain structure—
particularly, integrity of the connections among hippocampal subfields—relates to behaviour. 
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Figure 2: Example segmentation and tractography from one sample participant. A) Coronal slice of the brain 
focussed on the participant’s MTL. Insets show close-up view of hippocampus (left) with superimposed ROIs (right) 

used as masks in the present tractography analysis (blue, CA1; red, ERC; cream, CA3). B) Distribution of raw 
streamline counts across all participants, shown as both dot plots (left, where each dot represents a single 

participant), and violins (right, representing the smoothed distribution). These values were scaled for subsequent 
statistical analyses to yield the values plotted along the x-axis in Fig. 3A. C) and D) show two different views of 
CA3-CA1 and ERC-CA1 streamline renderings in 3D to enable visualization of the pathways for the participant 

shown in panel A. Regions of interest (smoothed) are coloured as in panel A, and other structures have been 
removed for easy visualization. In panels B-D, light green denotes ERC-CA1 and dark green denotes CA3-CA1. See 

supplement Fig. S1 for additional depictions of streamline estimates. 

Using automatically defined (Yushkevich et al., 2015) hippocampal and MTL cortical 
substructures (Hindy et al., 2016) in combination with DWI, we generated tractography-based 
estimates of the integrity of white matter connections associated with MSP (operationalized as 
streamline count from ERC-CA1) and TSP (CA3-CA1) for each participant (Fig. 2). Our reasons 
for defining the pathways in this way—including only part of the overall TSP pathway (i.e., 
excluding ERC-DG, DG-CA3, and output connections via the fornix)—were to (1) align with 
prior computational work which has focussed on the CA3-CA1 connection as reflecting TSP 
strength (Ketz et al., 2013; Schapiro et al., 2017) and (2) ensure that the two pathways were 
defined with a similar number of constraints such that neither pathway was at a clear 
disadvantage (Baum et al., 2018). We additionally extracted in-scanner motion summary 
estimates for each DWI scan to control for the possibility that person-to-person variability in the 
ability to remain still for the duration of the scan could impact our estimates of path integrity. All 
reported analyses include motion as a covariate, but results were virtually identical when motion 
was ignored. In addition, while our main statistical analyses require scaling of the streamline 
counts, we display the raw streamline counts by pathway in Fig. 2B.  

When both tracts were considered simultaneously in a multiple regression, tract integrity of CA3-
CA1 (regression coefficient β=0.117, CI95%=[0.031, 0.203], p=0.010) but not ERC-CA1 (β=-
0.038, CI95%=[-0.144 ,0.068], p=0.472) was related to individual differences in performance for 
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the exception items (Fig. 3)1. The reader will note that because our CA3-CA1 and ERC-CA1 
values were scaled, the regression coefficients can be interpreted as the increase in behaviour 
associated with a one standard deviation (SD) increase in streamline count. In other words, 
exception learning performance increases by about 10% for every SD increase in CA3-CA1 
integrity. The reliability of the relationship between exception learning and CA3-CA1 integrity 
was confirmed with bootstrap resampling (Fig. 3B; pboot=0.010) and robust regression analyses 
(p=0.004). The interaction was also significant (β=0.180, CI95%=[0.044, 0.317], p=0.010), such 
that the relationship between accuracy and tract integrity was significantly stronger for CA3-CA1 
than ERC-CA1. Importantly, this brain-behaviour relationship was only observed for exception 
items; neither CA3-CA1 nor ERC-CA1 tract integrity was associated with performance on similar 
items (both p>0.35).  

 

Figure 3: Individual differences in CA3-CA1 but not ERC-CA1 tract integrity are related to exception performance. 
A) Simple linear relationships between tract integrity (x-axes) of CA3-CA1 (top, dark green) and ERC-CA1 (bottom, 

light green) and final categorization performance for exception items (y-axes). CA3-CA1 (regression coefficient 
β=0.122, CI95%=[0.037, 0.206], p=0.006) but not ERC-CA1 (β=-0.061, CI95%=[-0.175, 0.053], p=0.284) tract 

integrity shows a significant relationship with performance. Note that while results in the main paper focus on a 
multiple regression in which the relationship between CA3-CA1 and performance remains when controlling for 

ERC-CA1, here we depict the simple linear regressions for visualization purposes. B) Distributions of bootstrapped 
regression coefficients; white lines depict median and 95% confidence intervals of β values, in which participants 

were randomly sampled with replacement across 10,000 iterations. The CA3-CA1 effect was reliable across 
bootstrapped samples (CI95%=[0.024,0.187], pboot=0.010), the ERC-CA1 effect was not (CI95%=[-0.149,0.065], 

pboot=0.254). 

To assess the specificity of this relationship to intra-hippocampal path integrity as opposed to 
more gross anatomical features like structure size, we additionally tested for possible 
relationships between MTL volumes and performance. There was no relationship between the 
volume of any MTL substructure (CA1, CA3, DG, SUB, ERC) and performance for either 

 
1 The same positive relationship between TSP-related streamlines and exception learning was found when 
considering the sum of white matter connections across additional parts of TSP (i.e., ERC-DG, DG-CA3, CA3-CA1, 
β=0.102, CI95%=[0.019, 0.186], p=0.017).  
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exception (all p>0.54) or similar (all p>0.16) items when only volume was considered. 
Importantly, the relationship between CA3-CA1 tract integrity and exception item performance 
remained reliable (β=0.129, CI95%=[0.021, 0.237], p=0.021) when controlling for individual 
differences in volume of hippocampal subfields (CA1, CA3, DG, SUB) and entorhinal cortex 
(ERC); none of the other relationships were significant (ERC-CA1: β=-0.034, CI95%=[-0.174, 
0.106], p=0.623; all other p>0.35). Likewise, participant motion during DWI acquisition had no 
effect on performance, measures of tract integrity, or the relationship between CA3-CA1 integrity 
and exception learning (see Methods, Linking learning behaviour and neural measures). 
None of the tract integrity, volume, or motion measures were significantly related to 
performance for similar items (all p>0.078). Additionally, exploratory analyses of diffusion 
tensor metrics (FA, MD, AD, and RD) and apparent fibre density (AFD) were not related to 
exception learning for either pathway (all p>0.19; see Supplemental Analysis). 
 
Discussion 

Our results are consistent with a specific link between TSP integrity (characterized as CA3-CA1 
white matter connections) and categorization performance for exception items. To our 
knowledge, this is the first empirical demonstration of the functional significance of CA3-CA1 
integrity in the human brain. That is not to say, however, that our result is surprising; to the 
contrary, they are grounded in—and converge nicely with—simulations from computational 
models (Schapiro et al., 2017) that highlight a role for TSP in representing distinct episodes (but 
failing to capture cross-event regularities). Importantly, such representations were found across 
multiple paradigms—statistical learning, associative inference, and community structure 
learning—suggesting the generality of this function. Here, we build upon these previous results 
to ask whether TSP tract integrity is associated with specific aspects of performance in a 
different task: namely, category learning (Zeithamova et al., 2019). We set up our category 
structure such that a minority of items (“exceptions”) necessitated the use of specific memories 
for successful categorization, because they did not follow the broader rule. We also theorized 
that exceptions would benefit most from mismatch-driven encoding processes—a computation 
that requires CA3-based pattern completion—as they deviate most from memory-based 
expectations (Neunuebel and Knierim, 2014). Consistent with our hypotheses, we found that 
greater tract integrity for CA3-CA1 (but not ERC-CA1) was associated with superior performance 
for exceptions (but not the rule-following, similar items). 

We did not find evidence for an association between MSP tract integrity (operationalized as 
ERC-CA1) and behaviour on either similar or exception items. Given that performance on the 
similar items might benefit from extraction of regularities across experiences—an operation 
purportedly supported by MSP (Schapiro et al., 2017)—we might have expected stronger MSP 
connections to be associated with better performance on similar items. It might be the case that 
certain features of our task reduced our chances of observing such an effect. For example, more 
repetitions (given the slower learning rate of CA1) or a different stimulus structure (e.g., in which 
there exist more “similar” items that accentuate the clustering around the anchors) might uncover 
evidence of such a relationship. These predictions remain to be tested in future work. It is also 
important to note that our characterization of MSP relies on ERC, a region susceptible to issues 
of signal-to-noise and decreased contrast with MRI methods. It is possible that our streamline 
estimation of ERC-CA1 was impacted by these imaging limitations to a greater extent than was 
CA3-CA1. Although the current findings point to a robust relationship between CA3-CA1 
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streamlines and exception learning, future work with tailored learning paradigms and imaging 
protocols optimized for ERC may provide a better characterization of MSP’s relationship to 
category learning. 
 
Methodologically speaking, our study demonstrates the value of measuring the connectivity 
between hippocampal subregions in healthy human participants. There is limited work measuring 
structural properties of connections within the human hippocampus (Auhustinack, 2010; Yassa et 
al., 2010, 2011; Zeineh et al., 2012, 2017) and most of it has been done post mortem 
(Auhustinack, 2010; Zeineh et al., 2017). While informative from a basic science perspective, to 
fully test the predictions of computational models—which highlight the unique behavioural 
contributions of each pathway—we must study living human participants and carefully measure 
their behaviour on a theoretically informed choice of tasks. Previous reports interrogating the 
structure of the perforant path (part of TSP) in healthy aging have quantified fractional 
anisotropy (FA)—a diffusion-based metric describing the degree to which diffusion is directional 
in a particular region—within a combined dentate gyrus and CA3 region (Yassa et al., 2010, 
2011). FA in this region was related to behavioural evidence for pattern separation, consistent 
with hypotheses (Yassa et al., 2011); however, this was observed in a very small group of older 
adult participants (N=11) due to the intensive data collection required and used a general metric 
of integrity that did not capture subfield-to-subfield connections specifically. We suggest that our 
approach using a smaller number of high-resolution DWI scans in healthy young adults improves 
feasibility and therefore opens the door to future, larger scale investigations testing predictions 
about which specific aspects of memory are related to anatomical properties of TSP-related 
connections. In addition, using such an approach in neuropsychological studies with clinical 
populations in the future may yield even greater variability and prove a useful and sensitive tool 
in understanding the neural basis of memory impairments specifically, and perhaps deficits in 
flexible cognition more generally.  
 
Our work adds to a growing body of evidence suggesting that individual differences like intrinsic 
(i.e., task-free) functional connectivity (Elliott et al., 2019; Finn et al., 2020) and structural 
properties (Llera et al., 2019) relate to cognition in meaningful ways. Our results join prior 
research in highlighting the greater sensitivity of connectivity relative to volume-based measures 
(Yassa et al., 2010; Zajac et al., 2020). Here, we took a hypothesis- rather than data-driven 
approach to asking these questions; our analysis was limited to just two hippocampal pathways 
of greatest expected significance: CA3-CA1 as related to TSP, and ERC-CA1 as related to MSP. 
Moreover, we demonstrate these relationships outside the domain of a traditional episodic 
memory task. As mentioned earlier in the paper, our framework suggests that encoding of 
exceptions in a category learning context may—to an even greater degree than more standard 
one-shot learning tasks—benefit from a mechanism in which existing knowledge is reinstated 
and compared with current input (Love et al., 2004; Sakamoto and Love, 2004; Davis et al., 
2012; Schapiro et al., 2017). It is therefore possible that performance on this category learning 
task may be more tightly linked to TSP-related function than would be a traditional episodic 
memory test that does not require such fine-grained discrimination among similar exemplars and 
a differentiation of related memories. This speculation remains to be empirically tested by future 
work. 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.05.14.444187doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444187


 10 

Important limitations to the current findings are those inherent to using DWI to estimate white 
matter structure. Although state-of-the-art methods for segmenting MTL subregions (Yushkevich 
et al., 2015) and estimating white matter response and tractography (Smith et al., 2012, 2013; 
Tournier et al., 2019) were utilized to best approximate the underlying white matter structure, 
there remains the key caveat that in vivo DWI cannot discriminate TSP and MSP at the level of 
precision possible with ex vivo imaging and histology. The MTL is a crowded neural 
neighbourhood with interwoven grey and white matter, crossing white matter fibres, and 
surrounding ventricles. Given these challenges, performing tractography in MTL requires an 
approach that considers tissue types (Smith et al., 2012), incorporates crossing fibres in its 
underlying estimation (Tournier et al., 2012), and filters resulting streamlines according to 
biological plausibility (Smith et al., 2013, 2015). We incorporated all these key steps in the 
current work. Additionally, we acquired diffusion data with isotropic voxels (Zeineh et al., 2012) 
to avoid biases in tractography estimation (Jones and Leemans, 2010; Jones et al., 2013), 
corrected susceptibility distortions with reverse-phase encoded b0 structural images (Andersson 
et al., 2003; Smith et al., 2004), and collected two separate diffusion volumes for each participant 
to assess generalizability across acquisitions. One drawback to our approach is that the resolution 
of our diffusion acquisition was 2mm. We opted for a more standard resolution to increase SNR 
and provide whole brain coverage for tractography estimation; however, a higher resolution 
sequence coupled with multiple acquisitions (Zeineh et al., 2012) would likely provide better 
estimates of diffusion signal from distinct hippocampal pathways. Also, as is true of tractography 
in general, estimated streamlines are at best an approximation of the underlying distribution of 
white matter fibres and do not represent actual anatomy. Future work incorporating higher 
resolution diffusion (Yassa et al., 2010; Zeineh et al., 2012) and structural imaging along with 
advances in multi-shell diffusion acquisition (e.g., Pines et al., 2020) and neurite orientation 
dispersion and density imaging (NODDI) measures of microstructure (Zhang et al., 2012) will 
further bridge the divide between white matter anatomy and its estimation with MRI.  
 
Our field is moving towards more fully describing the myriad ways in which the hippocampus—
a structure once ascribed a relatively narrow, memory-only function—shapes cognition, broadly 
speaking (Shohamy and Turk-Browne, 2013). We suggest that future researchers considering its 
functional or structural connectivity might focus not only on how the hippocampus interacts with 
neocortical structures, but also how its subfields are interconnected with one another (Schapiro et 
al., 2017). Indeed, our findings underscore this internal circuitry of the hippocampus—rather 
than its sheer size or even subfield makeup—as the measurable anatomical property most tightly 
coupled with its function.  
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Methods 
 
Participants. Forty-three volunteers (24 females, mean age 23.5 years old, ranging from 19 to 
33 years) participated in the experiment. All subjects were right-handed, had normal or 
corrected-to-normal vision, and were compensated $20/hour for participating. Data from six 
participants were excluded from analysis due to technical issues with MRI acquisition (N=2) or 
experiment presentation (N=1), failure to follow instructions for the category learning task 
(N=2), and inability to estimate white matter streamlines (N=1). 
 
Category learning task. After an initial screening and consent in accordance with our 
University of Toronto Research Ethics Board-approved protocol, participants were instructed on 
the category learning task. Participants then performed the task while laying supine in the MRI 
scanner and viewing visual stimuli back-projected onto a screen through a mirror attached onto 
the head coil. Foam pads were used to minimize head motion. Stimulus presentation and timing 
was performed using custom scripts written in Matlab (Mathworks) and Psychtoolbox 
(www.psychtoolbox.org). 
 
Participants were instructed to use feedback displayed on the screen to learn to classify visual 
images of cartoon flowers (Fig. 1) as growing better in the sun or the shade by considering its 
features. There were three feature dimensions: outer petal shape, inner petal shape, and 
colour/texture of flower centre, each of which could take on two values. Once in the MRI 
scanner, participants were reminded of the task instructions and told which of two buttons to 
press for each flower category.  
 
To perform optimally in the learning task, participants had to pay attention to the combination of 
all three feature dimensions. Class associations were defined according to a rule-plus-exception 
category structure (Shepard et al., 1961): each category included an “anchor”, two “similar” 
items that differed from the anchor in only one feature, and one “exception” which differed from 
its category anchor in two features. However, exceptions differed from the alternate category 
anchor in only one feature, meaning they were in fact more visually similar to the anchor from 
the other flower category than to their own category anchor (see Table 1).  
 

 feature dimension category type 
stimulus 1 2 3   

1 0 0 0 A anchor 
2  0 0 1 A similar 
3 0 1 0 A similar 
4 0 1 1 B similar 
5 1 0 0 B exception 
6 1 0 1 A exception 
7 1 1 0 B similar 
8 1 1 1 B anchor 

Table 1: Stimulus features, category association, and type for the category learning task. Each of the eight stimuli 
were represented by the binary values of three feature attributes. Based on their feature values, stimuli were category 
anchors, similar to their category anchor, or exception items. 
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On each trial of the learning task (Figure 1), participants were shown a flower stimulus for 3.5s, 
during which time they were instructed to respond indicating the flower’s category by pressing 
one of two buttons on an MRI-compatible response box. Flower images subtended 7.3° × 7.3° of 
visual space. The stimulus presentation period was followed by a 0.5-4.5s fixation. A feedback 
screen consisting of the flower image, text of whether the response was correct or incorrect, and 
the correct category was shown for 2s followed by a 4-8s fixation. The frequency of the different 
stimulus types was purposefully unbalanced to make similar and exception stimuli rare events 
during learning. This was done to increase the difficulty of the task and to place a greater 
demand on generalizing learning of the anchors to similar and exception items. Within one trial 
block, each anchor was presented six times, the four similar items each four times, and the two 
exceptions each twice for a total of 24 trials. Trial order was randomly selected for each trial 
block. Participants completed six trial blocks for a total of 144 trials. The entire category 
learning task lasted approximately 40 minutes. Functional MRI data was collected during the 
learning task, but this data is not considered in the current study.  
 
Learning behaviour analysis. Participant-specific learning behaviour was characterized by the 
proportion of correctly categorized trials in the last two trial blocks separately for anchors, 
similar items, and exceptions (Fig. 1). The last two blocks were chosen such that a minimum of 
eight trials were used for accuracy calculations across the stimulus types in order to provide 
stable estimates of performance, as has been done previously (Nosofsky et al., 1994; e.g., Davis 
et al., 2012; Mack et al., 2020). Learning performance was evaluated with a mixed-effects linear 
regression that included a fixed effect of stimulus type and random intercepts for participants (R 
version 4.0.0, lme4 version 1.1-23). 
 
MRI acquisition. Whole-brain imaging data were acquired on a 3.0T Siemens Prisma system at 
the Toronto Neuroimaging Facility housed at the University of Toronto. A high-resolution T1-
weighted MPRAGE structural volume (TR = 2s, TE = 2.4ms, flip angle = 9°, FOV = 256mm, 
matrix = 256x256, 1mm iso-voxels) was acquired for co-registration and parcellation. Two 
oblique coronal T2-weighted structural images were acquired perpendicular to the main axis of 
the hippocampus (TR = 4s, TE = 66ms, matrix = 512x512, 0.43x0.43mm in-plane resolution, 
2mm thru-plane resolution, 40 slices, no gap). Functional images were also acquired using a 
T2*-weighted EPI pulse sequence during the category learning task and during resting-state 
scans prior to and after the learning task. This functional data is not considered in the current 
study. Diffusion weighted images (DWI) were also collected in two separate scans one before 
and one after the learning task (axial echo-planar imaging, GRAPPA=2, multiband factor=2, b-
value=1000, TR=4000ms, TE=70ms, 64 directions, 22cm FOV, 2mm-iso voxels, 70 slices, 
acquisition time=298s; sequence also included 4 repetitions of b-value=0 images). An additional 
two reverse-phase encoded b-value=0 images were collected for distortion correction. 
 
Regions of interest. Hippocampal subfields and medial temporal cortex subregions were 
automatically labelled using Automated Segmentation of Hippocampal Subfields (Yushkevich et 
al., 2015) and the Princeton Young Adult 3T ASHS Atlas (Hindy et al., 2016). Outputs from this 
procedure provided participant-specific regions of interests that included hippocampal subfields 
DG, CA1, a combined CA2 and CA3 regions (labelled here as CA3), and Subiculum and MTL 
cortical regions of ERC, PRC, and PHC separately for left and right hemispheres. Because here 
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we focus only on the intra-hippocampal pathways and considered MTL cortex only in order to 
define TSP and MSP, we used only ERC (i.e., not PRC or PHC) in our analysis as the input 
structure to hippocampus and a component of MSP. These ROIs were co-registered to 
participants’ T1 anatomical space using the linear transformations provided by ASHS.  
 
Regional volume analysis. The volume of each hippocampal subfield and ERC was calculated 
from the ASHS-defined ROIs. To correct for overall head size differences across participants, 
intracranial volume (ICV) was estimated using the standard recon-all protocol in Freesurfer 
(version 6.0; Fischl et al., 2002) and entered as a predictor of ROI volume in separate linear 
regression models for each ROI (R version 4.0.0). The residuals of these models served as an 
ICV-corrected index of ROI volume (Mathalon et al., 1993) and were used in all analyses linking 
volume to learning performance as described below. 
 
Diffusion weighted imaging and tractography analysis. Our approach to characterizing white 
matter connectivity of intrinsic hippocampal pathways was to 1) estimate tractography at the 
whole-brain level, 2) use the whole-brain tractography to construct a structural connectome 
among the MTL ROIs described above, and 3) from the MTL-based connectome characterize the 
integrity of MSP and TSP with a relative measure of streamline counts. By starting with an 
estimation of whole brain tractography, our aim was to capture the global structure of white 
matter in order to reduce potential artificial constraints imposed by a limited field of view or 
misclassification of long-range fibres that pass through our targeted region but nonetheless have 
endpoints outside of MTL. This approach, the details of which are explained below, was applied 
separately to each of the two DWI scans collected from each participant. 
 
Our approach departs from traditional DWI analyses that rely on diffusion tensor metrics of 
diffusivity (e.g., fractional anisotropy, mean diffusivity). Such metrics rely on estimates of 
diffusion tensors which are poor models of complex local fibres: they cannot represent more than 
one independent orientation nor account for crossing fibres (Tournier et al., 2012; Jeurissen et 
al., 2013; Jones et al., 2013; Riffert et al., 2014). Recent methodological advances have 
overcome these challenges through a constrained spherical deconvolution method that estimates 
the distribution of white matter fibre orientations within each voxel (Tournier et al., 2004, 2007, 
2012, 2019). These distributions of fibre orientation can then be leveraged to estimate streamline 
tractography that better characterizes more complex fibre arrangements. The result is an estimate 
of white matter connectivity that more closely represents the underlying anatomical structure 
than traditional diffusion tensor metrics (Smith et al., 2013, 2015; Jeurissen et al., 2014b; Roine 
et al., 2015). As such, a constrained spherical deconvolution method was utilized in the current 
DWI analyses. 
 
All DWI analyses were conducted with MRtrix (version 3.0 RC3) (Tournier et al., 2019) and 
FSL tools. First, for each participant, the average of the b0 volumes collected during DWI 
acquisitions were co-registered to the T1 anatomical volume with boundary based registration 
(Greve and Fischl, 2009) in FSL flirt using the white matter probability volume calculated in 
fmriprep (Esteban et al., 2019). This registration was used to register the diffusion data to the 
participant’s T1 anatomical volume. Diffusion data was denoised (Veraart et al., 2016) and pre-
processed and corrected for distortions with FSL EDDY (Smith et al., 2004; Andersson and 
Sotiropoulos, 2016). Scan-specific estimates of motion during DWI acquisition (two per 
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participant) were calculated from the EDDY motion correction outputs (Taylor et al., 2016). 
Specifically, the average of the volume-by-volume root-mean-squared errors (RMSE) across all 
voxels was calculated separately for each of the DWI scans. These motion indices were included 
in all analyses linking white matter tracts to learning behaviour as described below. The multi-
tissue constrained spherical deconvolution (MSMT-CSD) framework was used to estimate the 
fiber orientation distribution (FOD) in each voxel (Jeurissen et al., 2014a). This framework 
estimates orientation distribution functions for different tissue types to create a signal distribution 
map of white matter, grey matter, and cerebrospinal fluid within the diffusion images. Whole-
brain probabilistic tractography was estimated using the iFOD2 algorithm with 10 million 
streamlines, curvature threshold of 45 degrees, minimum fiber length of 10 mm, maximum fiber 
length of 250 mm, and seeds from the gray matter-white matter interface (Smith et al., 2012). 
Spherical-deconvolution informed filtering (SIFT) was then applied to match the streamline 
densities with the FOD lobe integrals (Smith et al., 2013). This step removed likely false positive 
tracts and reduced the number of streamlines to 2 million to create more biologically meaningful 
estimates of white matter fibres (Smith et al., 2013).  
 
Participant-specific connectomes based on streamlines that connected the MTL and hippocampal 
ROIs were generated with MRtrix tck2connectome. To correct for individual differences in 
participants’ overall streamline counts, we scaled streamline counts to the proportion of all 
streamlines connecting MTL ROIs for each participant. This streamline count proportion, 
therefore, takes into account potential differences in streamlines due to ROI size and overall 
streamline density in order to target the relative comparison of TSP- and MSP-related WM 
streamline connections.  
 
Whereas MSP involves a direct connection between ERC and CA1, the TSP circuit involves a 
multi-step path linking ERC to DG and CA3 before reaching CA1. Thus, to approximate 
connections along MSP and TSP with similar constraints (e.g., each with one start and endpoint) 
and put the two pathways on more equal footing in the analysis, also selecting them to be 
roughly the same length given the known distance-dependent motion artifacts in tractography 
(Baum et al., 2018), we focused on just the connections of CA1 with ERC and CA3 as indices of 
overall MSP- and TSP-related path integrity, respectively. Specifically, MSP-related path 
integrity was defined as the streamline count proportion connecting ERC and CA1; for TSP-
related paths, it was the streamline proportion between CA3 and CA1. Output connections via 
fornix were not included in either pathway definition. It is important to note that at the resolution 
of DWI, diffusion signal from the entire extent of MSP and TSP would spatially overlap. Our 
choice to focus on distinct inputs to CA1 originating from different regions approximates MSP- 
and TSP-related connections at points where they are spatially separable. Note also, this 
definition of TSP-related connections is consistent with computational studies that characterized 
distinct functional properties of hippocampal pathways by down-weighting the connection 
between CA3 and CA1 in order to simulate a lesioned TSP (Ketz et al., 2013; Schapiro et al., 
2017). Raw streamline counts for the two pathways (Fig. 2B) were not correlated across 
participants (r=0.167, p=0.323). To provide a comparison, we also defined streamline counts for 
uncinate fasciculus (UF). Specifically, we followed the same methods as described for the HPC 
pathways but estimated the number of streamlines connecting key UF seed regions of a 
combined lateral and medial orbitofrontal cortex and amygdala (Table 2). These regions were 
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defined from the Desikan-Killiany atlas parcellation as part of participant-specific freesurfer 
outputs. 
 

 range mean (SD) 
CA3-CA1 (TSP-related) 44-382 191.1 (63.5) 
ERC-CA1 (MSP-related) 3-178 70.4 (57.9) 
uncinate fasciculus  63-494 240.1 (99.1) 

Table 2: Summary of streamline counts from HPC-related pathways and a comparison tract, uncinate fasciculus. 
Summary measures include the range, mean, and standard deviation of streamline counts across participants.  
 
Quality control. The streamline estimation pipeline was evaluated for quality control at three 
different points. First, the hippocampal subfield and MTL cortical segmentations provided by 
ASHS were visually inspected for each participant. Participant-specific volume masks for the 
relevant ROIs were displayed on the high resolution T2 and then the T1 anatomical volumes to 
ensure valid segmentation. Second, the DWI-T1 registration results were visually inspected by 
transforming the average b0 volume from the DWI acquisition to T1 space and displaying the 
transformed volume along with the T1 volume. Although we checked for whole brain alignment, 
we specifically focused on the MTL region to ensure proper registration between the two 
imaging modalities. Third, for each participant, the streamline estimations from MRtrix were 
visually inspected by viewing the TSP-related (CA3-CA1) and MSP-related (ERC-CA1) 
streamlines in both 2D and 3D along with the ASHS-defined ROI masks and anatomical 
volumes. We ensured that streamlines had appropriate endpoints in the relevant ROIs and that 
the direction and path of the streamlines were consistent with the known anatomical properties of 
the white matter connections between CA1, CA3, and ERC. One participant was excluded due to 
failed streamline estimation. Authors M.G. and M.L.M. performed all visual inspections. 
 
Linking learning behaviour and neural measures. We assessed the relationship between 
learning behaviour and neural measures of CA3-CA1 and ERC-CA1 integrity and ROI volume 
with linear regression modelling (R version 4.0.0; stats::lm version 4.0.0; lme4 version 1.1-23). 
To control for potential confounds of participant-specific motion during the DWI scans (Taylor 
et al., 2016) on our pathway integrity measures, a source of structured variability that could 
reasonably relate to behavioural indices of learning, we included an estimate of DWI scan 
motion averaged across the DWI scans as a predictor in all regression models involving pathway 
integrity. We found that DWI motion 1) was not correlated with either CA3-CA1 or ERC-CA1 
integrity, 2) was not correlated with learning performance, and 3) did not change any 
relationships between pathway integrity and learning. The DWI motion estimate was included in 
all reported regression models that follow. 
 
For the analysis reported in the main text, we averaged measures of CA3-CA1 and ERC-CA1 
integrity from the two DWI scans and across hemispheres. The resulting data provided single 
measures of CA3-CA1 and ERC-CA1 integrity for each participant. These pathway integrity 
measures were simultaneously related to learning performance for both exceptions and similar 
items in separate linear models (see Results section). Our choice to average across DWI scans 
and hemispheres was motivated by the outcome of linear mixed effects model relating CA3-CA1 
and ERC-CA1 integrity to exception learning performance that, in addition to DWI motion, 
included separate fixed effects factors for scan and hemisphere. The result of this model showed 
no effects for either factor (scan: β=-0.005, CI95%=[-0.033, -0.022], p=0.720; hemisphere: β=-
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0.001, CI95%=[-0.029, -0.029], p=0.979). Importantly, while the main results show brain-
behaviour relationships when collapsing across run and hemisphere, the significant relationship 
between CA3-CA1 integrity and exception learning performance was also observed when 
considering data from each DWI scan (repetition 1: β=0.123, CI95%=[0.038, 0.208], p=0.006; 
repetition 2: β=0.077, CI95%=[0.001, 0.155], p=0.050) and hemisphere (left: β=0.122, 
CI95%=[0.021, 0.223], p=0.020; right: β=0.073, CI95%=[0.004, 0.141], p=0.038) independently. 
 
To evaluate the reliability of the main findings relating exception learning to CA3-CA1 and ERC-
CA1 integrity, we conducted a 1) bootstrap resampling procedure and 2) robust regression 
analysis. For the bootstrap resampling analysis, on each iteration, data from participants was 
randomly sampled with replacement, the regression model evaluated, and the coefficients for 
CA3-CA1 and ERC-CA1 were saved. This procedure was repeated for 10,000 iterations to 
generate a distribution of coefficients for the effects linking pathway integrity to exception 
learning. The resulting coefficient distributions were used to calculate 95% confidence intervals 
and a pboot statistic (Fig. 2B) that characterizes the proportion of resampling tests that resulted in 
a coefficient with a sign opposite of the distribution’s median. For robust regression, we 
estimated a robust regression model relating exception learning to CA3-CA1 and ERC-CA1 
integrity and DWI motion estimates (MASS::rlm version 7.3-51.6, M-estimator with median-
absolute deviance estimation). Importantly, the TSP effect remained (β=0.118, CI95%=[0.043, 
0.193], p=0.004). Findings from both of these analyses suggest that the CA3-CA1 effect on 
exception learning is reliable and not driven by the contributions of outliers. 
 
Direct comparison of CA3-CA1 and ERC-CA1 effects. An additional model was estimated that 
considered pathway integrity as the outcome variable with exception learning performance, 
pathway (CA3-CA1 vs. ERC-CA1), and their interaction as predictors. Importantly, the 
interaction term was significant (β=0.180, CI95%=[0.044, 0.317], p=0.010), suggesting that the 
relationship between CA3-CA1 integrity and performance was reliably stronger than the 
relationship between ERC-CA1 and performance. A similar model considering pathway integrity 
in light of learning performance for similar items showed no relationship for either pathway (all 
ps>0.123). 
 
No relationship between volume and behaviour. The relationship between ROI volume and 
learning performance was evaluated with a linear regression model with ICV-corrected volumes 
for each hippocampal ROI (CA1, CA3, DG, SUB) and ERC entered as predictors of accuracy, 
separately for exceptions and similar items. Performance for neither item types was explained by 
individual differences in volume (all ps>0.16).  
 
CA3-CA1 effects remain when controlling for volume. We also entered ROI volumes into a linear 
model along with CA3-CA1 and ERC-CA1 integrity and DWI scan motion as predictors of 
learning performance. In this extended model, the relationship between TSP integrity and 
exception learning remained reliable (β=0.129, CI95%=[0.021, 0.237], p=0.021) and no other 
predictors were significant (all ps>0.35). A model using the same predictors for similar item 
learning showed no effects (all ps>0.078).  
 
CA3-CA1 effects remain when controlling for participant age and sex. We additionally entered 
participant sex and age as covariates along with CA3-CA1 and ERC-CA1 integrity and DWI scan 
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motion as predictors of learning performance. Neither age (p=0.345) nor sex (p=0.369) were 
related to learning performance; additionally, the relationship between CA3-CA1 streamlines and 
exception learning remained (β=0.118, CI95%=[0.021, 0.214], p=0.018). There was also no 
evidence of simple linear relationships between age and sex and pathway integrity (all ps>0.2). 
 
CA3-CA1 effects remain when including all TSP-related connections. We also considered TSP-
related streamlines between all three steps in the pathway (ERC-DG-CA3-CA1) by summing the 
streamline counts between each pair of subregions. Consistent with the central findings, we 
found a significant relationship between streamline counts associated with this expanded 
definition of TSP-related white matter connections (β=0.102, CI95%=[0.019, 0.186], p=0.017). 
 
No relationship between DWI scan motion and behaviour or pathway integrity. To fully consider 
the effect of motion during DWI scan collection, we assessed the simple linear relationship 
between motion and exception learning, and CA3-CA1 and ERC-CA1 integrity. Motion had no 
effect on any of these variables (all ps>0.45). 
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