Soil protists can actively redistribute beneficial bacteria along *Medicago truncatula* roots

Christopher J. Hawxhurst\(^a\), Jamie L. Micciulla\(^{ab}\), Charles M. Bridges\(^b\), Leslie M. Shor\(^{a,c}\), Daniel J. Gage\(^{b\#}\)

\(^\Delta\)Co-first Authors

\(^a\)Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, USA

\(^b\)Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT, USA

\(^c\)Center for Environmental Sciences & Engineering, University of Connecticut, Storrs, CT, USA

#Address correspondence to Daniel Gage, Daniel.Gage@UConn.edu

Christopher J. Hawxhurst and Jamie L. Micciulla contributed equally to this work. Author order was determined alphabetically.

Keywords: Protist, Soil, Plant Beneficial Bacteria, Transport
Abstract

The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria, all of which play a significant role in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen-starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, the usable form of nitrogen for plants. However, S. meliloti, often found in biofilms, travels slowly; whereas infectible root hairs are found at the growing root tip, potentially causing many root hairs to remain uninfected by S. meliloti when it is delivered as a seed inoculant. Soil protists are an important component of the rhizosphere system who prey on soil bacteria and have been known to egest undigested phagosomes. We show that the soil protist, Colpoda sp., plays an important role in transporting S. meliloti down Medicago truncatula roots. By using pseudo-3D soil microcosms we directly observed the presence of fluorescently labelled S. meliloti along M. truncatula roots and track the displacement of bacteria over time. In the presence of Colpoda sp., S. meliloti was detected 44 mm, on average, farther down the roots, compared with the Bacteria Only Treatment. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. Protist facilitated transport as a sustainable agriculture biotechnology has the potential to boost efficacy of bacterial inoculants, avoid overuse of nitrogen fertilizers, and enhance performance of no-till farming practices.

Importance

Soil protists are an important part of the microbial community in the rhizosphere. Plants grown with protists fare better than plants grown without protists. Mechanisms through which protists support plant health include nutrient cycling, alteration of the bacterial community through


selective feeding and consumption of plant pathogens. Here we provide data in support of an additional mechanism: protists act as a transport vectors for bacteria. We show that protist-facilitated transport can deliver plant-beneficial bacteria to the growing tips of roots that may otherwise be sparsely inhabited with bacteria from a seed-associated inoculum. By co-inoculating *Medicago truncatula* roots with both *Sinorhizobium meliloti*, a nitrogen fixing legume symbiont, and the ciliated protist, *Colpoda sp.*, we show bacteria are distributed an average of 44 mm farther down plant roots than when the plants are inoculated by bacteria alone. Co-inoculation with shelf-stable encysted soil protists may be employed as a sustainable agriculture biotechnology to better distribute beneficial bacteria and enhance the performance of inoculants.
Introduction. The rhizosphere is the zone of soil surrounding plant roots that is under the influence of the root. This soil fraction contains 5 to 100 times more organisms per unit volume than adjacent bulk soil (1). Up to 40% of carbon assimilated by plants is contributed back to the soil as rhizodeposits (2). In return for these carbon-rich root exudates, plants often benefit from microbial activity through a variety of mechanisms such as moisture retention, pathogen suppression, plant-hormone synthesis and the release of recalcitrant nutrients (3, 4). Furthermore, some soil dwelling bacteria, such as those from the family Rhizobiaceae, beneficially infect leguminous roots and directly provide fixed nitrogen in exchange for TCA cycle intermediates.

The functioning of soil and rhizosphere systems emerges, in part, from biological communities interacting in a spatially structured environment (5–11). In trying to better understand the importance of biological factors on the properties of soil, research has been dedicated to the study and interaction of different bacterial species and plants in spatially-constrained systems (6, 9, 10). Protists form an additional, important, and sometimes overlooked component of the soil system. The presence of protists in addition to bacteria can promote and enhance size and weight of plant roots and shoots over bacteria alone (12). Protist-associated enhancement to plant health can arise through several different mechanisms. In the “microbial loop” hypothesis, protists recycle limiting nutrients by grazing on the microbes fed by root exudates (13–17). Protists may also alter the microbial composition of the rhizosphere through selective grazing (17, 18). A third potential mechanism is that protists may improve plant health by acting as a transport vector: moving bacteria or other “cargo” along downward-growing roots (19–21). Similar examples include transport of fungal spores hitchhiking on bacterial flagella (37). Other examples are given in recent reviews (38, 39).
Plant growth promoting rhizobacteria (PGPR) are beneficial soil bacteria used in agriculture to improve yields and disease resistance. PGPR-mediated nutritional effects include symbiotic nitrogen fixation, non-symbiotic nitrogen fixation, release of recalcitrant nitrogen from soils, phosphate solubilization, and iron delivery (2–5). Commercially-used PGPR include many species of nitrogen-fixing bacteria: *Azospirillum* spp., *Azotobacter* spp., *Pseudomonas* spp., *Bacillus subtilis* strains, *Bacillus megaterium* strains and *Trichoderma* spp. (a fungal genus) (2). Many additional species are under investigation in laboratory, greenhouse, and field trials, but have not yet been commercialized.

PGPR are typically inoculated onto seeds before planting or they are directly applied to the soil during planting. Soil bacteria usually grow as biofilms and spread very slowly. Thus, bacteria inoculated onto, or near, seeds often do not leave the area of inoculation and do not establish a population on the root large enough to provide beneficial services (6–9, 22). Further, symbiotic infection of root hairs with nitrogen-fixing rhizobia, such as *Sinorhizobium meliloti*, often occurs at growing root hairs which are located growing at growing root tips. Since roots grow at their tips, these are actively moving away from the soil surface where the seed was planted. The relative lack of bacteria at the root tip can cause a decreased rate of symbiotic infection and nodulation (23).

Soil protists have the potential to act as transport vehicles for bacteria. Soybeans roots can grow at ~3000 µm per hour (24). For comparison, the spreading rate of biocontrol *P. fluorescens* biofilms is less than 10 µm per hour (25), while ciliated protists can swim at speeds up to 400 µm per second for short periods (26). We have shown in vitro that protists can transport beads and bacteria much faster than they could travel without protists (19). In situ, protists are known to carry bacteria, most commonly as intracellular parasites, for example when *Legionella* spp. infect aquatic amoeba or *Campylobacter* spp infect ciliates [28, 40]. Also, bacterial transport by protists
been demonstrated in the soil amoeba *Dictyostelium discoideum*, which can carry bacteria to new habitats (26, 27). Although protists graze on bacteria, ingestion is not always fatal (28). Further, bacteria have been observed attached to the outer surfaces of protists, thus providing a means for transport that does not require ingestion (19). We propose protists contribute to the rhizosphere community, in part, through their capacity to spatially redistribute bacteria. The goal of this study was to test the hypothesis that a protist species, despite grazing, could enhance bacterial dispersal along root systems. We measured the spatial distribution of fluorescently labelled *S. meliloti* through soil-containing mesocosms over time in the presence and absence of a soil-isolated, ciliated, protist from the genus *Colpoda*.

**Experimental Materials and Methods**

**Model soil.** Sterile model soil was comprised of play sand (Quikrete) and fine vermiculite combined 1:1 in a soil mixer. The mix was fractionated by sieving and the 125-250 µm fraction and 63–125 µm fraction were combined 1:2 to emulate the particle sized distribution of a model sandy loam (11).

**Plants.** *Medicago truncatula* is a model legume that offers uniform growth and natural symbiosis with *S. meliloti*. To synchronize the plants, we sterilized the seeds by successive washing with 95% ethanol for 30 min, 10% bleach for 15 min, and sterile diH₂O for 15 min on a shaking platform at 80 rpm. Next, we imbibed seeds in sterile diH₂O in the dark for 24 h. Then, we rinsed the seeds in sterile diH₂O, transferred them to a sterile plastic petri dish, and stored them in an inverted dish in darkness overnight for germination.

**Bacterial strain construction.** The BioFAB plasmid pFAB2298 was kindly provided by Vivek Mutalik (29). We amplified the expression cassette containing Ptrc-BCD2-mRFP1 with Phusion polymerase (Fisher) as a single unit from pFAB2298 using primers 5'-
ATCTGCAGGCTTCCCAACCTTACCAG-3' and 5'-
CAGTATCGATAGTCAGTGAGCGAGGAAGC-3', which contain 5' PstI and ClaI restriction
sites, respectively. We digested the resulting 1.244 kb amplicon with PstI and ClaI (New England
Biolabs) and cloned it into pBlueScript II SK(+) to create pCMB21. We digested the expression
cassette from pCMB21 using AvrII and EcoRI-HF (New England Biolabs) and cloned into
pSEVA551 (tetA, RSF1010 oriV) to create pCMB35 (30). We introduced plasmid pCMB35 into
S. meliloti strain Rm1021 by electroporation in a 1 mm gapped cuvette at 2200 V and plated on
TY medium (6 g/L tryptone (BD), 3 g/L yeast extract (BD), 0.38 g/L CaCl₂ (Acros), 15 g/L agar
(BD)), amended with 500 μg/mL streptomycin sulfate (Acros) and 5 μg/mL tetracycline
hydrochloride (Sigma).

μ-Rhizoslide construction. We constructed small-scale, soil-containing, mesocosms from the
rhizoslide designed by Le Marié, et al (31). Mesocosms were comprised of a 3D printed spacer
with a hollow opening which was filled with model soil. This was sandwiched between two 50 ×
75 mm glass slides. We refer to our version as a “μ-rhizoslide”. After several design iterations to
balance space for root growth, plant health, and imaging consistency, the final spacer design
features a 1.5 cm wide, 7.5 cm long main channel with a 1.5 mm connector at the top of the channel
to stiffen the spacer and limit deformation (Fig. 1).

Our μ-rhizoslides allow for direct optical imaging of the growing plant root and minimize
any water-based transport effects. The μ-rhizoslide assembly (Fig 1A) consists of a 3D printed
spacer sandwiched between two 50 × 75 mm glass slides, with a 50 × 85 mm filter paper wick
added between the back of the 3D printed spacer and the rear microscope slide, to allow for plant
hydration without gravity driven, bulk, water flow. Spacers were designed using Solidworks 2018,
imported into PreForm software and printed on a Formlabs Form 2 stereolithography 3D printer.
using Clear Resin GPCL04 (Formlabs, Somerville, MA). To improve biocompatibility, printed spacers were treated to leach labile resin or crosslinker using a protocol adapted from Kadilak et al. (32). Treatment is necessary because un-crosslinked monomer can have antimicrobial properties (33). Briefly, we soaked 3D printed spacers in an isopropanol bath for 30 min, then rinsed with additional isopropanol from a squeeze bottle. This treatment was repeated twice more to ensure there was no remaining un-crosslinked resin.

Assembly of µ-rhizoslides proceeded as follows. The 3D printed spacer resting on a glass slide was filled with sterile diH₂O-saturated sterile model soil, then covered with a filter paper wick, and closed by affixing another glass slide on the front of the µ-rhizoslide assembly. Germinated seeds were placed in a small depression at the top of the soil column. We kept the µ-rhizoslides separated by treatment in transparent plastic boxes with each µ-rhizoslide positioned 45° off vertical with the filter paper wick on the top face to encourage root growth directly against the glass slide on the bottom of the assembly. This arrangement also helped protect the roots from light exposure, as we kept the µ-rhizoslide boxes in a growth chamber under a 16:8 h light:dark cycle at 23 °C to maintain the plants. We allowed the plants to grow in the µ-rhizoslides for 2 d to insure root establishment prior to inoculation and imaging.

**Growth of protists and bacteria.** The protists used in this experiment were identified by 18s rRNA sequencing as a belonging to ciliate genus *Colpoda*, which we refer to as UC1 (34). UC1 was isolated from a bean rhizosphere and cultured in the lab in Page’s Saline Solution (35). UC1 was maintained in 25 cm³ tissue-culture flasks (Thermo Scientific #130192) with 5 mL of Page’s Saline to allow for full oxygenation for optimal protist growth. Protists were fed heat-killed *E. coli* DH5a, inoculated at OD595 = 0.005 as measured in 100 µL of a suspension in a 96-well microtiter dish. Prior to plant inoculation, UC1 cultures were stored in darkness, at room temperature, for 3
weeks. Cysts were removed from the cell culture flask using a sterile cell scraper, washed twice with Page’s Saline Solution, then resuspended in 100 µL of the same medium. Protist cysts were washed, concentrated, and counted the day of inoculation. We estimated the concentration of the cysts by averaging the number of cysts counted in three 1 µL spots under a microscope. For experiments using trophozoites (protists in their active growing stage) encysted protist cultures were washed two days before inoculation to allow for excystment. Once most protists had emerged from the cysts and were active they were concentrated, counted, and inoculated them onto plants that had been previously established in µ-rhizoslides, as outlined above.

Bacteria inoculants were prepared as follows. A single colony of S. meliloti strain Rm1021/pCMB35 was picked from a TY + tetracycline (5 µg/ml) plate, grown in a 125 ml flask containing 25 ml of liquid TY + tetracycline (5 µg/ml) at 30 °C with shaking at 160 rpm for 3 d. Cells were washed twice with Page’s saline solution then resuspended in Page’s to OD<sub>595</sub> = 0.1. OD<sub>595</sub> was determined in a 96-well microtiter dish using 100 µL of cell suspension.

**Experimental design.** We prepared 10 µL inocula for five replicate µ-rhizoslides for each of the following three treatments: 1) Page’s medium alone (Control); 2) 10<sup>7</sup> CFU Rm1021/pCMB35 in Page’s medium (Bacteria Only); 3) 10<sup>7</sup> CFU Rm1021/pCMB35 + 1.5 × 10<sup>3</sup> Colpoda UC1 in Page’s medium (Bacteria + Protist). To prevent a large fluorescent bloom at the inoculation site, we delivered inocula directly onto the root/shoot interface with the µ-rhizoslide positioned wick-side down, opposite of the orientation used for growth (described above), to avoid gravity-driven flow of the inoculum along the front glass slide. Inoculated µ-rhizoslides were stored wick-side down for one (1) hour post inoculation, then returned to their normal orientation so roots were facing down for the remainder of the experiment. µ-rhizoslides were grouped by treatment and
positioned in the growth chamber as described above. Every 4th day, μ-rhizoslides were alternately watered with either sterile dH2O or a modified Hoagland’s solution (19).

**Imaging and Image Analysis.** Once per week, we imaged the entire soil area of each μ-rhizoslide using tiled brightfield and fluorescent images using a Zeiss AXIO-Observer Z1 inverted microscope (Carl Zeiss Inc., Germany) with an AxioCam MRm Rev.3 camera (1348 × 1040 pixels, 6.45 × 6.45 μm/pixel). We used a 5× Zeiss EC Plan-Neofluar 5×/0.16 M27 lens and set the camera to collect 585-binned photos (2 × 2 binning). The transmission-based brightfield light equipped on the microscope could not illuminate through the 0.5 cm of soil, so we moved the brightfield lamp to an external stand and focused it on the soil surface at the front of the μ-rhizoslide. For fluorescent imaging, we found 570 nm excitation and 620 nm emission filters gave the strongest fluorescent signal for *S. meliloti* Rm1021/pCMB35. We used the Zeiss Zen Pro 2.3 software to stitch a single 207-megapixel image (29341 × 7072 pixels) from each set of 585 photos. We then exported each image as 12-bit grayscale TIFF at full resolution.

For image analysis, the stitched fluorescent images were imported into MATLAB and converted into 29341 × 7072 matrices. Since we took steps to limit bacterial fluorescent bloom on images taken the same day as the inoculation (Week 0), we were able to use the fluorescent images from week 0 as a measure of background fluorescence from sources like the 3D printed spacer, and mica particles in the soil. We subtracted the Week 0 tiled fluorescent image of each μ-rhizoslide from the tiled fluorescent images of all subsequent weeks to remove the aforementioned background fluorescence. Any subsequent negative pixel value was set to 0. In addition, tiled images were cropped to remove the non-soil portion, eliminating fluorescence from the 3D printed spacers. As *S. meliloti* bacteria was predominately found towards the center of the
soil channel, along the roots, removing the background from the 3D spacer this way had a minimal effect on the bacterial fluorescence signal.

We partitioned the photo matrixes into sections approximately 1 mm in length along the root axis (386 \times 7072 pixels), encompassing the full width of the soil region. Next, we determined the fraction of the area of each section with a non-zero fluorescence signal. We define “normalized fluorescent area” as the number of nonzero pixels divided by the total number of pixels in the section. We then plotted the normalized fluorescent area versus distance of the section from the soil-air interface (Fig 3). We define “furthest displacement” as the 1-mm partition with at least 10% normalized fluorescent area. We then plotted the mean furthest vertical and horizontal displacement values of the five replicates for each treatment versus distance from the soil-air interface with their standard deviation (Fig 4 & Fig 5). We used one-way ANOVA using the values for furthest progress of the fluorescent signal for each treatment to determine the statistical significance of the different treatments.

We created composite images for ease of visualization of the progress of the fluorescent signal (Fig 2). We used the Week 3 brightfield images for each rhizoslide trial, and overlayed these images with weekly greyscale fluorescent images colored coordinated to the week. These composite images were not used for quantitative data analysis.

**Post-imaging quantification of Colpoda sp. and S. meliloti in u-rhizoslides.** After the final imaging, µ-rhizoslides were disassembled and roots were separated from the bulk soil. Roots were cut into “upper” and “lower” halves beginning 2.5 cm from the root/shoot interface. Root weight was recorded, then the root sections were suspended in 10 times their weight in Page’s medium in 50 ml conical tubes. Roots were vortexed for 1 minute at medium speed on a tabletop vortex mixer.
For bacteria abundance, 10-fold dilutions were made in Page’s medium and 10 µL spots were placed onto TY + tetracycline (5 µg/ml) agar plates and incubated at 30 °C for 3 days. Colonies were counted, and the total number of S. meliloti strain Rm1021/pCMB35 was estimated for each root section.

To estimate protist abundance, 3-fold dilutions were carried out in a 96 well microtiter dish using Page’s medium+ heat-killed E. coli DH5a (OD_{595} = 0.05). Eight replicate dilutions were done for each root section. Microtiter dishes were incubated at room temperature in darkness for 1 week. Presence of protists in each well was recorded and assumed that “at least one” protist made it into wells that contained protists. The Minimum Recovered Number per ml (MRN/ml) of protists was back calculated as follows:

\[
\text{MRN/ml} = 10 \times 3^{(\text{farthest positive dilution factor} – 1)}
\]

Results

µ-rhizoslides allow convenient, long-term tracking of plant root development. µ-rhizoslides were constructed as a smaller version of the rhizoslides designed by C. L. Marie (31), and optimized for microscopy and increased through-put. Root growth and behavior is easily monitored on a standard inverted microscopy with the smaller µ-rhizoslides. Plant roots occupy a region 15 x 75 mm and can be readily imaged as a series of overlapping tiled images (Fig 2). When not being imaged the µ-rhizoslides were kept at a 45-degree angle to promote root growth directly against the glass slide. This successfully facilitated direct microscopy of the roots without removing the surrounding soil. Brightfield microscopy was used to image root tissue of which allowed monitoring of primary, secondary and tertiary roots. Images were collected once a week.
for 4 weeks after planting. This demonstrated the ability of the µ-rhizoslides to support plant growth for extended periods: a typical requirement of many root-growth experiments.

**Distribution of S. meliloti on plant roots increases in the presence of protists.** Inoculation of seeds with beneficial bacteria, while effective under some circumstances, often fails to provide maximum benefits to the grown plant because the bacteria are not effectively distributed along the growing root system. Soil protists, which often prey on bacteria, may enhance bacterial movement by physically moving them as a result of the feeding process, or by excreting still living bacteria after they have been ingested. In order to test this hypothesis, the nitrogen fixing symbiont *Sinorhizobium meliloti* strain Rm1021 was transformed with plasmid pCMB35 which directs the constitutive expression of mRFP. The movement and growth of Rm1021/pCMB35 was tracked by fluorescent microscopy in the µ-rhizoslides over the course of four weeks under three conditions: Control (plant only); Bacteria (plant + Rm1021/pCMB35 only) and Bacteria + Protist (plant + protist and Rm1021/pCMB35) (Fig 4). When comparing the progress of the fluorescent signal, indicative of Rm1021/pCMB35, a significant difference between treatments was demonstrated by ANOVA for all time points after Week 0 (p < 0.005). Rm1021/pCMB35 in the Bacteria + Protist Treatment colonized an average of 44 mm more root when compared with the other treatments by Week 2. Data from later time points showed increased variation in the movement of Rm1021/pCMB35 along roots which was perhaps due to differing morphology of the root systems between replicates that gave rise to variable opportunities for root colonization. The lack of meaningful progress of the fluorescent signal in the Bacteria + Protist Treatment between Weeks 2 and 3 may be due, in part, to loss of the fluorescent plasmid, which is usually maintained with 5 μg/mL tetracycline selection. Tetracycline was not added to the µ-rhizoslides.
to limit interference with plant development, or bacteria may be succumbing to increased predation pressure due to increased numbers of protists.

We inoculated roots from the back of the μ-rhizoslides, thus the absence of fluorescent signal in the Bacteria Only Treatment indicates that Rm1021/pCMB35 travelled less than the 5 mm distance between the back of the slide and the front when protists were absent. The higher fluorescent signal for the Control Treatment compared with the Bacteria Only Treatment, especially in Weeks 2 and 3, was likely due to root autofluorescence that was more pronounced under this condition.

**Quantification of protists and bacteria from plant roots corroborate imaging data and indicate protist-assisted transport of inoculated bacteria.** After imaging was complete, μ-rhizoslides were disassembled and the plant roots were divided into upper and lower halves. Roots and the attached soil were transferred to a volume of Page’s Saline Solution that was 10x the mass of the root sample and vortexed to disassociate microbial biomass from the roots. Dilutions were spotted on a TY+Tc5 plates and incubated for 3 days to determine bacterial CFUs associate with the root sections. Serial three-fold dilutions were also transferred to a 96-well plate containing Page’s Saline Solution and a heat-killed E. coli to promote protist growth and reproduction. After one week, the minimum recovered number (MRN) of protists was calculated from the highest dilution that contained reproducing protists.

The overall bacterial abundance in the upper sections was equivalent in the Bacteria Only and the Bacteria + Protist treatments despite predation by protists in the latter (Fig 6A). In the lower section of the Bacteria Only treatment strain Rm1021/pCMB35 was not detected, while an average of $1.14 \times 10^5$ CFUs of this strain, per 1.0 mg of root tissue, was detected in the lower section of the Bacteria + Protist treatments (Fig 6A). It is important to note that while no
fluorescence was detected in the upper half of the Bacteria Only treated roots, Rm1021/pCMB35 was still recovered from the roots on which they were inoculated. Additionally, protists were only observed in the Bacteria + Protist Treatment, with comparable numbers in both the upper and lower sections (Fig 6B). More protists may have been present in these sections, as these values are considered the minimum number of recovered protists, true values may be approximately 3x higher because calculation of MRN assumes that the last well of a dilution series contained only one protist at the start of the one-week growth period. These measurements also represent a minimum because they represent bacteria and protists associated with roots; bulk soil which was not evaluated by these methods likely contained additional organisms. Overall, these data indicate that protists not only transported the bacteria along the roots, but that the bacteria were viable after delivery to lower sections of the roots, something that could not be determined by imaging alone.

Discussion. While previous work has shown the potential of using protists as vehicles for transporting particles (19), here we demonstrate their ability to transport beneficial bacteria in a realistic soil system. This transport occurs despite bacterial population loss due to protist grazing.

Direct counts of bacteria and protists showed the same order-of-magnitude concentrations of each in the upper sections of the Bacteria Only and the Bacteria + Protists treated µ-rhizoslides. Contrary to this, the imaging experiments showed distinct movement of bacteria only in the Bacteria + Protists treatment. This difference was likely seen because imaging allowed us to discern only populations of bacteria that were growing at high densities, and direct counts allowed us to quantify bacteria not directly assessable to the camera and those that were present in concentrations too low to image. Importantly, S. meliloti strain Rm1021/pCMB35 was only recovered from the lower halves of roots treated with Bacteria + Protists, supporting the hypothesis
that protists can assist in delivering beneficial bacteria throughout the rhizosphere allowing roots
to receive bacterial benefits much quicker and perhaps more uniformly than they would otherwise.

Additionally, visualization of bacterial distributions by fluorescent microscopy and image
analysis in the Bacteria + Protists treatment showed bacterial proliferation that extended both along
the root and horizontally from the root. For the Bacteria Only treatment, distribution was less than
5 millimeters from the initial inoculation site in any direction. On their own, bacteria did not spread
far enough from the initial inoculation site to reach the front of the µ-rhizoslide where the
fluorescence would be visible to the imaging equipment.

The protist used in this study, *Colpoda sp.*, a ciliate isolated from a legume rhizosphere, is
particularly successful in transporting bacteria. Ciliates commonly eat by means of filter feeding,
a mechanism of promiscuous consumption of food particles and prey. Bacteria consumed by the
ciliates are packaged into a phagosome which is processed and eventually egested from the protist;
a process that is not well characterized. It is thought that egested phagosomes break down in the
soil and may release viable bacteria which could go on to colonize the area where they were
released. How often bacteria can survive intake and egestion, and whether some species are adept
at this in not clearly understood. Some bacterial species, for example *Campylobacter jejuni* and
*Mycobacterium* spp., are known to escape digestion and colonize the cytoplasm of protists that
consumed them (28, 36). Ciliates have also been shown to emerge from feeding on bacterial
biofilms with a matrix of bacteria stuck to their cell bodies (19). When the protists travel along
plant roots consuming bacteria, both egestion of viable bacteria and physical translocation of
bacteria may contribute to protist-assisted transport.

The technology described here provides a simple, reproducible experimental system which
has the potential to aid in the understanding of rhizosphere dynamics. Of particular interest is
bacterial movement in the context of screening a variety of different bacteria/protist/plant/soil combinations for their effects on such movement. For example, protist transportation of Sinorhizobium sp. and its effect on nodulation can be studied using this system and parameters that affect transport such as water saturation, soil composition and soil porosity can be readily and tested and quantitated. Protist transport may also be adapted for targeted delivery of other microbes or nano-coated agrochemicals. With increased understanding of such processes, and protist-assisted transport mechanisms, we can begin developing new methods to support sustainable agriculture that is more likely to function in the field.

Acknowledgements. This work was supported by DOE award DE-SC0014522 (to LMS and DJG), NSF award 1605816 (to LMS and DJG), and USDA National Institute of Food and Agriculture award 2016-67013-24412 (to DJG and LMS).
References


Figure 1. µRhizoslide construction and use. A) CAD drawing of the rhizoslide assembly showing layers including 3D printed rhizoslide spacer and filter paper wick between two glass slides. B) Fully assembled rhizoslide mockup. C) Photograph of rhizoslide in use.
Figure 2 Fluorescent images of plants two weeks post-inoculation. A) Control treatment: inoculated with 10 µL buffer only. B) Bacteria Only treatment: inoculated with 10 µL bacteria suspension. C) Bacteria + Protist treatment: inoculated with 10 µL bacteria suspension with *Colpoda sp.* added.
Figure 3 Imaging bacterial movement and growth following plant inoculation with bacteria or bacteria plus protists. For each replicate, the fraction of pixels registering fluorescence in each 1mm image slice is plotted. This normalized fluorescent area is plotted against distance along the root to show the spread of fluorescently labelled bacteria through the rhizosphere. The graphs for each treatment (Control, Bacteria Only, Bacteria + Protists) are plotted in rows, while weeks are shown in columns. Within each graph, replicates are shown by different color bars.
Figure 4 Position of furthest progress of the bacterial fluorescent signal following plant inoculation with bacteria or bacteria plus protists. Marked locations indicate the furthest location along the plant root axis where the fluorescent signal was at least 10% of the total area. A) Control treatment shows no significant shift in position with time (p > 0.05). Slight increase in fluorescent signal on some replicates is likely because of root autofluorescence due to nitrogen starvation. B) Bacteria Only treatment shows no shift in position of fluorescent signal with time (p > 0.05). C) Bacteria + Protist treatment shows approximately 12 mm of progress in fluorescent signal by Week 1, increasing to 44 mm on average by Week 2. Large deviations between replicates are likely due to root morphology. (n=9, error bars=1 STD).
Figure 5 Horizontal spread of the bacterial fluorescent signal following plant inoculation with bacteria or bacteria plus protists. The widest fluorescent area for each replicate was calculated for each week. Marked locations indicate the horizontal width of the fluorescent signal averaged across the replicates. Control and Bacteria Only treatments show widths below 2 mm, which is likely root autofluorescence. Bacteria + Protist treatment shows increasing fluorescence signal width between Weeks 0 and 2, while Weeks 2 and 3 are comparable. (n=9, error bars=1 STD).
Figure 6 Bacterial and protists counts performed three weeks following plant inoculation with bacteria or bacteria plus protists. The upper and lower sections of *M. truncatula* root systems were separated into top (TF) and bottom (BF) fractions and analyzed for: A) Average bacterial CFUs per 1.0 mg root tissue and B) Average minimum recovered number (MRN) of protists per 1.0 mg root tissue. Control (C) n=8, Bacteria Only (BO) n=9, Bacteria + Protists (BP) n=9