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Abstract 

 

The expansion of neuroimaging techniques over the last decades has opened a wide range of new possibilities to 

characterize brain dysfunction in several neurological and psychiatric disorders. However, the lack of specificity of 

most of these techniques, such as magnetic resonance imaging (MRI)-derived measures, to the underlying molecular 

and cellular properties of the brain tissue poses limitations to the amount of information one can extract to inform 

precise models of brain disease. The integration of transcriptomic and neuroimaging data, known as ‘imaging 

transcriptomics’, has recently emerged as an indirect way forward to test and/or generate hypotheses about potential 

cellular and transcriptomic pathways that might underly specific changes in neuroimaging MRI biomarkers. However, 

the validity of this approach is yet to be examined in-depth. Here, we sought to bridge this gap by performing imaging 

transcriptomic analyses of the regional distribution of well-known molecular markers, assessed by positron emission 

tomography (PET), in the healthy human brain. We focused on tracers spanning different elements of the biology of 

the brain, including neuroreceptors, synaptic proteins, metabolism, and glia. Using transcriptome-wide data from the 

Allen Brain Atlas, we applied partial least square regression to rank genes according to their level of spatial alignment 

with the regional distribution of these neuroimaging markers in the brain. Then, we performed gene set enrichment 

analyses to explore the enrichment for specific biological and cell-type pathways among the genes most strongly 

associated with each neuroimaging marker. Overall, our findings show that imaging transcriptomics can recover 

plausible transcriptomic and cellular correlates of the regional distribution of benchmark molecular imaging markers, 

independently of the type of parcellation used to map gene expression and neuroimaging data. Our data support the 

plausibility and robustness of imaging transcriptomics as an indirect approach for bridging gene expression, cells and 

macroscopical neuroimaging and improving our understanding of the biological pathways underlying regional 

variability in neuroimaging features.  

   

 

 

Keywords: Imaging transcriptomics; Allen Brain Atlas; transcriptomics; positron tomography emission.  
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Introduction 

Over the past two decades, in-vivo human neuroimaging techniques, such as magnetic resonance imaging (MRI), have 

emerged as powerful tools to advance our understanding of macroscopic neural phenotypes measured across the entire 

brain1. The increasing application of MRI for studying neurological and psychiatric disorders has provided detailed 

anatomical characterizations of regional patterns of brain’s structural and functional alterations in these disorders2,3. 

However, the lack of specificity of most MRI-based techniques to the underlying molecular and cellular properties of 

the brain tissue4 has limited the potential of these neuroimaging biomarkers to inform mechanistic models of brain 

disease, understand biological mechanisms behind regional vulnerability to pathological changes or identify biological 

pathways that might be amenable to pharmacological intervention.  

 The recent introduction of comprehensive, brain-wide gene expression atlases such as the Allen Human Brain 

Atlas (AHBA) has opened new opportunities for understanding how spatial variations on the molecular transcriptomic 

scale relate to the macroscopic neuroimaging phenotypes5,6. This unprecedented capacity to link molecular pathways 

to macroscale brain organization has given rise to the emergent field of imaging transcriptomics7. Imaging 

transcriptomics is concerned with the identification of spatial correlations between gene expression patterns and some 

property of brain structure or function, as measured by neuroimaging7. The main goal of this approach is to identify 

genes with spatial profiles of regional expression that track anatomical variations in a certain neuroimaging biomarker. 

Typically, these analyses include mapping both gene expression data from the AHBA and neuroimaging maps to a 

common neuroimaging space (e.g., parcellated atlas of the brain).  Then, one or multiple neuroimaging biomarkers 

(response variables) are related to expression measures of several thousands of genes in each region (predictor 

variables), often by using multivariate statistical techniques such as partial least square regression (PLS). As a result, 

genes are ranked according to the degree of spatial alignment of their expression with the neuroimaging biomarker 

under exam. An enrichment analysis is then performed on the top-ranking genes: when a significant number of top-

ranking genes have a particular gene annotation (e.g., biological or molecular pathway) relative to the number of 

annotations present in a reference set (e.g., the entire genome), then the top-ranking genes are said to be enriched for 

that annotation. Because the top-ranking genes are strongly associated with the brain map of interest, the enriched 

annotations are used as an indirect way to test and generate hypotheses about the potential cellular and biological 

pathways that might underly specific neuroimaging features7. This approach has already begun to provide insights into 

how regional variations in gene expression relate to diverse properties of brain structure8-13 and function14-20, changes 

during brain disease21-31 or development32-34. 

 As the field develops, it is important, on the one side, to establish methodological guidelines to ensure 

consistent and reproducible results; and, on the other side, to examine the validity of this approach to capture indirect 

associations between gene expression, cells and macroscopical neuroimaging features. Recent efforts focusing on the 

first aspect have provided key tools and practical guides for the implementation of these analyses7,35-37, while the 

second aspect on validity is yet to be assessed in-depth. To the best of our knowledge, only two previous works have 

examined it within a limited scope. In both studies, maps of the mean expression of sets of genes related to 

oligodendrocytes were found to be positively correlated with MRI measures sensitive to myelin (i.e magnetization 

transfer ratio or T1W/T2W ratio)8,31. Whether imaging transcriptomics can also successfully recover plausible 
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transcriptomic and cellular correlates of the regional distribution of neuroimaging biomarkers beyond those related to 

myelin is currently elusive. 

 In this work, we sought to bridge this gap by performing imaging transcriptomic analyses of the regional 

distribution of well-known molecular markers (as assessed by positron emission tomography, PET) in the healthy 

human brain. Thanks to a large collaborative effort, we could examine a vast number of tracers spanning different 

elements of the biology of the brain, including neuroreceptors, synaptic proteins, metabolism, and glia. While most 

PET tracers do not necessarily have binding affinity for a single specific brain cell-type or biological pathway, 

departing from a molecular neuroimaging phenotype where the target is known allows for a more precise generation 

of hypotheses regarding pathways that should be captured by imaging transcriptomics if the approach is valid (see 

Table 1 for a summary of all markers used and our respective a priori specific hypotheses regarding biological and 

cell-type pathways enrichment). 

 

Table 1. List of neuroimaging markers and respective hypotheses. In this table, we present a summary of all neuroimaging markers used in our 

transcriptomics analyses and the respective a priori hypotheses we formulated in respect to the biological and cellular pathways that we expected 

to align with the regional distribution of each tracer. 

 

Domain Marker Main target Hypothesis 

Neuroreceptors, synaptic 

proteins and metabolism 

[11C]Flumazenil GABAA receptor Alignment with the regional 

distribution of genes involved in 

synaptic structure and 

neurotransmission, which are 

highly expressed in populations of 

neuronal cells. 

[18F]GE179 NMDA receptor 

[11C]UCB-J Synaptic vesicle glycoprotein 

2A (SV2A) 

[18F]FDG Fluorodeoxyglucose (metabolic 
activity) 

Astroglia and myelin 

[11C]BU99008 Imidazoline2 binding site (I2BS) 
Alignment with the regional 

distribution of astrocytic genes. L-[11C]deprenyl-D2 
Monoamine oxidase B (MAO-

B) 

Magnetization transfer ratio (MT) 
Sensitive to myelin (including 

intra-cortical myelination) 

Alignment with the regional 

distribution of oligodendrocytes 

and oligodendrocyte precursor 

cells. 
Myelin Water Content (WC) 

Sensitive to myelin (including 

intra-cortical myelination) 

18-kDa Translocator 

protein (TSPO) and 

cyclooxygenase (Cox) 

 

[11C]PK11195 
TSPO  

(first-generation) Alignment with the regional 

distribution of genes of the 

neuroimmune response axis 

(microglia/astrocytes). 

[18F]DPA174 TSPO  

(second-generation) [11C]PBR28 

[11C]ER176 

[11C]PS13 COX-1 
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Methods 

Neuroimaging data. We capitalized on collaborations with several research groups (also referred as “PET templates 

working group”) to gather a large pool of templates of different PET tracers, including: [11C]Flumazenil38, 

[18F]GE17939, [11C]UCB-J (unpublished data), [18F]FDG (unpublished data), [11C]BU9900840, L-[11C]deprenyl-D241, 

[11C]PK1119542, [18F]DPA174 (unpublished), [11C]PBR2843, [11C]ER17644 and [11C]PS1345. For each tracer, 

neuroimaging templates were created as average maps from independent sets of healthy controls (number of subjects 

ranging from 7 to 38). Data were acquired with different experimental design protocols and quantified in accordance 

to the best PET imaging practice for each of these radioligands, as described in the respective original studies. We also 

included two maps from MRI measures sensitive to myelin, namely a map of magnetization transfer ratio (MT) 46 and 

one of myelin water content (WC)47 for comparison with previous studies. For details on the samples, data acquisition 

and quantification and voxel-wise maps of each tracer please see Supplementary. 

For each neuroimaging marker, we calculated the mean distribution within each of the 83 regions-of-interest 

of the Desikan-Killiany48 (DK) atlas by using the FMRIB software library (FSL, v6)49. Then, we calculated pairwise 

Pearson’s correlations between the normalised regional distribution of each pair of markers, assessing the significance 

of each pair-wise correlation by using tests that account for the inherent spatial autocorrelation of the data (see section 

below on spatial permutation testing) (Supplementary Figure S1). 

In Figure 1 we provide a summary of our full imaging transcriptomics analysis pipeline (Figure 1), which we 

describe in detail below.  

 

 

Figure 1. Imaging transcriptomics pipeline. (A) For each neuroimaging marker, we calculated the average distribution within each of the 83 

regions-of-interest of the Desikan-Killiany (DK) atlas; only the data from the left hemisphere was used for further analyses since the Allen Human 

Brain Atlas only includes data from the right hemisphere for two subjects; (B) Gene expression analysis. We used abagen to obtain gene expression 

profiles from the AHBA in the 41 regions of the DK atlas (left hemisphere) across the six post-mortem brains sampled in this atlas. We excluded 

all genes with normalized expression values below the background (15,633 genes met this criterion). When more than one probe was available for 
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a certain gene, we selected the probe with the highest consistency in expression across the 6 donors. We used partial least squares regression (PLS) 

to rank all genes according to their association with the regional distribution of each neuroimaging marker. Finally, we performed gene set 

enrichment analyses for gene ontologies and genes expressed in different cell-types (using single cell transcriptomic data from the human brain, as 

derived from previous studies). The gene set enrichment analyses were implemented with WebGestalt. 

 

 

Transcriptomic data. Regional microarray expression data were obtained from six post-mortem brains as part of the 

AHBA (http://human.brain-map.org/) (ages 24–57 years)50. We used the abagen toolbox 

(https://github.com/netneurolab/abagen) to process and map the transcriptomic data onto the 83 parcellated brain 

regions from the DK atlas. Briefly, genetic probes were reannotated using information provided by Arnatkeviciute et 

al., 20197 instead of the default probe information from the AHBA dataset, hence discarding probes that cannot be 

reliably matched to genes. Following previously published guidelines for probe-to-gene mappings and intensity-based 

filtering7, the reannotated probes were filtered based on their intensity relative to background noise level; probes with 

intensity lower than the background in ≥50% of samples were discarded. A single probe with the highest differential 

stability (highest pooled correlation across donors) was selected to represent each gene51. This procedure retained 

15,633 probes, each representing a unique gene.  

Next, tissue samples were assigned to brain regions using their corrected MNI coordinates 

(https://github.com/chrisfilo/alleninf) by finding the nearest region within a radius of 2 mm. To reduce the potential 

for misassignment, sample-to-region matching was constrained by hemisphere and cortical/subcortical divisions. If a 

brain region was not assigned to any sample based on the above procedure, the sample closest to the centroid of that 

region was selected to ensure that all brain regions were assigned a value. Samples assigned to the same brain region 

were averaged separately for each donor. Gene expression values were then normalized separately for each donor 

across regions using a robust sigmoid function and rescaled to the unit interval. We applied this procedure for cortical 

and subcortical regions separately, as suggested by Arnatkeviciute et al., 20197.  Scaled expression profiles were finally 

averaged across donors, resulting in a single matrix with rows corresponding to brain regions and columns 

corresponding to the retained 15,633 genes. As a further robustness test, we conducted leave-one-donor out sensitivity 

analyses to generate six expression maps containing gene expression data from all donors, one at a time. The principal 

components of these six expression maps were highly correlated (average Pearson’s correlation of 0.993), supporting 

the idea that our final gene expression maps where we averaged gene expressions for each region across the six donors 

is unlikely to be biased by data from a specific donor. Since the AHBA only includes data for the right hemisphere for 

two subjects we only considered the 41 regions of left hemisphere regions (34 cortical plus 7 subcortical regions) for 

the following analyses. 

 

Partial least square regression. Partial least square regression uses the gene expression measurements (the predictor 

– or independent – variables) to predict regional variation in neuroimaging features (the response – or dependent – 

variables). This approach allows us to rank all genes by their multivariate spatial alignment with the regional 

distribution of each neuroimaging feature, while accounting for inherent collinearity in the predictor variables due to 
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gene co-expression. The first PLS component (PLS1) is the linear combination of the weighted gene expression scores 

that have a brain expression map that covaries the most with the neuroimaging map. As the components are calculated 

to explain the maximum covariance between dependent and independent variables, the first component does not 

necessarily need to explain the maximum variance in the dependent variable. Of note, as the number of PLS 

components calculated increases, the amount of variance explained by each of them progressively decreases. Here, we 

examined models across a range of components (between 1 and 15) and evaluated the relative variance explained by 

each component against 1,000 null models, where we preserved the spatial autocorrelation of the data (see the section 

‘spatial permutation test’ for more details). We then moved to further analyses only the PLS component explaining the 

largest amount of variance, which in our case was always the first component (PLS1). The error in estimating each 

gene’s PLS1 weight was assessed by bootstrapping (resampling with replacement of the 41 brain regions), and the 

ratio of the weight of each gene to its bootstrap standard error was used to calculate the Z scores and, hence, rank the 

genes according to their contribution to the PLS component under investigation52. Genes with large positive PLS 

weights correspond to genes that have higher than average expression in regions where the neuroimaging biomarker 

has a higher distribution, and lower than average expression in regions where the biomarker has a lower distribution. 

Mid-rank PLS weights showed expression gradients that are weakly related to the pattern of regional distribution of 

the neuroimaging biomarker. On the other side, genes with large negative PLS weights correspond to genes that have 

higher than average expression in regions where neuroimaging biomarker is lowly distributed, and lower than average 

expression in regions where the biomarker is highly distributed. Since in our analyses we were mostly interested in 

genes that track the distribution of each neuroimaging biomarker (i.e., that correlate positively with the biomarker), 

we focused on genes with positive PLS weights (even if we also present the results for genes with negative PLS weights 

for the curious reader). 

 

Spatial permutation test (spin test): We assessed the significance of correlation between the neuroimaging biomarker 

and the selected PLS component using spatial permutation testing (spin test) to account for the inherent spatial 

autocorrelation of the imaging data, as implemented in previous studies53-55. This approach consists in comparing the 

empirical correlation amongst two spatial maps to a set of null correlations, generated by randomly rotating the 

spherical projection of one of the two spatial maps before projecting it back onto the brain parcel. Importantly, the 

rotated projection preserves the spatial contiguity of the empirical maps, as well as the hemispheric symmetry. Past 

studies using the spin test have focused on comparisons between brain maps including only cortical regions. However, 

subcortical regions were also of interest in this study. Since subcortical regions cannot be projected onto the inflated 

spherical pial surface, we incorporated the subcortex into our null models by shuffling the seven subcortical regions 

with respect to one another, whereas the cortical regions were shuffled using the spin test. 

 

Gene set enrichment analyses. We used each neuroimaging biomarker-associated ordered list of genes, ranked by 

the respective weights according to the PLS component under investigation, to perform gene set enrichment analyses 

(GSEA) for biological pathways (gene ontology) and genes expressed in different brain cell types, as identified in 

previous single-cell transcriptomic studies (see section on single-cell transcriptomic data below). We implemented 

these analyses using the GSEA method of interest of the Web-based gene set analysis toolkit (WebGestalt)56. In contrast 
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to other over-representation methods, GSEA does not require the definition of an arbitrary threshold to isolate the most 

highly associated genes with a certain phenotype. It calculates an enrichment ratio (ER) that represents the degree to 

which the genes in the set are over-represented at either the top (positive ER) or bottom (negative ER) of the list, based 

on a Kolmogorov-Smirnov-like statistic. Then, it estimates the statistical significance of the ER using permutations to 

produce a null distribution for the ER (we used 1,000 permutations). The significance is determined by comparison to 

the null distribution. Finally, it adjusts for multiple hypothesis testing when several gene sets are being analysed at one 

time. The enrichment scores for each set are normalized (NER) to account for the number of genes in each gene set 

and a false discovery rate correction is applied. 

 

Single-cell transcriptomic data. To define the transcriptomic profile of the brain cell types mentioned above, we 

relied on the single-cell transcriptomic data from the previous single-cell transcriptomic study of Lake et al. 57. In this 

study, the authors used snDrop-seq Unique Molecular Identifier counts for cells from the visual (BA17) and dorsal 

frontal cortex (BA 6/9/10) and identified 30 brain cell-types (astrocytes, endothelial cells, pericytes, microglia, 

oligodendrocytes, oligodendrocytes progenitor cells (OPCs), 13 subtypes of excitatory neurons and 11 subtypes of 

inhibitory neurons). We decided to consider these 30 cells, since this classification provides a good coverage of a wide 

range of different neuronal and non-neuronal cells.  

 

Sensitivity analyses. We assessed the robustness of our findings by performing a sensitivity analysis examining the 

impact of: i) brain parcellation; ii) transcriptomic profile of brain cell-types; and iii) inclusion of subcortical + cortical 

vs cortical regions only, when a whole brain receptor neuroimaging marker (e.g. [18F]Fallypride) has higher binding 

in subcortical than cortical regions. These analyses are described in detail in Supplementary. 

Data availability: While some of these templates are publicly available, others have been kindly shared by individual 

research groups. Access to these data might be granted upon to reasonable request by contacting directly principal 

investigators (see Appendix with all contributors and associated data). 

Code availability: The code for performing the imaging transcriptomic analyses is now available as a python package 

that can be downloaded from https://github.com/molecular-neuroimaging/Imaging_Transcriptomics. 
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Results 

 

We provide a summary of the pairwise correlations between all maps in Supplementary Figure S1. Of note, we found 

large correlations between the regional distribution of [11C]BU99008 and L-[11C]deprenyl-D2 (r=0.90, pspin <0.001), 

and between [11C]PBR28 and [11C]ER176 (r=0.99, pspin <0.001). Below, we present the results of the imaging 

transcriptomics analyses for each map, organized in three main subsections: i) neuroreceptors, synaptic proteins and 

metabolism; ii) astroglia and myelin; iii) 18-kDa Translocator protein (TSPO) and Cox-1. 

 

Neuroreceptors, synaptic proteins and metabolism 

 

[11C]Flumazenil: The first PLS component explained the largest amount of variance (44.99%) and correlated 

positively with the regional distribution of [11C]Flumazenil (r=0.6708, pspin < 0.001) (Figure 2). We found enrichment 

among the most positively weighted genes for several gene ontology – biological process domain terms globally related 

to synaptic structure and transmission, including the glutamate receptor signalling pathway (NER=2.26, pFDR = 0.001) 

and GABAergic synaptic transmission (NER=1.809, pFDR = 0.02) (Supplementary data S2). The cell-type enrichment 

analysis indicated significant enrichment for several subclusters of excitatory and inhibitory neurons, with Ex6b 

emerging as the strongest enrichment hit. In addition to these neuronal subclusters, we also found significant 

enrichment for genes expressed in astrocytes and OPCs. 

[18F]GE179: The first PLS component explained the largest amount of variance (30.29%) and correlated 

positively with the regional distribution of [18F]GE179 (r=0.5504, pspin = 0.002) (Figure 2). We found enrichment 

among the most positively weighted genes for two gene ontology – biological process terms, namely the synapse 

organization (NER=2.07, pFDR = 0.02) and GABA signalling pathway (NER=2.02, pFDR = 0.02) (Supplementary data 

S2). The cell-type enrichment analysis indicated significant enrichment for several subclusters of excitatory and 

inhibitory neurons, with Ex8 emerging as the strongest enrichment hit. 

[11C]UCB-J: The first PLS component explained the largest amount of variance (30.92%) and correlated 

positively with the regional distribution of [11C]UCB-J (r=0.5561, pspin = 0.002) (Figure 2). We found enrichment 

among the most positively weighted genes for several gene ontology – biological process terms, including the 

neuropeptide signalling pathway (NER=2.11, pFDR = 0.007), regulation of synaptic structure and activity (NER=1.98, 

pFDR = 0.02) and glutamatergic synaptic transmission (NER=1.98, pFDR = 0.02) (Supplementary data S2). The cell-type 

enrichment analysis indicated significant enrichment for several subclusters of excitatory and inhibitory neurons, with 

Ex6b emerging as the strongest enrichment hit. 

[18F]FDG: The first PLS component explained the largest amount of variance (42.28%) and correlated positively 

with the regional distribution of [18F]FDG (r=0.6503, pspin < 0.001) (Figure 2). We found enrichment among the most 

positively weighted genes for two gene ontology – biological process terms, which were peptide catabolic process 

(NER=1.97, pFDR = 0.004) and protein dealkylation (NER=1.81, pFDR = 0.007) (Supplementary data S2). The cell-type 

enrichment analysis indicated significant enrichment for several subclusters of excitatory and inhibitory neurons, with 

Ex3d emerging as the strongest enrichment hit. Among the non-neuronal cells, we also found enrichment for genes 

expressed in endothelial cells. 
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Figure 2. Imaging transcriptomics (neuroreceptors, synaptic proteins and metabolism). (A) - Regional distribution of each marker. (B) – 

Regional distribution of the PLS1 weights. (C) – Brain cell-type enrichment analyses: Positive normalized enrichment ratios (NER) indicate 

enrichment for genes of a certain brain cell-type among the genes with positive weights in PLS1 (i.e. positively correlated with the distribution of 

the neuroimaging marker); negative NERs indicate the reverse; grey squares indicate that the NER did not reach significance (pFDR>0.05). The full 

statistics underlying the tile plot can be found in Supplementary data S1. Abbreviations: Ast – astrocytes; End – endothelial; Ex – excitatory neurons; 

In - inhibitory neurons; Mic – microglia; Oli – oligodendrocytes; OPC – oligodendrocyte precursor cells; Per – pericytes. 

 

Astroglia and myelin 

 

[11C]BU99008: The first PLS component explained the largest amount of variance (42.01%) and correlated 

positively with the regional distribution of [11C]BU99008 (r=0.6482, pspin < 0.001) (Figure 3). We found 

enrichment among the most positively weighted genes for several gene ontology – biological process terms, 
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globally related to protein targeting, RNA and ribonucleoproteins metabolism, and the GABA signalling pathway 

(Supplementary data S2). The cell-type enrichment analysis indicated significant enrichment for some subclusters 

of inhibitory neurons and one subcluster of excitatory neurons. Astrocytes emerged as the strongest enrichment 

hit. In addition, we also found significant enrichment for genes expressed in OPCs and Pericytes. 

L-[11C]deprenyl-D2: The first PLS component explained the largest amount of variance (41.47%) and correlated 

positively with the regional distribution of L-[11C]deprenyl-D2 (r=0.6440, pspin < 0.001) (Figure 3). We found 

enrichment among the most positively weighted genes for several gene ontology – biological process terms, 

globally related to protein targeting, RNA and ribonucleoproteins metabolism (Supplementary data S2). The cell-

type enrichment analysis indicated significant enrichment for some subclusters of inhibitory neurons and one 

subcluster of excitatory neurons. Astrocytes emerged as the strongest enrichment hit. In addition, we also found 

significant enrichment for genes expressed in OPCs. 

Magnetization transfer ratio (MT): The first PLS component explained the largest amount of variance (34.91%) 

and correlated positively with the regional distribution of MT (r=0.5909, pspin < 0.001) (Figure 3). We found 

enrichment among the most positively weighted genes for several gene ontology – biological process terms, 

globally related to extracellular structure organization, endothelium development and immune response 

(Supplementary data S2). The cell-type enrichment analysis indicated significant enrichment for all non-neuronal 

cells. Oligodendrocytes emerged as the strongest enrichment hit.  

Myelin water content (WC): The first PLS component explained the largest amount of variance (31.40%) and 

correlated positively with the regional distribution of MT (r=0.5604, pspin = 0.007) (Figure 3). We found 

enrichment among the most positively weighted genes for several gene ontology – biological process terms, 

globally related to amino acid biosynthetic processes, extracellular structure organization, endothelium 

development and angiogenesis, cell adhesion mediated by integrins and immune response (Supplementary data 

S2). The cell-type enrichment analysis indicated significant enrichment for all non-neuronal cells. 

Oligodendrocytes emerged as the strongest enrichment hit.  
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Figure 3. Imaging transcriptomics (astroglia and myelin). (A) - Regional distribution of each marker. (B) – Regional distribution of the PLS1 

weights. (C) – Brain cell-type enrichment analyses: Positive normalized enrichment ratios (NER) indicate enrichment for genes of a certain brain 

cell-type among the genes with positive weights in PLS1 (i.e., positively correlated with the distribution of the neuroimaging marker); negative 

NERs indicate the reverse; grey squares indicate that the NER did not reach significance (pFDR>0.05); The full statistics underlying the tile plot can 

be found in Supplementary data S1. Abbreviations: Ast – astrocytes; End – endothelial; Ex – excitatory neurons; In - inhibitory neurons; Mic – 

microglia; Oli – oligodendrocytes; OPC – oligodendrocyte precursor cells; Per – pericytes. 

 

 

18-kDa translocator protein (TSPO) and cyclooxygenase (Cox) 

 

TSPO - [11C]PK11195: The first PLS component explained the largest amount of variance (36.30%) and 

correlated positively with the regional distribution of [11C]PK11195 (r=0.6025, pspin < 0.001) (Figure 4). We found 

enrichment among the most positively weighted genes for several gene ontology – biological process terms, 
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including metabolic processes, granulocyte activation and response to interferon gamma, ensheathment of 

neurons, and DNA repair (Supplementary data S2). The cell-type enrichment analysis indicated significant 

enrichment for all non-neuronal cells, excluding astrocytes. Microglia emerged as the strongest enrichment hit.  

TSPO - [18F]DPA174: The first PLS component explained the largest amount  of variance (33.23%) and 

correlated positively with the regional distribution of [18F]DPA174 (r=0.5765, pspin = 0.001) (Figure 4). We did 

not find enrichment among the most positively weighted genes for any of the gene ontology – biological process 

terms. The cell-type enrichment analysis indicated significant enrichment for all non-neuronal cells, excluding 

astrocytes and oligodendrocytes. In contrast with [11C]PK11195, here we also found enrichment for several 

subclusters of excitatory and inhibitory cells. Pericytes emerged as the strongest enrichment hit.  

TSPO - [18C]PBR28: The first PLS component explained the largest amount of variance (34.66%) and correlated 

positively with the regional distribution of [18C]PBR28 (r=0.5887, pspin = 0.001) (Figure 4). We did not find 

enrichment among the most positively weighted genes for any of the gene ontology – biological process terms. 

The cell-type enrichment analysis indicated significant enrichment for pericytes, oligodendrocytes, endothelial 

cells and several subclusters of excitatory and inhibitory cells. Endothelial cells emerged as the strongest 

enrichment hit.  

TSPO - [18C]ER176: The first PLS component explained the largest amount of variance (36.60%) and correlated 

positively with the regional distribution of [18C]ER176 (r=0.6050, pspin < 0.001) (Figure 4). We did not find 

enrichment among the most positively weighted genes for any of the gene ontology – biological process terms. 

The cell-type enrichment analysis indicated significant enrichment for pericytes, oligodendrocytes, endothelial 

cells and several subclusters of excitatory and inhibitory cells. Endothelial cells emerged as the strongest 

enrichment hit.  

COX-1 - [11C]PS13: The first PLS component explained the largest amount of variance (41.22%) and correlated 

positively with the regional distribution of [11C]PS13 (r=0.6420, pspin < 0.001) (Figure 4). We did not find 

enrichment among the most positively weighted genes for any of the gene ontology – biological process terms. 

The cell-type enrichment analysis indicated significant enrichment for pericytes, microglia, endothelial cells and 

several subclusters of excitatory and inhibitory cells, with Ex3d emerging as the strongest enrichment hit 
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Figure 4. Imaging transcriptomics (Translocator protein and cyclooxygenase). (A) - Regional distribution of each marker. (B) – Regional 

distribution of the PLS1 weights. (C) – Brain cell-type enrichment analyses: Positive normalized enrichment ratios (NER) indicate enrichment for 

genes of a certain brain cell-type among the genes with positive weights in PLS1 (i.e. positively correlated with the distribution of the neuroimaging 

marker); negative NERs indicate the reverse; grey squares indicate that the NER did not reach significance (pFDR>0.05); The full statistics underlying 

the tile plot can be found in Supplementary data S1. Abbreviations: Ast – astrocytes; End – endothelial; Ex – excitatory neurons; In - inhibitory 

neurons; Mic – microglia; Oli – oligodendrocytes; OPC – oligodendrocyte precursor cells; Per – pericytes. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448872


 15 

 

 

Sensitivity analyses: 

Brain parcellation. We found large correlations (Pearson’s r between 0.79 and 0.94) between PLS1 weights of 

all genes as estimated using the DK and AAL3 atlases (Supplementary Table S1).  

Brain cell-types transcriptomic profile. Changing the gene sets used to define the transcriptomic profile of each 

brain cell-type did not considerably change our main brain cell-type enrichment conclusions (Supplementary data 

S3). 

Inclusion of cortical + subcortical regions vs cortical regions only. By including both cortical and subcortical 

regions in the same model, we identified the DRD2 gene as one of the top genes positively associated with 

[18F]fallypride binding (Z = 5.17, Rank: 161/15,633, top 1% of all genes). When repeating the same analysis with 

cortical regions, we still identified DRD2 as a positively weighted gene, but its rank was considerably lower (Z = 

3.67, Rank: 2,204/15,633, top 15% of all genes) (Supplementary Figure S2). 
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Discussion 

 

In this work, we investigated whether imaging transcriptomics can recover plausible transcriptomic and cellular 

correlates of the regional distribution of benchmark molecular imaging markers. With the recent upsurge of imaging 

transcriptomics studies, this work is crucial to strengthening our confidence in the plausibility of this integrative 

approach as an indirect way to generate hypotheses about potential biological pathways explaining regional variations 

in in vivo neuroimaging biomarkers. This is of particular importance for those neuroimaging markers where more fine-

grained biological mechanisms cannot be measured directly. Thanks to an unprecedented collaborative effort, we 

gathered a vast number of tracers spanning different elements of the brain’s biology, which allowed us to conduct a 

comprehensive evaluation of the plausibility of the approach across different biological and cellular pathways. In a set 

of secondary analyses, we confirmed that the method is likely to generalize well beyond the specific choices of brain 

parcellation or gene sets used to define the transcriptomic profile of brain cell-types. Altogether, our data supports the 

plausibility and robustness of imaging transcriptomics as an indirect approach bridging levels between gene expression, 

cells and macroscopical neuroimaging to improve our understanding of the biological pathways underlying regional 

variability in neuroimaging features.  

 Our first set of analyses were focused on four markers targeting neuroreceptors (GABA-A and NMDA 

receptors), a synaptic protein (SV2A) and metabolism (FDG). We hypothesized that the regional distribution of these 

markers would align preferentially with the distribution of genes involved in synaptic structure and neurotransmission, 

which are highly expressed in populations of neuronal cells. In line with our main hypotheses, this was what we found. 

The GABAA receptor is the major target for GABA, an inhibitory neurotransmitter found in about 20–50% of synapses 

in the brain 58. This receptor is predominantly located in the postsynaptic membrane and can be expressed by both 

excitatory and inhibitory neurons59; however, it also localizes at extra-synaptic sites. For instance, it has become 

increasingly clear that astrocytes, both in cell culture and in tissue slices, express abundant GABAA receptors 60. This 

aspect might explain why, in addition to neuronal cells, we also found enrichment for astrocytic genes among the top 

genes positively associated with [11C]Flumazenil binding.  

The NMDA receptor is a glutamate receptor predominantly located in the post-synaptic membrane of neurons, 

which participates in neuronal excitation and plasticity61-63. It is present at both excitatory and inhibitory neurons 64,65; 

but there are also reports of its expression in oligodendrocytes and OPCs66,67. While we found enrichment among the 

genes positively associated with NMDA regional distribution for several clusters of excitatory and inhibitory neurons 

and oligodendrocytes progenitors, we did not find enrichment for genes highly expressed in mature oligodendrocytes. 

This could reflect the fact that expression of NMDA receptors in oligodendrocytes is only minoritarian as compared 

to neurons, which might be insufficient to generate a pattern of distribution that would strongly align with 

oligodendrocyte genes.  

The synaptic vesicle glycoprotein 2A (SV2A) is a prototype presynaptic vesicle protein regulating action 

potential-dependent neurotransmitters release, which is expressed across both excitatory and inhibitory neurons 68,69. 

This cellular distribution aligns well with the fact that we found enrichment among the genes positively associated 

with SV2A regional distribution for several clusters of excitatory and inhibitory neurons. To our knowledge, there 

have not been reports of high constitutive expression of SV2A in OPCs even if we found enrichment for genes highly 
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expressed in these cells; however, since OPCs can also differentiate into neurons70, it is not implausible that SV2A 

might also be present in OPCs and colocalize with other elements of the molecular machinery of these cells.  

[18F]FDG is a metabolic marker typically used as a fully quantitative indirect index of neuronal activity as it 

captures the cerebral glucose uptake71,72. A long-standing model postulates that the use of glucose by neurons requires 

an interplay with astrocytes in an astrocyte-to-neuron lactate shuttle mechanism, where glucose is taken up by 

astrocytes and converted to lactate, which is then oxidized by neurons73.  In line with this model, the contribution of 

astrocytes to [18F]FDG signal has recently been elegantly demonstrated in the rodent brain after activation of astrocytic 

glutamate transport74. However, this model has been debated over the last decade after some animal evidence has 

shown that: i) glucose is taken up preferentially by neurons in awake behaving mice; ii) hexokinase, which catalyses 

the first enzymatic steps in glycolysis, is highly enriched in neurons as compared to astrocytes, in both mouse and 

human cortex75. Our brain cell-type enrichment analysis is consistent with this last model of glucose uptake by neurons 

by showing predominance of genes highly expressed in neurons. Interestingly, we also found enrichment for genes 

highly expressed in endothelial cells, which are known to uptake [18F]FDG using similar mechanisms to those used by 

neurons76. However, astrocytic genes were mostly anti-correlated with [18F]FDG (i.e. enrichment of astrocyte genes 

among genes negatively weighted). Whether this simply reflects species differences or the fact that our [18F]FDG scans 

were acquired at rest (while in the abovementioned rodent study74, [18F]FDG signal was measured in response to 

astrocytic glutamate transport) deserves further exploration.  Altogether, these data support the plausibility of imaging 

transcriptomics in capturing patterns of constitutive gene expression that align well with different elements of the 

neuronal biology. 

  

Our second set of analyses was focused on two tracers typically used as astrocyte probes and two MRI maps 

sensitive to myelin. Here, our findings broadly supported our hypothesis that by using imaging transcriptomics we 

would be able to identify patterns of gene expression consistent with astrocyte and oligodendrocyte genes, respectively. 

For both [11C]BU99008 and L-[11C]deprenyl-D2 we did find enrichment among the top genes positively associated 

with the regional distribution of these tracers for genes highly expressed in astrocytes and belonging to biological 

processes that are relevant to astrocytic biology, such as protein targeting (which is a key regulator of glycogen 

synthesis in astrocytes77) and RNA and ribonucleoproteins metabolism (which participate in local translation of 

transcripts in astrocytic peripheral processes78). In addition to astrocytes, we also found enrichment for genes highly 

expressed in some subclusters of neurons. This is not entirely surprising for the following reasons. [11C]BU99008 binds 

the imidazoline2 binding site (I2BS), which is thought to be expressed in glia and implicated in the regulation of glial 

fibrillary acidic protein79,80. Despite the lack of consensus regarding the nature of I2 receptors, cellular distribution 

studies revealed that I2BS are primarily located on the outer membrane of mitochondria and may be novel allosteric 

binding sites of monoamine oxidases (MAO) A and B81-83. Few studies have addressed the issue of which cell types in 

brain (neurones and/or glia) express I2BS. However, few different studies seem to agree that I2BS is expressed in both 

neurons and astroglia84. Similarly, L-[11C]deprenyl-D2 is a radiotracer which binds to MAO-B85. MAO-B is found in 

the brain primarily in non-neuronal cells such as astrocytes and radial glia, but immunohistochemistry studies have 

also reported the presence of MAO-B in neurons86-88.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448872doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448872


 18 

For both MT ratio and myelin WC, we found enrichment for genes highly expressed in oligodendrocytes and 

OPCs, which matches the know sensitivity of these MRI markers to myelin89,90. However, we also found enrichment 

for other non-neuronal cells, such as microglia, astrocytes, pericytes and endothelial cells. This observation is 

intriguing and dovetails with recent controversies about the interpretation of MT and WC as specific markers for 

myelin, particularly in the grey matter91-94. For instance, the MT phenomena can occur in any large macromolecule 

with low molecular tumbling rate, making the measure sensitive to a variety of cellular processes (such as dendrites or 

myelin), but specific to virtually none95. Altogether, these data support the plausibility of imaging transcriptomics in 

capturing patterns of constitutive gene expression that align well with different elements of the astroglia and 

oligodendrocytes biology. 

 

 Our third set of analyses was conducted on four TSPO tracers and one tracer for Cox-1, which we 

hypothesized to be in line with the regional constitutive expression of genes involved in the neuroimmune response 

axis, such as those expressed in microglia or astrocytes. TSPO is expressed ubiquitously in the body and is used as a 

biomarker of neuroinflammation because its upregulation in inflammatory conditions is strongly localized to microglia 

and macrophages. Cyclooxygenase (COX) enzymes perform the rate-limiting step in the synthesis of inflammatory 

mediators such as prostaglandins and thromboxanes from arachidonic acid. The two main isoforms, COX-1 and COX-

2 are present constitutively in the brain. COX-1 is predominantly localized in microglia in the brain. In contrast to our 

predictions, apart from [11C]PK11195, microglia and astrocyte genes were not among the top enrichment hits for all 

the other TSPO and Cox-1 tracers. Instead, for [18F]DPA174, the top enrichment hit was pericytes, but we also found 

enrichment for microglia genes; for [18C]PBR28 and [18C]ER176, the top enrichment hit was endothelial cells, but 

enrichment for microglia genes was not present. For [11C]PS13, the top enrichment hit was the excitatory neurons 

subcluster 3d, but enrichment for microglia was also present.  

At first, these results might seem contradictory, but they need to be considered within the context of our recent 

increasing understanding of the biology of TSPO96 and methodological challenges that pervade in-vivo TSPO 

quantification in the human brain97. TSPO is an evolutionarily conserved protein localized in the outer mitochondrial 

membrane, which has been linked to various (but not mutually exclusive) physiological processes, such as cholesterol 

transport and steroid hormone synthesis, apoptosis and cell viability, redox processes and oxidative stress, and 

mitochondrial respiration and bioenergetics96,98. Recent evidence suggests that TSPO expression is spread across 

several brain cell-types and single cell quantifications of its constitutive expression suggest that basal TSPO mRNA 

expression is most abundant in ependymal cells, vascular endothelial cells, and microglia99; its expression is also 

detectable in neurons, even though in very low quantities and possibly modulated by neuronal activity99. Therefore, 

our findings for the TSPO tracers, namely a consistent enrichment for pericytes and endothelial cells, are broadly in 

line with this recent view of the cell-type relative expression distribution of TSPO. Only for [11C]PK11195, which is 

a first-generation tracer associated with low amounts of specific binding97, we identified microglia as the strongest 

enrichment hit; in contrast, for the other three second-generation tracers, which have demonstrated superior specificity 

97, we did not. We also noted that while the TSPO gene was among the genes most positively correlated with the 

distribution of [11C]PK11195 (Z=3.08, Rank = 932/15,633), all the other three tracers were mostly unrelated to the 

distribution of TSPO mRNA ([18F]DPA174: Z=0.40, Rank=6866/15,633; [18C]PBR28: Z=-2.18, Rank=13,533/15,633; 
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[18C]ER176: Z=-2.38, Rank=13,612/15,633). These findings are puzzling; however, admittedly, direct comparisons 

between tracers in this study are rather complex because of the use of different methods of quantification for the 

different tracers97, different imaging facilities and different subjects. In this work, we used templates where 

quantification was implemented as per the original respective publications, accounting for the different subject TSPO 

genetic polymorphisms by excluding low-affinity binders100. Here, we did not intend to identify which of these four 

tracers might perform better in capturing TSPO or examine the impact of the quantification approach in the correlations 

of different tracers with TSPO mRNA. We strongly believe such endeavour deserves its own comprehensive evaluation 

(for a thorough review about the complexity around TSPO quantification see Turkheimer et al.101). Instead, we 

examined different tracers to triangulate findings, which altogether dovetail with the known complexity of TSPO 

biology and quantification96,97. For Cox-1, the strongest enrichment hit was one subcluster of excitatory neurons, but 

as predicted we also found enrichment for microglia. This observation matches previous reports describing expression 

of Cox-1 in both neurons and microglia, but not astrocytes102. Moreover, we also note the enrichment for endothelial 

cells and pericytes, which aligns with descriptions of expression of Cox-1 in endothelial cells and its role in regulating 

the synthesis of prostacyclins in the cerebrovasculature103,104.  

 

Our findings should be interpreted within the context of some limitations. First, given that most PET tracers 

do not have affinity for a single cell-type, our data should not be taken as an absolute validation of the imaging 

transcriptomics approach, since most likely tracer binding reflects contributions from more than one cell type. Instead, 

here, we examined whether the results of our enrichment analyses were plausible, given the known molecular nature 

of the tracers. Currently, we do not have access to dense phenotyping of the distribution of different brain cell types 

across the whole human brain, which admittedly would have been our first option for this work if existent. In the 

absence of this knowledge, PET provides only a practical approximation. Second, while still a general limitation of 

the field and not of this specific work, the AHBA whole-brain gene expression data derives only from six post-mortem 

adult brains (mean age = 43 y) and includes data in the right hemisphere from two donors, which led us to exclude the 

right hemisphere for the transcriptomic association analyses. Third, here we focused on comparisons between 

neuroimaging markers in the healthy adult human brain and constitutive gene expression in the healthy post-mortem 

brain. This does not detract that the strongest source of tracer binding might follow other biological pathways in 

pathology. A simple example is TSPO, which might be upregulated in microglia and astrocytes during 

neuroinflammation; in that case, if the disease process recruits the neuroimmune axis globally, then it is more likely 

that the TSPO distribution might better follow the constitutive regional distribution of astrocytes/microglia genes; 

while in the healthy brain, the signal might mirror better the endothelial component. In a similar way the radiotracer 

non displaceable non-specific binding might lead to spurious correlations. A simple example of this is represented by 

[18F]GE179, which has shown to suffer from low specific binding when used at baseline105. Fourth, by using 

constitutive gene expression in a small cohort of six post-mortem brains to infer associations with neuroimaging 

markers acquired in different cohorts, we are assuming that regional gene expression is a conserved canonical signature 

that generalizes well beyond the brain samples included in the AHBA. While we focused our analyses on probes that 

were selected to maximize differential stability across donors, six post-mortem brains are insufficient to make strong 

claims about the stability of gene expression across brains in humans. This might be a bigger concern for mobile brain 
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cells that can dynamically move within the brain parenchyma, such as microglia, which participate in 

immunosurveillance even at rest106; this mobility might – at least theoretically – result in higher variability in gene 

expression across individuals and deserves further exploration. Fifth, no replicability analyses on independent datasets 

(same tracer, same experimental protocol and analysis, but different subjects) were performed. To our knowledge this 

work has been able to pull together an unprecedent number and varieties of brain scans. However, with the brain PET 

community recognising the importance of open data sharing (e.g. OpenNeuroPET, https//openneuro.org/pet)107, such 

endeavour might be feasible in the near future.  Finally, our findings do show robustness to the specific choice of 

parcellation and set of single-cell genes used in our main analyses. For instance, we found large correlations between 

PLS1 genes weights between the analyses performed with the DK and AAL3 atlases; we also found that changing the 

set of genes used to define brain cell-types did not change our main conclusions considerably. However, it also true 

that both imaging and mRNA findings can be quite dependent on the particular methodology used to analyse the data. 

More work would in this topic should follow to ensure reproducibility and replicability. 

 

In summary, our data supports the value and robustness of integrative imaging transcriptomics analyses in 

recovering plausible transcriptomic and cellular correlates of the regional distribution of a range of benchmark 

molecular imaging markers spanning different elements of the biology of the brain. The application of this indirect 

approach to bridge levels between gene expression, cells and macroscopical neuroimaging phenotypes holds the 

potential to improve our understanding of the biological pathways underlying regional variability in neuroimaging 

features. As a result, imaging transcriptomics could open new opportunities to expand the outputs of the use of 

neuroimaging tools in clinical research by: i) refining models of brain disease with the inclusion of more mechanistic 

biological information; ii) advancing the understanding of the role that genetic factors might play in brain regional 

vulnerability in brain disease; and iii) helping prioritizing targets for drug development or development of preclinical 

models with high translational value. 

 

 

List of Supplementary Materials: 

Supplementary methods: PET templates (full description). 

Supplementary methods: Sensitivity analyses 

Supplementary Figure S1. Correlations between neuroimaging markers. 

Supplementary Table S1. Sensitivity analysis – brain parcellation. 

Supplementary Figure S2. Sensitivity analysis – cortical + subcortical regions vs cortical regions only. 
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Alexander Hammers, 
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activated N-methyl D-aspartate 

receptors. J Nucl Med 55, 423-

430, 

doi:10.2967/jnumed.113.130641 

(2014). 

 

Alex Hammers, 

Colm McGinnity 

Colm McGinnity, 

colm.mcginnity@kcl.ac.uk  

[11C]UCBJ n/a Steve Williams, 

Chloe Farrell, Lucia 

Batzu, Silvia Rota, 

Tayyabah Yousaf, 

Christine A Parker, 

Alastair Reith 

Chloe Farrell, 

chloe.farrell@kcl.ac.uk  

[18F]FDG n/a Bertoldo 

Alessandra, Erica 

Silvestri 

Bertoldo Alessandra, 

bertoldo@dei.unipd.it  

[11C]BU99008 Tyacke, R. J. et al. Evaluation of 

(11)C-BU99008, a PET Ligand 

for the Imidazoline2 Binding 

Site in Human Brain. J Nucl 

Med 59, 1597-1602, 

doi:10.2967/jnumed.118.208009 

(2018). 

 

David J Nutt, 

Christine Parker, 

Robin J Tyacke, 

James Myers 

Robin J Tyacke, 

r.tyacke@imperial.ac.uk  

L-[11C]deprenyl-D2 Albrecht, D. S. et al. Brain glial 

activation in fibromyalgia - A 

multi-site positron emission 

tomography investigation. 

Brain, behavior, and immunity 

75, 72-83, 

doi:10.1016/j.bbi.2018.09.018 

(2019). 

Anton Forsberg, 

Eva Kosek, Marco 

Loggia 

Anton Forsberg, 

anton.forsberg.moren@ki.se  

[11C]PK11195 Schubert, J. J. et al. A Modest 

Increase in (11)C-PK11195-

Positron Emission Tomography 

TSPO Binding in Depression Is 

Not Associated With Serum C-

Reactive Protein or Body Mass 

Index. Biol Psychiatry Cogn 

Neurosci Neuroimaging, 

doi:10.1016/j.bpsc.2020.12.017 

(2021). 

Julia Schubert, Ed 

Bullmore, NIMA 

consortium 

Julia Schubert, 

julia.schubert@kcl.ac.uk  

[18F]DPA174 n/a Ivana Rosenzweig Ivana Rosenzweig, 

ivana.1.rosenzweig@kcl.ac.uk  

[11C]PBR28 Zanotti-Fregonara, P. et al. 

Head-to-head comparison of 

(11)C-PBR28 and (11)C-ER176 

for quantification of the 

translocator protein in the human 

Belen Pascual, 

Paolo Zanotti-

Fregonara, 

Masahiro Fujita 

Masahiro Fujita, 

Belen Pascual, 

BPascual@houstonmethodist.org  
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brain. Eur J Nucl Med Mol 

Imaging 46, 1822-1829, 

doi:10.1007/s00259-019-04349-

w (2019). 

 

Meixiang Yu, 

Joseph C. Masdeu  

[11C]ER176 Zanotti-Fregonara, P. et al. 

Head-to-head comparison of 

(11)C-PBR28 and (11)C-ER176 

for quantification of the 

translocator protein in the human 

brain. Eur J Nucl Med Mol 

Imaging 46, 1822-1829, 

doi:10.1007/s00259-019-04349-

w (2019). 

 

Belen Pascual, 

Paolo Zanotti-

Fregonara, 

Masahiro Fujita, 

Meixiang Yu, 

Joseph C. Masdeu  

 

Belen Pascual, 

BPascual@houstonmethodist.org  

[11C]PS13 Kim, M. J. et al. First-in-human 

evaluation of [(11)C]-PS13, a 
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Appendix II – PET templates working group (in alphabetic order) 

 
List of Contributors Affiliations 

Batzu Lucia Basic and Clinical Neuroscience, IoPPN, King's College London 

Bertoldo Alessandra Department of Information Engineering, University of Padua, Italy; Padova Neuroscience 

Center, University of Padova, Padova, Italy 

Bullmore Ed R Department of Psychiatry, School of Clinical Medicine, University of Cambridge, 

Cambridge, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, 

Cambridge, United Kingdom 

Cecchin Diego Nuclear Medicine Unit, Department of Medicine, University of Padova, Padova, Italy; 

Padova Neuroscience Center, University of Padova, Padova, Italy 
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Center, University of Padova, Padova, Italy 
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Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden 

Fujita Masahiro PET Core, Houston Methodist Research and Neurological Institutes, and Weill Cornell 

Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA 

Hammers Alexander St Thomas’ PET Centre at St Thomas’ Hospital, King's College London 

Innis Robert Molecular Imaging Branch, National Institute of Mental Health, USA 

Kosek Eva Department of Clinical Neuroscience, Karolinska Institutet, Sweden 

Loggia Marco Center for Integrative Pain Neuroimaging, Athinoula A. Martinos Center for Biomedical 

Imaging, Harvard Medical School, US 

Masdeu Joseph C Nantz National Alzheimer Center, Houston Methodist Neurological Institute, and Weill 

Cornell Medicine 6560 Fannin St, Houston, TX, 77030, USA  
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Myers James Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain 

Sciences, Faculty of Medicine, Imperial College London, UK 
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Sciences, Faculty of Medicine, Imperial College London, UK 

Parker Christine GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Hertfordshire, SG1 

2NY, UK. 

Pascual Belen Nantz National Alzheimer Center, Houston Methodist Neurological Institute, and Weill 
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2NY, UK. 

Rosenzweig Ivana Sleep and Brain Plasticity Centre, Department of Neuroimaging, IoPPN, King's College 
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Silvestri Erica Department of Information Engineering, University of Padua, Italy; Padova Neuroscience 

Center, University of Padova, Padova, Italy 
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Vanessa Centre for Neuroimaging Sciences, IoPPN, King's College London 

Tyacke Robin J  Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain 

Sciences, Faculty of Medicine, Imperial College London, UK 

Williams Steve Centre for Neuroimaging Sciences, IoPPN, King's College London 

Yousaf Taytayyabah Centre for Neuroimaging Sciences, IoPPN, King's College London 

Yu Meixiang Cyclotron and Radiochemistry Core, Houston Methodist Research Neurological Institute, 

and Weill Cornell Medicine, 6670 Bertner Ave, Houston, TX, 77030, USA  

Zanotti-

Fregonara 

Paolo Molecular Imaging Branch, National Institute of Mental Health, USA 
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