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Abstract 32 

 Animal microbiota are shaped and maintained not only through microbiota-33 

environmental interactions but also through host-microbiota interactions. The effects of the 34 

microbiota on the host has been the source of intense research in recent years, indicating a role 35 

for resident microbes in a range of conditions from obesity and mood disorders to atopic 36 

dermatitis and chronic wounds. Yet the ability of hosts to determine their microbiota 37 

composition is less well studied. In this study, we investigated the role host genetics plays in 38 

determining skin microbiota. We used 30 different mouse strains from the advanced 39 

recombinant inbred mouse panel, the Collaborative Cross, with PERMANOVA, GWAS and 40 

PCA-based GWAS analyses to demonstrate that murine skin microbiota composition is 41 

strongly dependent on murine strain. In particular, a quantitative trait locus on chromosome 4 42 

associates both with Staphylococcus abundance and principal-component multi-trait analyses. 43 

Additionally, we used a full thickness excisional wound healing model to investigate the 44 

relative contributions from the skin microbiota and/or host genetics on wound healing speed. 45 

Wound associated changes in skin microbiota composition were observed and were in many 46 

instances host-specific. Despite reaching statistical significance, the wound-associated changes 47 

in skin microbiota accounted for only a small amount of the variance in wound healing speeds, 48 

with the majority attributable to mouse genotype (strain) and age. Host genetics has a 49 

significant impact on the skin microbiota composition during both homeostasis and wound 50 

healing. These findings have long reaching implications in our understanding of associations 51 

between microbiota dysbiosis and disease.   52 
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Introduction 53 

All animals are colonised by microbes soon after birth. In recent years, these 54 

“microbiomes” have been implicated in a wide range of host responses relevant to homeostasis, 55 

and their disruption can manifest in a wide range of immune-mediated and/or metabolic-related 56 

diseases [1, 2]. The gut (stool) microbiome has been the most intensively studied and has 57 

advanced the concept of “community-based” interactions, that trigger a range of conditions 58 

such as atopic dermatitis, obesity or mood disorders [3-5]. Although less studied, variations in 59 

the skin microbiome have been associated with episodes of atopic dermatitis [6], and the 60 

healing rate of leg ulcers, among other conditions [7, 8]. The skin microbiome has been shown 61 

to vary with anatomical location and patient age [9], and environmental cues such as humidity 62 

and/or temperature may also influence inter-individual variation [10]. In that context, diet is 63 

now also  considered to exert a strong effect on the microbiome that can in turn influence host 64 

response and health status [2]. Overall, many environmental factors seem to determine the 65 

composition of the skin microbiota. 66 

However, there are relatively few studies that provide a systematic assessment of how 67 

host genotype affects microbiome composition. Broader genome-wide studies utilising inter-68 

cross mouse panel (BXD) have identified many host-specific quantitative trait loci (QTL) 69 

affecting gut microbiome composition, with candidate genes involving cytokines and toll-like 70 

receptor signalling [11]. In addition, investigation of the gut microbiota of mice from another 71 

advanced inter-cross model found 18 separate QTL associated with the relative abundance of 72 

one or more gut bacterial taxonomies [12]. Regarding skin, most studies to date have been 73 

limited to candidate approaches, such as how mutations affecting the serine protease matriptase 74 

can lead to a shift in the skin microbiota composition [13], or have described the skin microbial 75 

populations more generally [14-16]. In addition, many studies investigating wounds and skin 76 

microbiome associations have focused on non-healing chronic wounds such as diabetic foot 77 

ulcers and venous leg ulcers [17-19]. Whether host genetics also affects the wound 78 

microbiome, or alternatively, whether the environmental changes associated with wounding 79 

dominate over the effect of host genetic and more strongly affect microbial composition, are 80 

unknown.  81 

Here we utilised a resource generated by a specialised breeding program, the 82 

Collaborative Cross (CC), which through a recombinant-inbreeding design, allows 83 

interrogation of complex traits and genetic pleiotropies [20, 21]. Using 30 different CC mouse 84 
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strains, we investigated the host genetic contribution to mouse dorsal skin microbiota 85 

composition during homeostasis and wound healing. We found that the cutaneous microbiota 86 

composition differed between mouse strains, and that responses to wounding related to their 87 

microbiome composition were strain-specific. Genome-wide association studies (GWAS) 88 

identified key QTL associated with specific bacterial taxa from normal skin. Host genetics not 89 

only accounts for most of the observed variation in microbiome composition of normal skin, 90 

but also affects wound healing speed, while microbiota composition was found to only have a 91 

limited role in the latter process.  92 

 93 

Results 94 

Murine strain is a strong determinant of microbiota diversity 95 

The diversity of the skin microbiome has been shown to vary between individuals and 96 

can often associate with pathological states. Here we collected swabs of mouse dorsal skin for 97 

16S rRNA gene amplicon sequencing to investigate differences in microbiome composition 98 

between mouse strains. For each mouse, swabs were collected in a predefined area of the dorsal 99 

skin in a reproducible way. Control swabs (sham swabbing), swabs taken of skin immediately 100 

after full-excisional wounding, for each mouse, did not result in any significant amplification 101 

of 16S rRNA gene. We first compared the Shannon’s diversity metric as a measure of alpha-102 

diversity (within sample) across 114 mice from 30 different mouse strains using the R package 103 

‘vegan’. The microbiota profiles from most mice fell within a relatively narrow range of 104 

Shannon’s diversity values (IQR=0.59, median=2.11), but communities in some mice clearly 105 

displayed less diversity and/or evenness (Fig. 1a). Additionally, the intra-strain variation in 106 

Shannon’s diversity values was generally small, but the inter-strain variation, as measured by 107 

Kruskal-Wallis testing was large and significant (p<0.0001). Importantly, the clustering of 108 

mice within their respective strains was also established, more generally, with their skin 109 

microbial composition (family level) by Ward’s method of agglomerative hierarchical 110 

clustering [22, 23] (Fig. 1b). This analysis revealed that the large heterogeneity in overall 111 

mouse skin microbiota composition was strongly strain-dependent, which was further 112 

confirmed by PERMANOVA (R-squared > 0.5, p=0.001). We next asked whether specific 113 

microbial genera were associated specifically with lower or higher diversity compositions 114 

(‘ALDEx2’ R package). The abundances of both Staphylococcus and Aerococcus spp. 115 

significantly differed across the highest and lowest quartiles of Shannon’s diversity values, 116 
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respectively (Staphylococcus p=0.0019, Aerococcus p=0.0028). A linear regression model 117 

using Shannon’s diversity and the centred-log ratio (CLR) transformation of the abundance 118 

values for Staphylococcus and Aerococcus across all mice showed there was an inverse 119 

relationship of both genera with the Shannon’s diversity value of mouse skin microbiome 120 

(Supp. 2c).   121 

 122 

Skin microbiota composition is determined by murine strain specific genomic loci.  123 

Next, we determined a core skin microbiome and used different levels of bacterial 124 

taxonomies to identify their representation in at least 50% of samples at 0.1% or greater relative 125 

abundance. Similar to the broader composition, core microbiome of individual mice clustered 126 

within their respective strains (Ward’s method of agglomerative hierarchical clustering) and 127 

significant groupings at the family-level of classification were found and could be further used 128 

to categorise the different host genotypes (Fig. 1b). While Staphylococcaceae was the most 129 

prevalent bacterial family in the strains of mice examined, and thereby a member of the core 130 

microbiome, there was also a group of mouse strains that clustered based on their possession 131 

of a relatively high abundance of Corynebacteriaceae (Fig. 1b & Fig. 1c). Although mouse 132 

age significantly affected skin microbiome profile, it was found to explain only a minimal 133 

amount of the variance observed across mice (R-squared < 0.02). Taken together, these 134 

findings strongly confirmed the effect of murine strain (host genotype) as a key determinant of 135 

the dorsal skin microbiome.  136 

Given these findings, we next examined whether specific loci in the mouse genome 137 

could be associated with the dorsal skin microbiome composition. The centred log-ratio 138 

transformation of the abundance values for Staphylococcus was used as a “trait” for host 139 

genome-wide association analysis using the GeneMiner software, and identified a genome-140 

wide significant region on mouse chromosome (Chr) 4 between 129.75-130.95 megabase pairs 141 

(Mbps) (LOD Score: 10, Supp. 1a). Several different loci, albeit with weaker (suggestive) 142 

LOD scores were identified using both centred-log ratio transformation of the abundance 143 

values for Aerococcus (Chr 13, 108.70-113.51 Mbps, LOD Score: 6, Supp. 1b), and Shannon’s 144 

diversity scores (Chr 15, 3.20-7.40 Mbps, LOD Score: 8, Supp. 1c), along with principal 145 

component analysis (PCA)-based GWAS, which is an approach to identify multi-trait loci from 146 

multi-dimensional data [24] (Supp. 1d-e). Interestingly, the peak on Chr 4 identified for 147 

Staphylococcus was also recovered using the PCA-based GWAS (Supp. 1e). A detailed 148 

analysis of the founder haplotypes for the Chr 4 candidate region identified the WSB and PWK 149 
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founder alleles associated with a relatively low abundance of Staphylococcus in skin 150 

microbiome, and the CAST founder allele with highest relative abundances. We next examined 151 

this region of interest for any genes harbouring specific polymorphisms in the founder 152 

haplotypes above, by using the Sanger Mouse Genome Project SNP query website. Here, we 153 

identified Ptafr as a candidate gene of interest, on the basis that its product may affect the 154 

immune response to pathogens [25, 26], but is also known to act directly on the wound healing 155 

process [27], and can affect skin inflammation [28]. An alternative candidate is Smpdl3b, 156 

Sphingomyelin Phosphodiesterase Acid-Like 3B, which is associated with inflammation via 157 

negative regulation of toll-like receptor signalling in vivo [29]. A full list of genes containing 158 

haplotype specific SNP is provided in Suppl. 3. Overall, this strong effect of murine strain, as 159 

well as the association with plausible candidate genes, strongly supports the importance of host 160 

genetics in determining the skin microbiome during homeostasis. 161 

 162 

The microbiomes of early stage wounded and normal skin retain host-strain specificity   163 

We next investigated whether and how wounding, considered a major environmental 164 

stress, would elicit stronger effects on the microbiome than host genotype. If skin injury and 165 

wound healing had strong effects on the microbiome, one would expect the wound microbiome 166 

to be convergent across the different mouse strains. Alternatively, given the exposure to faecal 167 

material in the cage bedding, one would expect the wound and faecal microbiome to converge.  168 

To that end, we performed PCA and hierarchical clustering on the combined datasets from 169 

unwounded skin, day (D) 3 wounds, and the faecal microbiome samples of 70 mice 170 

representing the different haplotypes. Importantly, the DNA extractions of the swab samples 171 

collected immediately after wounding did not produce sufficient 16S rRNA gene amplicons, 172 

suggesting that the debrided area was made “sterile” by the wounding process at D0. We found 173 

that the wound microbiome at D3 retained its similarity to the community present on 174 

unwounded skin, and that the faecal microbiomes were clearly separable from the skin and 175 

wound microbiomes using PCA and hierarchical clustering (Fig. 2a-b). The bacterial families 176 

Propionibacteriaceae and Staphylococcaceae were discriminatory for both the unwounded 177 

skin and wound microbiomes at D3, compared to faecal samples, and Bacteroidales family 178 

S24-7 were in much greater abundance in faecal samples (Supp. 2a). However, while the D3 179 

wound microbiomes still retained features of normal skin, there was a significant decline in 180 

diversity between unwounded and D3 skin wound microbiomes (Fig. 2c, Mann-Whitney, p-181 

value<0.0001, 0.788 median fold-change in Shannon’s diversity across all mice). This decline 182 
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in diversity recapitulates that seen in other pathologies such as eczema flares, and some non-183 

healing diabetic foot ulcers [14, 17]. The declines in microbial diversity of the wounds were 184 

only transient however, and diversity had recovered significantly by D10 post-wounding via 185 

Kruskal-Wallis testing (p<0.01, 1.1 median fold-change in Shannon’s diversity across all 186 

mice), but still remained significantly lower than the original unwounded skin at this time-point 187 

(p<0.01, 0.8 median fold-change unwounded to D10 Shannon’s diversity).  188 

We also evaluated whether the ‘core’ microbiome differed between wounded (D3) and 189 

unwounded skin. The hierarchical clustering (Fig. 3a) showed that although there was a general 190 

trend of increased Staphylococcaceae and Corynebacteriaceae relative abundances between 191 

D3-wounded and unwounded skin (FDR-adjusted, p<0.1, ALDEX2), some mouse strains 192 

showed a decrease in these families. This clearly highlighted that the changes of microbiota 193 

composition in response to wound healing were not universal and varied across murine strains.  194 

To investigate the relative contributions to changes in microbiota composition during 195 

wound healing, a PERMANOVA analysis was performed with the variables being mouse 196 

strain, wound time-point (unwounded or D3) and mouse age (days). The strain of mouse had 197 

the largest effect on overall microbiome compositional changes during wound healing (~23% 198 

variance explained), followed by the interaction between mouse strain and wound time-points 199 

(~17% variance explained). While statistically significant, age and wound time-point alone 200 

accounted for only a small amount of variance (<8% combined). This once again strongly 201 

supports the effect of host genotype on both the unwounded and wounded skin microbiomes. 202 

 203 

Microbiome composition had minimal effect on wound healing rates 204 

Given the variation between mice in their D3 post-wounding microbial composition and the 205 

microbiota differences from unwounded skin, we investigated whether these parameters were 206 

associated with wound healing. The time to wound closure for individual mice was 207 

determined and used to group these into quartiles representing fast to slow healers. Compared 208 

to unwounded skin, there were large variations, both positively and negatively, in the relative 209 

abundances of different bacterial families present in D3 wound microbiomes assigned to the 210 

different quartiles (Fig. 3b). However, these changes in the skin/wound microbiomes during 211 

early wound healing, and the faecal microbiome composition of the host animal each 212 

accounted for ~5% of the variance in wound healing speeds when modelled separately by 213 

principal component regression. In contrast, PEMANOVA analysis showed mouse strain 214 
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(genotype) accounted for over 50% of the variance in wound healing rate (p<0.001) while the 215 

age of mice explained 20% variance (p-value<0.001). Age is already recognised to be a 216 

significant factor in the regenerative ability of mice [30, 31]. Our results not only confirm the 217 

association between mouse age and wound healing speed, but the limited impact of age on 218 

skin microbiome composition suggests the impacts of age on wound healing speed are host- 219 

rather than microbiome-related. 220 

 221 

Discussion 222 

The skin microbiome has been the subject of many studies because of its presumed 223 

involvement with the onset and/or progression of many skin disorders [5-7, 14, 17, 19, 32]. 224 

Many studies have revealed how (micro) environmental factors such as temperature, humidity, 225 

dryness, sun exposure, body site, or host factors such as age and diet can affect the skin 226 

microbiome [5, 9, 10, 33]. These collective findings have led many to infer that wounding - 227 

which is an extreme form of environmental insult - results in a stereotypical change in the 228 

composition of the microbiome at the wound site, principally via increases in the relative and 229 

total abundances of Staphylococcus and Gram-negative bacteria [32, 34]. In contrast, very little 230 

is known about whether and how host genotype affects the skin microbiome, and further, to 231 

what extent differences in wound healing speed are attributable to host-driven processes either 232 

directly, or indirectly, via the skin microbiome.  233 

By characterization of multiple strains of mice from the Collaborative Cross, we show 234 

that while the skin microbiome is strongly impacted by host genotype, there is only a small 235 

contribution from this microbiome variation to wound healing speed. Further, we showed a 236 

strong variation in skin microbiota composition that in large part was explained by the murine 237 

genetic background. Importantly, all the animals used in this study were born in the same 238 

animal facility; then all shipped and subsequently housed in a different facility and provided 239 

access to the same food and water sources. So while it is not possible to completely rule out 240 

any housing effects across all 30 strains of mice, other studies have revealed that compared to 241 

host genotype, the contributions from caging and legacy effects on the variations in the gut 242 

microbiome are small [35]. Additional studies of skin bacterial populations in various 243 

mammals and amphibians further supports host taxonomy as a greater determining factor of 244 

the cutaneous microbiome than environment [36-38]. 245 
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In that context, the genome-wide associations identified key host loci predictive of 246 

specific skin bacterial taxa and/or microbiome composition. Indeed, specific bacterial genera 247 

(Staphylococcus and Aerococcus) and Shannon diversity scores of the skin microbiome from 248 

individual mice could be used as a “trait” in genome wide association and linkage studies. In 249 

particular, these analyses defined a ~1 Mbp region on Chr 4 to be strongly associated with these 250 

traits. Further analyses confirmed this locus includes genes affecting host innate and adaptive 251 

immunity and in particular Ptafr, which encodes the Platelet Activating Factor Receptor. The 252 

PTAFR protein has strong pro-inflammatory effects and has been previously associated with 253 

bacteraemia [25, 26, 28]. Similarly, Smpdl3b, Sphingomyelin Phosphodiesterase Acid-Like 254 

3B, is associated with inflammation via negative regulation of toll-like receptor signalling in 255 

vivo [29]. While the precise role of these candidate genes needs experimental validation, it is 256 

plausible that SNP variations in one or both of these genes can elicit differential immune or 257 

dermal niche alterations that affect the relative abundance of Staphylococcus and/or 258 

Aerococcus on skin. 259 

Abundance of Staphylococcus and Aerococcus was associated with lower diversity in 260 

homeostatic skin microbiota. The Staphylococcus genus contains both commensal and 261 

pathogenic species, such as staphylococcus epidermidis and staphylococcus aureus. Host 262 

NOD2 receptor variants have been associated with atopic dermatitis and can affect keratinocyte 263 

susceptibility to S. aureus [39]. Additionally, previous authors have shown an expansion of the 264 

S. aureus population is associated with pathogenic states, such as eczema flares [14]. One study 265 

in diabetic men showed a higher Staphylococcal abundance in healthy controls compared to 266 

diabetics, yet the proportion of S. aureus was lower in controls indicating that some less 267 

virulent Staphylococcal species are likely protective [18]. Interestingly, S. epidermidis can help 268 

co-ordinate the host’s response to S. aureus by inducing host cytokines that influence T-cell 269 

behaviour [40]. Whilst our data supports other’s findings of a host effect on Staphylococcal 270 

species abundance and skin microbiota diversity, it is unclear whether the changes we see in 271 

Staphylococcal abundance include expansions of pathogenic or commensal species, as we were 272 

unable to investigate taxonomies to the species level. An important implication of our study is 273 

that microbiome dysbiosis in disease may only be restored temporarily through intervention 274 

such as probiotics, as the genetic background of the individual may have a dominant role. 275 

In a clinical setting, it has been thought that skin wounds are characterised by major 276 

colonisation of Gram-negative bacteria, such as Pseudomonas aeruginosa [34], and often 277 

display an over-representation of Staphylococci [32]. Here, we report that wound microbiome 278 
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remains highly variable in its composition across different murine strains and there was no 279 

homogenous change across all mice. Inclusion of stool samples allowed us to show that D3 280 

post-wound skin retains a skin-like microbiota phenotype. This is unexpected given the 281 

extreme barrier function dysregulation as well as the relative contamination of cage bedding 282 

with faeces. Considering the site specificity and stability of the human microbiome [9], it is 283 

possible that the transcriptomic environment of skin wounds drives the microbiota to retain 284 

its skin-like features. 285 

Few studies of murine microbiota composition of skin have utilised multiple strains of 286 

mice; a majority used only a single mouse genetic background [37, 41]. Our study highlights 287 

the difficulty of drawing conclusions about microbial associations with wound healing 288 

outcomes across studies that have used a single background mouse model of microbiota 289 

changes. Studies of chronic wounds in patients show relatively little difference in the more 290 

abundant genera between healing and non-healing wounds [42]. In line with these results, we 291 

were unable to identify any statistically significant, or suggestive, abundant microbial families 292 

associated with healing speed in mice, although we were able to show suggestive differences 293 

in microbial compositional changes between mouse strains during the early stages of wound 294 

healing. Principal component regression showed that both faecal and skin microbiomes account 295 

for minimal differences in wound healing speed. Additionally, PERMANOVA analysis shows 296 

that the strain of mouse, and its interaction with the wound time-course, can explain ~40% of 297 

variance in microbiota composition changes during the first 3 days of wound healing.  Whilst 298 

lack of significant associations between microbiota abundances and wound healing speeds 299 

could be due to omission of low abundance microbes, significant heterogeneity in microbiota 300 

composition between mouse strains, and their specific response to wounding, likely plays a 301 

dominating role.  302 

In conclusion, we report that skin murine microbiota and its changes upon wounding 303 

are strongly determined by host genetics and the abundance of specific microbial families can 304 

be determined by precise loci in the murine genome. Moreover, the wound microbiome plays 305 

a minimal role in the healing rate and is mostly a reflection of the host genetic background. 306 

These findings have far reaching implications for the design of further studies on the role of 307 

the microbiome on health and disease as well as the use of probiotics in a clinical setting. 308 

 309 

  310 
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Figure 1. An overview of the cutaneous microbiota across 30 different strains of mice 312 

from the Collaborative Cross. (a) Scatterplot of alpha diversities for each sample, grouped 313 

by mouse strain. Most mice show similar alpha-diversities (Shannon, IQR=0.59, median=2.11) 314 

with many strains showing low intra-strain variability. Some strains such as TOFU and LUG 315 

show lower diversity scores in all mice within their strain, additionally some strains show much 316 

larger intra-strain variabilities, such as TAS and TOP. Diversity of the skin microbiome shows 317 

strong strain dependent differences (Kruskal-wallis, p-value<0.0001). (b) Hierarchical 318 

clustering heat-map of `core` microbiota, centred-log ratio read counts of 16S rRNA gene 319 

sequencing of healthy dorsal skin swabs. Staphylococcaceae was the most abundant bacterial 320 

family in the majority of mice, with Corynebacteriaceae showing a particularly partisan 321 

abundance across different mice. Many mice cluster strongly within their respective strain, with 322 

PERMANOVA analysis indicating a significant strain effect (R-squared>0.5, p-value=0.001). 323 

We cut the hierarchical dendrogram into 6 groups (colours randomly assigned to each group) 324 

based on visual inspection resulting in distinct characteristics such as high Corynebacteriaceae 325 

or Moraxellaceae abundance. (c) Principal component analysis of centred-log ratio read counts 326 

further highlights the differences in abundance of microbiota families between mice. Some 327 

strains such as LUG and LOT can be seen clustering very closely together indicating a strong 328 

strain effect. With that said, the strain JUNIOR shows that not all mouse strains have a strong 329 

preference toward certain microbiota compositions. 330 

  331 
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Figure 2. Comparison of diversity and composition of faecal, unwounded and wounded 333 

skin microbiota (a) Hierarchical clustering heatmap of centred-log ratio read counts from all 334 

3 sample microbiota types (faecal = blue, unwounded = green, day-3 post-wounding = orange). 335 

Both types of skin microbiota samples show enrichment in certain bacterial genera such as 336 

Staphylococcus, Corynebacterium and Acinetobacter compared to faecal samples. (b) 337 

Principal component analysis of combined sample sets at the genus level. Day-3 post-wound 338 

microbiota cluster with unwounded microbiota samples and separately from faecal samples 339 

(faecal = blue, unwounded = green, day-3 post-wounding = orange). (c) Skin microbial 340 

diversity at different time-points (Shannon alpha diversity index). Overall alpha diversity 341 

significantly decreases from unwounded to day-3, increasing again by day-10 though 342 

remaining significantly depressed compared to unwounded skin.  343 

  344 

 345 
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Figure 3. Microbiota composition changes from unwounded skin to day 3 post-wounding. 348 

(a) Taking the difference between day 3 post-wounding and unwounded centred-log ratio 349 

matrices shows the relative increase/decrease in microbial abundance during the early stages 350 

of wound healing. No bacterial families show a consistent pattern of increased/decreased 351 

abundance across all mice during wound healing, though many mouse strains show similar 352 

within strain patterns of microbiota changes. (b) Boxplots of bacterial family centred-log ratio 353 

abundance changes during wound healing across all mice, grouped by quartiles of mouse 354 

healing speed (Top and Middle). Each bacterial family shows a large spread of values including 355 

both mice that increase their relative abundance and mice that decrease. No associations can 356 

be seen between a single family of bacteria and faster/slower healing mice. Days to full wound 357 

closure across all mouse strains (Bottom). 358 

 359 
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Supplemental 1. GWAS based on haplotype reconstructions of Collaborative Cross 362 

mouse genomes. (a)  LOD-score based analysis of Staphylococcus centred log-ratio abundance 363 

inputed to GeneMiner. A significant QTL can be identified on chromosome 4, (-2 LOD score 364 

drop region, 130.9-132.2Mbps). Haplotype diagrams indicate the founder strains WSB, CAST 365 

and/or PWK may be responsible for the peak. (b) LOD-score based analysis of Aerococcus 366 

centred log-ratio abundance inputed to GeneMiner. A suggestive QTL can be identified on 367 

chromosome 13 (-2 LOD score drop region, 108.7-113.51Mbps). Haplotype diagrams indicate 368 

the founder strains NZO, AJ and/or WSB may be responsible for the peak. (c) LOD-score based 369 

analysis of Shannon’s diversity scores imputed to GeneMiner. A suggestive QTL can be 370 

identified on chromosome 15 (-2 LOD drop region, 3.2-7.4 Mbps). Haplotype diagrams 371 

indicate CAST, AJ and/or NOD as likely responsible for the peak. (d,e) PCA-based GWAS 372 

using principal components 1 and 3 (d, e). Suggestive QTL can be found on Chr 12 for both 373 

principle components, though in different regions (-2 LOD drop region PC1, 3.5-9.9Mbps, 374 

PC3, 47.7-60.4Mbps). For principal component 3 (e) a significant peak on Chr4 overlapping 375 

the same region as the previous significant peak for Staphylococcus can be seen primarily due 376 

to the CAST and PWK founder strains (-2 LOD drop region, 131.9-135Mbps). 377 
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Supplemental 2. (a) Qualitative summary of all family-level (including non-core skin) log-379 

proportional abundances in unwounded, day 3 post-wound, and faecal samples (70 mice). 380 

Propionibacteriaceae and Bacteroidales family S24-7 show markedly different abundances 381 

between skin and faecal samples. (b) List of all Collaborative Cross strains used for initial 382 

experiment, including mice per strain used (114 total mice). (c) Based on the results from 383 

differential bacterial genera abundance analysis of most diverse and least diverse mice, we 384 

modelled Shannon diversity regressed against Staphylococcus and Aerococcus CLR 385 

abundances. Negative values for estimate indicate lower diversity values for higher CLR values 386 

for both Staphylococcus and Aerococcus with an overall trend across all mice. (d) Schematics 387 

for the processes of 16S rRNA gene amplicon sequence data analysis.  388 

 389 

 390 

 391 

 392 

Supplemental 3. Table of candidate genes based on GWAS analysis. List of genes 393 

identified in from the QTL on Chromosome 4 present in 2 different GWAS. Genes are taken 394 

from Sanger Mouse SNP Viewer (https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-395 

1505) for the LOD 2 drop region around the QTL peak. A total of 38 genes were identified 396 

that possessed SNPs specific to any of the haplotypes WSB, PWK or CAST. 397 

  398 

Haplotype Genes Region_(Chr:Mbps) 

PWK_PhJ Laptm5,Matn1 4:130.9-132.2 

CAST_EiJ Epb4.1,Gm10300,Laptm5,Matn1,Mecr,Ptpru,Srsf4,Tmem200b 4:130.9-132.2 

WSB_EiJ Epb4.1,Mecr 4:130.9-132.2 

PWK_PhJ Gpatch3,Rps6ka1 4:131.9-135.0 

CAST_EiJ 

Aim1l,Arid1a,Atpif1,Catsper4,Cnksr1,Epb4.1,Extl1,Eya3,Fam46b, 

,Gm10300,Gm7534,Gmeb1,Grrp1,Kdf1,Map3k6,Nr0b2,Nudc,Pdik1l, 

Phactr4, Pigv,Ptafr,Rab42,Rhd,Rpa2,Rsrp1,Sepn1,Smpdl3b, 

Srsf4,Stx12,Taf12,Tmem200b,Ubxn11,Xkr8,Zdhhc18,Zfp593,Zfp683 4:131.9-135.0 

WSB_EiJ Atpif1,Cd164l2,Epb4.1,Gmeb1,Trnp1 4:131.9-135.0 
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Materials & Methods 399 

Mice 400 

The Collaborative Cross (CC) program used 8 founding strains of mice to produce 401 

several hundred recombinant mouse inbred (RI) strains [20] that were inbred over multiple 402 

generations to greater than 90% homozygosity [43]. This high rate of homozygosity ensures 403 

that most regions of the genome are defined by the genetic contribution from a single founder 404 

strain (haplotype), simplifying analysis. However, the substantial heterogeneity in haplotypes 405 

between different strains can result in marked variation in any phenotype across the CC. 406 

Greatly reduced costs and complexities can be achieved with CC mice, since they are all 407 

genotyped and the founder genome sequences are available at the Sanger Institute 408 

(https://www.sanger.ac.uk) [20]. Lastly, the large genetic scope of the CC RI strains, founding 409 

strains were chosen to maximise genetic richness, provides a powerful resource to investigate 410 

murine genetics of complex biological problems. 411 

All mice from the CC (114) were housed in the UQ Centre for Clinical Research Animal 412 

Facility. All animal experimentation was conducted in accordance with institutional ethical 413 

requirements and approved by the University of Queensland Animal Ethics Committee. Only 414 

female mice were used with the number of mice per strain varying due to availability. Two 415 

mice from the strains XAV, GIT, LEM and POH were used whereas, all other strains had 3 or 416 

more mice (Supp.2). 417 

Collection 418 

Mice were anaesthetized with 2% isoflurane and a sterile rayon swab moistened with TE buffer 419 

was used to collect a microbiota sample from a 1.5x1.5cm of dorsal skin, followed by full-420 

thickness excisional wounds of the same area and second swab was immediately used to sample 421 

this fresh wound (library sizes too small to analyse). This second swab on the excisional wound 422 

served as technical control for contamination for every single mouse. At this initial timepoint 423 

a fresh stool sample was collected. Additional swabs were taken at days 3 and 10 post-424 

wounding. All samples were stored in 2ml of TE buffer at -80oC for later sequencing. 425 

Microbiota community profiling and data analyses 426 

Microbial DNA was extracted from swab samples of dorsal skin using the Maxwell 16 LEV 427 

Buccal Swab DNA kit according to manufacturer's recommendations. The resulting DNA 428 

samples were then used to produce bar-coded PCR amplicon libraries of the V6-V8 429 
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hypervariable region of the 16S rRNA gene using the universal microbial primers with Illumina 430 

primer overhang adapters as follows: 431 

- Forward Primer – 926F: 432 

5’ - TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AAA CTY AAA KGA 433 

ATT GRC GG – 3' 434 

- Reverse Primer – 1392R: 435 

5’ - GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GAC GGG CGG TGW 436 

GTR C – 3'  437 

Sequencing used the Illumina MiSeq sequencing platform and protocols developed by 438 

the UQ-Australian Centre for Ecogenomics (www.ecogenomic.org). A sequence Phred quality 439 

threshold of 20 was used and sequences checked for chimeras using USEARCH version 440 

6.1.544 [44]. Mapping and clustering of reads into operational taxonomic units (OTUs) with 441 

97% identity threshold against Greengenes core set database 13.8 [45], was performed using 442 

Quantitative insight into Microbial Ecology (QIIME) version 1.9.1 [46] and PyNast [47]. OTUs 443 

were then compiled into an OUT table for further analysis. 444 

Data Analysis 445 

Shannon measures of alpha diversities were calculated using the ‘Vegan’ package in R [48, 49] 446 

with the function ‘diversity’. The percentage abundance for each bacterial family was 447 

calculated and those bacterial families failing a threshold of 0.1% abundance in 50% or more 448 

mice were removed, leaving a total of 14 ‘core’ bacterial families remaining in the dataset. 449 

Centred log-ratios (CLR) were calculated for all mice using the ‘core’ bacterial families as a 450 

sub-composition. Comparisons of murine skin microbiotas similarities were then performed 451 

using the PERMANOVA and PCA using Aitchison distance (Euclidean distance after CLR 452 

[50].  453 

QTL Analysis 454 

Significantly differentially abundant genera based on the upper and lower quartiles of diversity 455 

were regressed against mouse genotypes in the GeneMiner software 456 

(www.sysgen.org/GeneMiner). GWAS made use of haplotype reconstructions, as detailed 457 

previously [51]. 458 
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We also performed principal component analysis on the centred log-ratios of abundances and 459 

regressed the principal components against mouse genotypes. This style of PCA based GWAS 460 

has been suggested as a way of identifying pleiotropic QTL [24], due to each component 461 

representing a multivariate vector consisting of all phenotypes of interest (in this case all ‘core’ 462 

microbiota families). 463 
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