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6 Abstract   
7 Deep  convolutional  neural  networks  (CNNs)  are  powerful  computational  tools  for  a  large  variety  of  tasks                 

8 (Goodfellow,  2016).  Their  architecture,  composed  of  layers  of  repeated  identical  neural  units,  draws               

9 inspiration  from  visual  neuroscience.  However,  biological  circuits  contain  a  myriad  of  additional  details               

10 and  complexity  not  translated  to  CNNs,  including  diverse  neural  cell  types  (Tasic,  2018).  Many  possible                 

11 roles  for  neural  cell  types  have  been  proposed,  including:  learning,  stabilizing  excitation  and  inhibition,                

12 and  diverse  normalization  (Marblestone,  2016;  Gouwens,  2019).  Here  we  investigate  whether  neural  cell               

13 types,  instantiated  as  diverse  activation  functions  in  CNNs,  can  assist  in  the  feed-forward  computational                

14 abilities  of  neural  circuits.  Our  heterogeneous  cell  type  networks  mix  multiple  activation  functions  within                

15 each  activation  layer.  We  assess  the  value  of  mixed  activation  functions  by  comparing  image                

16 classification  performance  to  that  of  homogeneous  control  networks  with  only  one  activation  function  per                

17 network.  We  observe  that  mixing  activation  functions  can  improve  the  image  classification  abilities  of                

18 CNNs.  Importantly,  we  find  larger  improvements  when  the  activation  functions  are  more  diverse,  and  in                 

19 more  constrained  networks.  Our  results  suggest  a  feed-forward  computational  role  for  diverse  cell  types                

20 in  biological  circuits.  Additionally,  our  results  open  new  avenues  for  the  development  of  more  powerful                 

21 CNNs.   

22 Introduction   
23 Deep  convolutional  neural  networks  (CNNs)  draw  architectural  inspiration  from  visual  neuroscience.             

24 CNNs  contain  many  processing  units  that  aim  to  emulate  the  role  of  neurons  in  the  mammalian  visual                   

25 system,  a  series  of  iterative  processing  steps  (Goodfellow,  2016,  Hubel  &  Wiesel,  1959;  Hubel  &  Wiesel,                  

26 1962).  Recently  performance  of  CNNs  has  rapidly  improved  across  a  wide  range  of  computational  tasks,                 

27 particularly  visual  object  recognition  and  classification  (LeCun  et.  al.,  2015).  CNNs  work  by  developing                

28 highly  nonlinear  representations  of  inputs  across  repeated  layers  of  processing  units.  These              

29 representations  are  learned  through  training  by  updating  the  connections,  or  weights,  between  units  in                

30 successive  layers.  Types  of  processing  layers  include  convolutional  layers,  which  convolve  input  with               

31 learned  spatial  filters,  activation  layers  which  include  a  nonlinear  activation  function,  and  max-pooling               
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32 layers.  Typically,  CNNs  units  are  uniform  across  each  layer  within  a  network.  Network               

33 architectures—meaning  the  number,  size,  type,  and  arrangement  of  processing  unit  layers—are  often              

34 manually  designed  through  iterative  experimentation,  although  automated  search  techniques  are  being             

35 actively  developed  (Zoph  &  Le,  2016).  Individual  convolutional  features  and  weights  are  determined               

36 through   iterative   training,   not   architectural   design.     

37 Biological  circuits,  however,  contain  diverse  cell  types  at  each  location  in  the  visual  hierarchy.                

38 Classification  of  neural  cell  types  dates  back  to  the  pioneering  work  of  Ramon  y  Cajal,  who  described  in                    

39 fine  detail  elaborate  neural  morphology  (Llinas,  2003).  Recent  studies  have  classified  neurons  by  their                

40 location  in  the  brain,  morphology,  gene  transcription,  and  electrical  properties  (Tasic,  2018;  Teeter,  2018;                

41 Gouwens,  2019;  Gouwens,  2020).  The  biological  function  of  these  diverse  neural  cell  types  is  not  yet                  

42 fully  understood,  but  is  an  active  area  of  research  (Burnham,  2021;  Zeldenrust,  2021;  Perez-Nieves,                

43 2021).  Many  possible  roles  for  neural  cell  types  have  been  proposed,  including:  learning,  stabilizing                

44 excitation  and  inhibition,  and  diverse  normalization  (Marblestone,  2016;  Gouwens,  2019).  Recently             

45 several  studies  have  begun  to  investigate  computational  properties  of  networks  with  heterogeneous  cell               

46 types,  instantiated  in  different  ways  such  as  excitatory  vs  inhibitory  (Cornford,  2020),  synapses               

47 (Burnham,  2021),  connectivity  (Stöckl,  2021),  and  intrinsic  dynamics  ( Padmanabhan,  2010;   Gjorgjieva,             

48 2016;  Duarte,  2019;  Perez-Nieves,  2021;  Zeldenrust,  2021).  Broadly,  these  studies  find  computational              

49 benefits  from  adding  heterogeneity  to  neurons.  Burnham  et  al,  2021  and  Perez-Nieves  et  al,  2021                 

50 investigated  adding  heterogeneous  synaptic  and  membrane  timescales,  finding  improved  performance  on             

51 standardized  sequential  datasets.  Stöckl  et  al,  2021  constructed  networks  with  cell  type  specific               

52 connectivity  rules,  and  found  improved  performance  with  reduced  number  of  neurons.  Zeldenrust  et  al,                

53 2021  analytically  derived  a  class  of  spiking  network  models  that  optimally  track  time-varying  inputs,                

54 resulting  in  networks  with  diverse  internal  dynamics.  We  build  on  these  results  by  instantiating  cell  type                 

55 diversity  as  mixed  activation  functions,  and  explore  the  possible  role  for  neural  heterogeneity  in                

56 feed-forward   computation   in   CNNs   performing   image   classification.     

57 One  basic  classification  of  neurons  uses  their  electrical  input-output  relationships  characterizing  them              

58 electrophysiologically  based  on  features  of  their   f-I  curves—nonlinear  functions  that  map  input  current  to                

59 neuronal  firing  rate  (Izhikevich,  2007).  In  the  deep  learning  context,  neurons  are  reduced  to  units                 

60 represented  by  a  single,  1-dimensional  quantity:  their  activation  function.  Activation  functions  are              

61 typically  nonlinear  functions  that  transform  the  weighted  sum  of  a  unit’s  input  to  an  output  value.  Taking                   

62 advantage  of  this  similarity  between  activation  functions  and   f-I  curves,  we  can  designate  different  CNN                 

63 unit   cell   types   by   applying   mixed   activation   functions   as   an   analog   for   electrophysiological   classification.     
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64 Applying  these  constraints  in  the  deep  learning  context  presents  an  opportunity  to  use  CNNs  as  a  model                   

65 for  studying  the  role  that  heterogeneous  cell  types  might  play  in  feed-forward  sensory  coding.  Here  we                  

66 investigate  the  effects  of  adding  mixed  activation  functions  as  an  analog  for  cell  types  to  an  existing  CNN                    

67 architecture.  To  constrain  our  investigation  we  did  not  explore  heterogeneous  connectivity  (Stöckl,  2021),               

68 synapses  (Burnham,  2021),  timescales  (Burnham,  2021  and  Perez-Nieves,  2021),  or  spike-timing             

69 (Zeldenrust,  2021).  We  seek  to  characterize  the  network  response  to  the  addition  of  cell  types  in  terms  of                    

70 classification  accuracy,  learning,  and  the  network’s  internal  representation  of  the  input  space.  We  find  that                 

71 mixed  activation  functions  can  improve  image  classification  compared  to  control  homogeneous  networks,              

72 and  that  the  benefit  of  mixed  activation  functions  is  larger  in  more  constrained  networks.  Finally,  we  find                   

73 that   internal   representations   in   mixed   networks   differ   from   the   control   networks.     

  

74 Results   
75 Mixed  activation  functions  on  an  image  classification  task .  To  investigate  the  role  of  heterogeneous               

76 cell  types  in  feed-forward  processing,  we  implemented  a  programmatic  framework  that  generates  CNN               

77 instances  containing  heterogeneous  configurations  of  activation  functions,  then  trains  them  on  an  image               

78 classification  task.  We  adopted  the  CIFAR-10  image  set  as  our  primary  classification  benchmark.  This                

79 imageset  contains  10  image  classes  with  6000  exemplars  in  each  class  (Krizhevsky,  2009).  As  a  standard                  

80 network  testbed  we  used  the  popular,  relatively  simple,  VGG11  architecture  (Simonyan  &  Zisserman,               

81 2014).  VGG11  contains  11  composite  layers  including  8  convolutional  layers  and  3  fully  connected                

82 layers.  We  started  experimentation  with  VGG11  because  its  uniform  architecture  across  layers  allows  for                

83 straightforward  analysis  and  modification,  its  popularity  means  its  performance  is  well-studied  on  popular               

84 datasets,   and   its   depth   offers   the   ability   to   attain   state   of   the   art   classification   accuracy.     

  

85 We  replaced  the  homogeneous  activation  functions  (Figure  1a)  in  VGG11  to  introduce  heterogeneity               

86 (Figure  1b).  In  particular,  each  mixed  network  contains  two  activation  functions  within  every  activation                

87 layer  and  fully  connected  layer.  We  refer  to  a  network  configuration  that  mixes  activation  functions  A  and                   

88 B  with  a  name  of  the  form  “mixed  A-B”  (Figure  1b),  and  a  homogeneous  control  network  that  uses  only                     

89 A  or  B  as  “control  A”  or  “control  B”  (Figure  1a).  Note  that  our  mixed  networks  contain  the  same  number                      

90 of  units,  connections,  and  learnable  parameters  as  the  control  networks.  For  each  mixed  or  control                 

91 configuration,  we  trained  10  initializations  of  the  same  network  architecture  with  random  starting               

92 weights.  This  approach  allows  us  to  statistically  assess  whether  mixed  activation  functions  improve  image                

93 classification  ability.  For  example,  comparing  the  control  networks  Swish(7.5),  and  PTanh(1)  (Figure  1c),               

94 with  the  corresponding  mixed  network  Swish(7.5)-PTanh(1),  we  find  the  mixed  network  outperforms              

95 both   the   linear   average   of   the   two   control   networks,   and   each   control   network   individually   (Figure   1d).     

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449346


  
96 Figure  1.  (a)  Homogeneous  control  networks  corresponding  to  the  mixed  network  in  (b).  Each  control  network                  
97 contains  only  one  activation  function  across  all  units.   (b)   Illustration  of  mixed  activation  functions  within  a                  
98 CNN.  PTanh  and  Swish  units  are  intermixed  within  each  activation  and  fully  connected  layer  in  the  network.   (c)                    
99 PTanh  and  Swish  nonlinear  activation  functions.  PTanh  is  saturating,  while  Swish  has  rectification  properties.                

100 (d)  Comparison  of  final  classification  accuracies  for  a  heterogeneous  configuration  of  VGG11  and  its                
101 corresponding  control  networks.  For  each  network  type,  each  dot  represents  the  final  accuracy  of  a  single                  
102 random  initialization,  and  the  dashed  line  is  the  mean  accuracy  across  initializations.  The  max  prediction  is  the                   
103 greater  of  the  two  control  cases,  while  the  linear  prediction  is  the  average  of  the  two  control  cases.  Here  the                      
104 mixed  network  outperforms  both  predictions.   (e)  Examples  of  Swish  and  PTanh  nonlinearities  over  a  range  of                  
105 parameter   values.   
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106 Search  space.  To  keep  the  scope  of  the  investigation  practical,  we  defined  a  search  space  that  balances                   

107 dynamic  range  of  effect  with  the  feasibility  of  exploration.  The  dimensions  of  this  space  include  the  set  of                    

108 candidate  activation  functions  and  their  associated  parameters,  the  ten  targetable  activation  layers  in               

109 VGG11,  and  the  set  of  locations  within  the  targeted  layers  at  which  activation  functions  can  be  applied.                   

110 Since  an  exhaustive  exploration  of  all  possible  permutations  of  even  a  small  set  of  activation  functions  in                   

111 a  single  layer  is  not  feasible,  we  set  out  to  target  all  activation  layers  with  systematic  cell  type                    

112 arrangements  that  offer  a  good  sampling  of  the  overall  search  space.  Our  results  presented  here  used  a  1:1                    

113 ratio   of   two   activation   functions   within   each   layer   of   each   network.     

114 Families  of  parametric  activation  functions.  The  choice  of  activation  functions  in  artificial  deep               

115 networks  is  an  active  area  of  research  (Ramachandran  et.  al.,  2017).  Different  activation  functions  have                 

116 been  historically  used  in  deep  learning  with  different  motivations  (Goodfellow  et.  al.,  2016).  We                

117 separated  activation  functions  into  different  families  that  exhibit  the  qualitatively  different  behaviors  of               

118 rectification  and  saturation  (Figure  1c).  Commonly  used  members  of  each  family  are  thought  to  offer                 

119 different  advantages  in  deep  neural  networks.  For  example,  rectifying  functions  like  ReLU  are  often                

120 piecewise  linear,  and  are  thought  to  help  the  network  develop  a  sparse  internal  representation  of  the  input                   

121 space.  Saturating  activation  functions  like  Tanh  operate  with  bounded  outputs  at  input  extremes.  And  a                 

122 non-monotonic  activation  function  like  Swish  offers  behavior  that  is  mostly  rectifying,  while  maintaining               

123 continuous  differentiability.  We  reasoned  that  mixed  activation  functions  might  offer  computational             

124 benefits  by  combining  the  diverse  advantages  of  different  function  families.  We  chose  the  parametric                

125 activation  function  Swish  to  represent  the  rectifying  family  (eq.  1),  and  the  saturating  activation  function                 

126 PTanh   of   our   own   design   to   represent   the   saturating   family   (eq.   2).   

  

127 In  addition  to  mixing  across  function  families,  we  can  evaluate  the  benefits  of  mixing  within  a  function                   

128 family  by  changing  the  function  hyper-parameters  𝜷  and  α.  Over  a  range  of  parameters,  a  single                  

129 nonlinearity  like  Swish  or  PTanh  can  take  a  variety  of  forms  (Figure  1e).  PTanh  has  a  parameter  α  that                     

130 changes  the  curvature  of  the  activation  function  such  that  the  network  cannot  compensate  by  scaling  the                  

131 input  weights.  As  the  Swish  parameter  𝜷  increases,  the  function  displays  increasing  rectification,               

132 becoming  more  similar  to  ReLU.  Here  we  explore  mixing  cell  types  both  “within”  function  families:  the                  

133 same  function  with  a  different  parameter  value,  and  “across”  function  families:  different  functions  with                

134 potentially   different   parameter   values.   
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135 Accuracy  relative  to  linear  and  max  prediction.   To  evaluate  the  role  of  mixed  activation  functions,  the                  

136 performance  of  a  given  mixed  network  is  compared  to  that  of  its  corresponding  homogeneous  control                 

137 networks  using  two  metrics:  the  mixed  network’s  linear  and  max  prediction  (Figure  1d).  The  linear                 

138 prediction  expects  the  mixed  network  to  perform  as  well  as  a  linear  combination  of  its  control  network                   

139 accuracies.  Our  mixed  networks  use  a  1:1  ratio  of  two  activation  functions,  so  the  linear  prediction  is                   

140 simply  the  average  of  the  two  control  accuracies.  For  example,  the  control  networks  Swish(𝜷=7.5)  and                 

141 PTanh(α=1)  have  mean  final  accuracies  88.59%  and  85.24%,  therefore  the  linear  prediction  for  mixed                

142 network  Swish(𝜷=7.5)-PTanh(α=1)  is  86.92%.  Note  here  that  the  mean  final  accuracy  for  both  the                

143 homogeneous  control  networks  and  the  mixed  networks  is  the  average  over  10  random  initializations  of                 

144 each  network  type.  The  max  prediction  accounts  for  the  possibility  that  a  mixed  network  learns  to                  

145 compensate  for  the  introduction  of  a  population  of  units  with  a  nonlinearity  that  performs  poorly  by                  

146 adjusting  its  weights  to  “ignore”  those  units,  thereby  inaccurately  inflating  the  mixed  net’s  performance                

147 with  respect  to  its  linear  prediction.  The  max  prediction  is  resistant  to  this  effect.  It  expects  the  mixed                    

148 network  to  perform  as  well  as  the  best  of  its  control  network  accuracies.  For  example,  given  the  same                    

149 control  network  accuracies  presented  above,  the  max  prediction  for  mixed  network  Swish(7.5)-PTanh(1)              

150 is  88.59%.  Figure  1d  shows  results  for  Swish(7.5)-PTanh(1),  with  mean  final  accuracy  of  89.27%,                

151 outperforms  both  the  maximum  and  linear  prediction  of  its  control  networks.  Our  primary  investigation                

152 aims  to  uncover  under  what  conditions  mixed  activation  function  networks  can  outperform  the  max                

153 prediction   of   their   control   networks.     

154 Diverse  heterogeneous  networks  outperform  homogeneous  control  networks.  Using  the  VGG11            

155 architecture,  we  applied  heterogeneous  configurations  within  and  across  the  parametric  spaces  of  Swish               

156 and  PTanh  nonlinearities,  then  compared  the  final  validation  accuracies  attained  by  each  configuration  on                

157 CIFAR-10  to  the  linear  and  max  prediction  based  on  each  configuration’s  corresponding  homogeneous               

158 control  networks.  We  observe  that  cross-family  networks  and  within-family  networks  composed  of              

159 diverse  nonlinearities  frequently  beat  their  linear  predictions  (34  out  of  35  cross-family  and  21  out  of  31                   

160 within-family  using  VGG11).  However,  when  we  hold  the  same  network  configurations  to  the  higher                

161 standard  of  the  max  prediction  (see  example  in  Figure  1d),  network  performance  relative  to  the  control                  

162 networks   significantly   depends   on   the   choice   of   activation   function   parameters.     

163 Using  the  max  prediction  benchmark,  6  out  of  35  cross-family  heterogeneous  configurations  impart  an                

164 improvement  in  image  classification  accuracy  to  VGG11  that  is  statistically  significant  after  adjusting  for                

165 multiple  comparisons  (Figure  2a,  note  that  this  panel  excludes  networks  containing  nonlinearities              

166 Swish(𝜷=0.1)  and  PTanh(α=0.01)  for  visual  clarity).  We  refer  to  a  network  that  beats  its  max  prediction  as                   
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167 exhibiting  a  positive  response  to  mixed  activation  function.  The  largest  positive  response  is  that  of                 

168 Swish(7.5)-PTanh(1),  which  beats  its  max  prediction  by  0.7%  on  average.  The  magnitude  of  this  effect                 

169 corresponds  to  around  70  additional  correct  image  classifications  in  CIFAR-10’s  test  set  that  neither                

170 control  network  configurations  Swish(7.5)  or  PTanh(1)  was  able  to  correctly  classify  on  average.  The                

171 mean  validation  accuracy  relative  to  max  prediction  for  cross-family  configurations  of  VGG11  is  +0.04%                

172 (Figure  2b),  and  +0.79%  relative  to  the  linear  prediction  (Figure  2c).  VGG11’s  cross-family  parameter                

173 landscape  is  relatively  smooth,  with  a  clear  preference  for  higher  Swish  𝜷  values  (Figure  2d).  Specifically,                  

174 we  find  configurations  that  mix  PTanh(α)  with  Swish(𝜷)  functions  using  higher  𝜷  values  exhibit  the                 

175 largest  increase  in  accuracy,  and  the  highest  final  accuracy  overall  (Figure  2d).  However,  we  see  a  less                   

176 clear  preference  for  PTanh’s  α  values.  It  is  worth  noting  that  as  Swish’s  𝜷  increases,  the  Swish  function                    

177 has  stronger  rectification  and  the  activation  profile  more  closely  approximates  that  of  ReLU  (Figure  1e).                 

178 These   results   demonstrate   that   heterogeneous   activation   functions   can   improve   image   classification.     

179 Within-family  heterogeneous  configurations  of  VGG11  rarely  outperform  their  max  predictions  (Figure             

180 2b)—none  of  the  31  such  configurations  explored  beat  their  max  prediction  with  statistical  significance.                

181 This  demonstrates  that  the  benefit  of  mixed  activation  functions  may  arise  from  utilizing  the  diverse                 

182 characteristics   of   activation   function   families,   such   as   saturation   and   rectification.     

183 Sticknet8—a  reduced-parameter  CNN.   Between  its  filters,  biases,  and  weights,  VGG11  contains  over              

184 120  million  trainable  parameters.  Additionally,  since  VGG11  has  been  demonstrated  to  achieve  over  90%                

185 testing  accuracy  on  CIFAR-10  (Fu  2019),  there  remains  less  than  10%  left  for  potential  improvement                 

186 beyond  that  as  a  result  of  the  addition  of  heterogeneous  activation  functions.  Motivated  by  the  factors                  

187 above,  we  reasoned  that  more  significant  improvements  may  be  readily  observable  in  a  network  more                 

188 constrained  than  VGG11.  Therefore  we  set  out  to  investigate  the  effects  of  adding  mixed  cell  types  to                   

189 Sticknet8—a  CNN  which  we  describe  here,  based  on  the  VGG11  architecture,  but  with  approximately                

190 1000  times  fewer  parameters.  Sticknet8  joins  the  first  2  convolutional  layers  from  VGG11  with  VGG11’s                 

191 final  3  fully-connected  layers,  while  significantly  reducing  the  number  of  parameters  per  layer.  It                

192 preserves  aspects  of  VGG11’s  architecture  including  its  3x3  convolutional  filters,  its  repeated  groups  of                

193 convolutional,  activation,  and  pooling  layers,  and  its  relative  layer-to-layer  increases  in  parameters,  but               

194 reduces  the  number  of  filters  in  the  first  convolutional  layer  from  64  to  just  8.  These  changes  result  in  a                      

195 reduction  from  VGG11’s  128  million  parameters  down  to  Sticknet8’s  119,000.  Using  Sticknet8  as  a  base                 

196 architecture,  we  repeated  the  experiments  performed  on  VGG11  with  the  same  set  of  heterogeneous                

197 network   configurations.   

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449346doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449346


  
198 Figure  2.  Mixed  activation  functions  improve  image  classification  performance.  (a)  Summary  of  mixed               
199 network  accuracy  relative  to  max  prediction  compared  to  control  networks  for  VGG11  (red)  and  Sticknet8  (teal)                  
200 architectures.  Only  cross-family  networks  are  shown  for  clarity.  Error  bars  represent  a  95%  confidence  interval                 
201 across  10  independently  trained  random  initializations.  Stars  and  darker  shading  indicate  significant              
202 improvement  of  mixed  network  performance  over  control  networks  (one-sided  t-test,  p  <  0.05  after                
203 Benjamini-Hochberg  correction  for  multiple  comparisons).  Networks  containing  nonlinearities  Swish(𝜷=0.1)           
204 and  PTanh(α=0.01)  excluded  for  visual  clarity  (present  in  remaining  panels).   (b)   Comparison  of  mean  peak                 
205 accuracy  relative  to  max  prediction  for  cross-  and  within-family  mixed  network  configurations  of  VGG11  (only                 
206 significant  networks  included).   (c)  Same  as  (b)  using  linear  prediction.  Notably,  both  cross-  and  within-family                 
207 mixed  networks  beat  their  linear  predictions  on  average  for  both  network  architectures.   (d)  Peak  accuracy                 
208 parameter  landscapes  for  within-family  Swish  networks  (left)  and  cross-family  networks  (right)  for  VGG11               
209 architecture.    (e)    Same   as   (d)   using   Sticknet8   architecture.   

  

210 Sticknet8  offers  more  pronounced  benefits  of  mixed  activation  functions.   As  expected,  the  CIFAR-10               

211 final  validation  accuracies  for  Sticknet8  are  generally  lower  than  they  are  for  the  less  constrained  VGG11.                  

212 The  best  configurations  of  Sticknet8  attain  peak  accuracies  around  68%  or  lower  (Figure  2e).  However,                 

213 the  positive  responses  to  the  addition  of  cross-family  mixed  nonlinearities  are  both  more  frequent  across                 

214 explored  network  configurations  (Figure  2a)  and  more  pronounced  within  each  configuration  for              

215 Sticknet8  than  for  VGG11  (Figure  2b),  supporting  our  expectation  that  improvements  would  be  more                
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216 readily  observable  in  a  parameter-constrained  network  that  operates  in  a  lower  peak  accuracy  regime  of                 

217 CIFAR-10  than  VGG11.  Consistent  with  VGG11,  the  max  prediction  is  a  higher  standard  than  the  linear                  

218 prediction,  and  cross-family  networks  outperform  within-family  networks.  Compared  to  the  linear             

219 prediction,  42  out  of  42  cross-family,  and  27  out  of  36  within-family  configurations  outperform  the  linear                  

220 prediction.  Using  the  max  prediction  benchmark,  21  of  the  42  cross-family  configurations  of  Sticknet8                

221 exhibit  a  positive  response  to  the  introduction  of  mixed  nonlinearities  (Figure  2a,  note  again  some                 

222 network  configurations  excluded  from  figure  for  visual  clarity),  and  3  out  of  36  within-family                

223 configurations   outperformed   their   max   predictions.   

224 While  the  effects  in  Sticknet8  hold  over  a  larger  landscape  of  parameter  values,  the  performance  is  less                   

225 sharply  dependent  on  specific  parameter  values  (Figure  2e).  Interestingly,  the  best  performing  parameter               

226 combinations  differ  between  Sticknet8  and  VGG11,  with  Sticknet8  achieving  the  best  performance  with               

227 smaller  values  of  Swish’s  𝜷  compared  to  VGG11  (Figure  2d,e).  Notably,  several  mixed  configurations                

228 that  negatively  impacted  the  performance  of  VGG11  are  among  the  top  performing  configurations  of                

229 Sticknet8  (Figure  2a):  Swish(2)-PTanh(1),  Swish(5)-PTanh(0.05),  and  Swish(2)-PTanh(0.05).  These  three           

230 configurations   beat   their   max   predictions   by   almost   4%.     

231 Our  results  with  Sticknet8  demonstrate  the  computational  advantages  of  mixed  activation  functions  are               

232 more  pronounced  in  a  more  constrained  network,  with  mixed  activation  configurations  beating  their  max                

233 predictions  both  more  frequently  and  with  larger  magnitudes.  As  with  VGG11,  we  observe  the  largest                 

234 benefit   from   mixing   across   activation   function   families.     

  

235 Activation  functions  alter  dimensionality  of  network  responses. To  gain  insight  into  when  and  how                

236 mixed  activation  functions  improve  classification  accuracy,  we  measured  the  dimensionality  of  network              

237 activations  within  each  layer  in  response  to  a  stratified  subset  of  500  CIFAR-10  images.  We  measured                  

238 dimensionality  using  the  participation  ratio.  The  participation  ratio  measures  the  dimensionality  as  the               

239 square  of  the  sum  of  the  covariance  matrix  of  unit  activation  eigenvalues  over  the  sum  of  the  squared                    

240 eigenvalues   ( Recanatesi,   2019a;   Recanatesi,   2019b;   Gao,   2017;   Rajan,   2010 ):   

241
.   

  

242 We   adopted   the   participation   ratio   because   it   is   simple   to   compute   and   interpret.     
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243 Figure  3.  Different  activation  functions  change  the  dimensionality  of  internal  representations.  (a)   The  average                

244 dimensionality  of  the  response  to  each  image  category  (within  category  dimensionality)  for  different  classes  of                 

245 Sticknet8  networks  (mean  ±  95%  CI).   (b)  Same  as  (a)  for  VGG11  networks.   (c)   Dimensionality  across  layers  for  an                     

246 example  Sticknet8  mixed  network  and  its  control  networks  (colors).  Each  network  has  10  random  initializations                 

247 (lines).   (d)  Same  as  (c)  for  VGG11.   (e)  Dimensionality  across  three  swish  control  networks  with  different  parameter                   

248 values.   (f)  Dimensionality  across  three  cross-family  mixed  networks,  varying  the  swish  parameter,  and  fixing  the                 

249 tanh   parameter.     

  

250 We  find  in  both  Sticknet8  and  VGG11  that  changing  the  activation  function  dramatically  alters  the                 

251 dimensionality  of  network  activations  within  each  layer  (Figure  3a,b).  Consistent  with  previous  findings               

252 ( Recanatesi,  2019a ),  in  both  Sticknet8  and  VGG11  we  find  dimensionality  generally  increases  moving               

253 deeper  into  the  network  before  decreasing  in  the  final  layers  (Figure  3a,b).  Additionally,  in  both                 

254 architectures,  the  dimensionality  was  largely  consistent  across  the  10  initializations  of  each  network               

255 configuration,  with  consistency  increasing  in  deeper  layers  (Figure  3c,d).  The  relationship  between              

256 activation  functions  and  dimensionality  within  each  layer  appears  complex.  As  a  demonstration,  Figure  3                

257 shows  the  dimensionality  of  several  example  network  configurations.  Mixed  networks  generally             

258 displayed  dimensionalities  that  differed  from  their  control  networks,  and  did  not  appear  to  follow  a  linear                  

259 relationship  (Figure  3c,d).  The  dimensionality  responds  nonlinearly  to  smooth  variation  of  the  activation               

260 function  parameter  (Figure  3e).  In  a  mixed  network  configuration  smoothly  varying  the  parameter  of  one                 

261 activation  function  in  the  presence  of  a  constant  second  activation  function  resulted  in  large  changes  in                  
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262 dimensionality  (Figure  3f).  For  example  in  Figure  3,  comparing  each  Swish()  control  network  in  Figure                 

263 3e  with  the  corresponding  mixed  network  in  Figure  3f,  we  find  the  layer  with  the  largest  dimensionality                   

264 shifts  to  a  deeper  layer.  In  the  case  of  Sticknet8,  cross-family  networks  and  within-family  Swish                 

265 networks—but  not  within-family  PTanh  networks—displayed  smaller  dimensionality  throughout  layers           

266 than  control  networks  on  average  (Figure  3a).  We  did  not  observe  this  pattern  in  VGG11  (Figure  3b).  This                    

267 discrepancy  may  underlie  the  increased  benefit  of  mixed  activation  functions  in  Sticknet8  compared  to                

268 VGG11.  In  summary,  we  find  that  modifying  activation  functions  can  dramatically  alter  the  internal                

269 representations   of   deep   convolutional   networks.     

  

270 Discussion   
271 Our  results  show  that  the  addition  of  heterogeneous  activation  functions  to  deep  networks  can  improve                 

272 image  classification  accuracy  compared  to  the  corresponding  control  activation  functions  independently.             

273 Mixing  activation  functions  across  Swish  and  PTanh  families  had  a  larger  benefit  than  within  either                 

274 family  alone.  We  found  larger  improvements  from  mixed  activation  functions  in  a  more  constrained                

275 network.  The  dimensionality  of  the  internal  representation  varied  greatly  depending  on  the  choice  of                

276 activation   functions.     

277 In  this  study  we  instantiated  neural  cell  types  by  their  activation  functions,  as  a  simplification  of  the   f-I                    

278 curves  used  to  classify  neurons,  typically  into  “Type  1”  and  “Type  2”  excitability.  These  types  differ  in                   

279 how  abruptly  their   f-I   curves  change  in  response  to  increase  input  current.  Interestingly,  one  recent  study                  

280 found  that  “Type  1”  and  “Type  2”  excitable  neurons  make  spike  timing  networks  more  robust  to                  

281 correlated  noise  (Zeldenrust,  2021).  Our  findings  suggest  that  diverse   f-I  curves  may  offer  feed-forward                

282 computational  benefits.  However,  some  neurons  exhibit  nonlinear  dynamics  in  their  dendrites  that  are  not                

283 effectively  summarized  by  the   f-I  curve,  underscoring  that  activation  functions  are  an  approximation  of                

284 single  neuron  dynamics.  Emerging  work  modeling  dendritic  computation  (Beniaguev,  2019;  Gidon,  2020)              

285 has  parallels  to  network-in-network  approaches  in  deep  learning  (Lin,  2013;  Manessi,  2019).  Beyond               

286 dynamical  properties,  there  are  many  other  attributes  of  neural  diversity  that  are  not  commonly  translated                 

287 to  deep  learning,  such  as  cell  type  specific  sensory  inputs,  excitatory  vs  inhibitory  neurons,  and                 

288 neuromodulation.  Our  findings  join  recent  studies  exploring  the  computational  benefits  of  neural              

289 diversity,  such  as  cell  type  specific  connectivity  (Stöckl,  2021),  synaptic  timescales  (Burnham,  2021;               

290 Perez-Nieves,  2021),  and  membrane  timescales  (Perez-Nieves,  2021).  Determining  the  functional  role  of              

291 neural  cell  types  is  an  active  area  of  research,  and  many  of  these  cell  type  attributes  may  have                    

292 translational   benefit   to   deep   learning   applications.   
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293 An  alternative  approach  to  adding  heterogeneity  to  network  activation  functions  is  to  parameterize  and                

294 learn  the  activation  function  parameters  for  each  unit  in  the  network.  This  parametric  approach  has  been                  

295 used  with  ReLU  (He,  2015;   Balaji ,  2019),  a  set  of  basis  functions  (Goyal,  202),  and  piecewise  linear                   

296 functions  (Agostinelli,  2015).  Learning  the  activation  function  parameters  has  the  benefit  of  increased               

297 flexibility  at  the  cost  of  additional  parameters,  and  choices  about  the  parametric  form  of  the  activation                  

298 functions.  We  find  the  largest  benefit  from  mixing  across  parametric  families  of  activation  functions,                

299 demonstrating   a   distinct   benefit   beyond   existing   parametric   approaches.     

300 These  findings  raise  an  intriguing  question:  how  do  diverse  nonlinearities  impart  improvements  in               

301 feed-forward  processing?  One  possibility  is  that  mixed  activation  functions  serve  as  more  diverse  basis                

302 functions  within  each  layer,  allowing  increasingly  complex  transformations  from  one  layer  to  another,               

303 increasing  the  overall  expressivity  of  the  network.  A  related  possibility  is  that  mixed  activation  functions                 

304 balance  the  computational  roles  of  sparsification  and  saturation  across  transformations  of  the  network’s               

305 internal  representation  of  the  input  space.  Future  work  should  further  investigate  the  underlying               

306 mechanisms  of  diverse  nonlinearities  by  examining  the  internal  representations  in  mixed  versus              

307 non-mixed  networks.  The  relationship  between  network  performance  and  internal  representations  is  an              

308 active   field   of   study,   and   mixed   activation   functions   may   serve   as   a   useful   test   case   for   future   work.     

309 Our  study  explored  the  simplest  alternating  configurations  for  mixed  activation  functions  in  a  1:1  ratio.                 

310 Ideally,  automatic  search  techniques  could  generalize  our  approach  to  find  optimal  combinations  of               

311 multiple  activation  function  families  across  different  layers  of  deep  networks.  Additionally,  we  found  the                

312 highest  performing  activation  functions  in  VGG11  and  Sticknet8  differed.  This  highlights  the  need  for                

313 further  research  to  understand  which  activation  functions,  and  in  which  combinations,  lead  to  the  largest                 

314 improvement  in  accuracy.  Our  finding  that  a  more  constrained  network  had  a  larger  benefit  from  mixed                  

315 cell  types  suggests  that  one  may  see  larger  benefits  on  more  complex  datasets.  In  addition,  future  work                   

316 should  explore  the  role  of  mixed  activation  functions  in  settings  beyond  image  classification.  Deep                

317 learning  is  rapidly  being  applied  to  many  tasks,  and  our  study  is  only  an  initial  investigation  into  the  role                     

318 of   diverse   activation   functions.     

319 In  summary,   heterogeneous  cell  types  are  a  striking  feature  of  biological  circuits,  and  notably  absent  in                  

320 deep  artificial  neural  networks.  In  this  study  we  instantiated  diverse  cell  types  by  diverse  activation                 

321 functions.  While  many  possible  roles  for  cell  types  have  been  proposed,  here  we  demonstrate  their  benefit                  

322 in  feed-forward  computation  in  deep  convolutional  networks.  This  finding  opens  a  large  number  of  future                 

323 studies   to   examine   the   role   of   cell   types   in   biological   circuits,   and   as   tools   in   machine   learning.     
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324 Methods   
325 Network.  Our  base  network  architecture  is  VGG11  (Simonyan  &  Zisserman,  2014).  The  Pytorch  instance               

326 of  VGG11  contains  11  composite  layers,  8  convolutional  layers  and  3  fully-connected  layers.  Each                

327 convolutional  layer  consists  of  a  series  of  3x3  convolutional  filters,  a  ReLU  activation  layer,  and  a                  

328 pooling  layer  that  is  included  following  activation  layers  1,  2,  4,  6,  and  8.  Each  fully-connected  layer                   

329 consists  of  a  series  of  units  linearly  connected  to  input  features  with  weights  and  biases,  followed  by  a                    

330 ReLU   activation   layer   and   a   dropout   layer.   VGG11   contains   128   million   trainable   parameters.     

331 Additionally,  we  developed  a  smaller  network  we  named  Sticknet8.  Sticknet8  takes  the  first  two                

332 convolutional  layers  from  VGG  and  grafts  them  onto  VGG’s  final  3  fully-connected  layers.  Additionally,               

333 the   number   of   units   per   layer   decreased   (Table   1).   Sticknet8   contains   119,000   trainable   parameters.     

  

334 Pytorch  framework.   We  trained  networks  using  Pytorch  (Paszke,  2019).  Each  network  had  either  the                

335 VGG11  or  Sticknet8  architecture  with  random  initial  weights.  Each  network  configuration  is  described  by                

336 the  names  of  their  control  nonlinearities  and  their  corresponding  parameter  values.  We  initialized  10                

337 instances  of  the  base  network  with  random  weights,  then  replaced  every  ReLU  layer  with  a                 

338 MixedActivationLayer,   alternating   the   control   nonlinearities   across   each   unit   in   the   layer.   

  

339 Training  dataset  and  procedure.  We  trained  our  networks  for  image  classification  on  the  CIFAR-10                

340 dataset—a  10-class  set  of  32x32  pixel  images  with  6000  images  per  class,  broken  into  5000  training  and                   

341 1000  validation  images  (Krizhevsky,  2009).  Networks  are  optimized  for  top-1  accuracy  via  cross-entropy               

342 loss  using  the  training  algorithm  Adam,  which  picks  the  best  learning  rate  per  network  parameter                 

343 (Kingma,  2015).  This  counteracts  effects  observed  when  using  stochastic  gradient  descent  where  a  global                

344 learning  rate  can  lead  to  different  observed  rates  of  change  in  loss  depending  on  the  choice  of  activation                    

345 function.  For  each  network  configuration,  10  random  initializations  are  trained  independently  to  assess               

346 statistical  significance,  using  the  same  optimal  learning  rate  selected  for  each  network  configuration.               

347 VGG11  and  Sticknet8  networks  were  trained  without  using  a  learning  rate  scheduler  for  500  or  300                  

348 epochs   respectively.   
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349 Table   1.   Description   of   network   architectures.     

  

  

  

Layer   VGG11   Sticknet8     

Conv1   64   filters   8   filters   

Activation1   64   units   8   units   

MaxPool1   Kernel=2,   stride=2   Kernel=2,   stride=2   

Conv2   128   filters   16   filters   

Activation2   128   units   16   units   

MaxPool2   Kernel=2,   stride=2   Kernel=2,   stride=2   

Conv3   256   filters   -   

Activation3   256   units   -   

Conv4   256   filters   -   

Activation4   256   units   -   

MaxPool4   Kernel=2,   stride=2   -   

Conv5   512   filters   -   

Activation5   512   units   -   

Conv6   512   filters   -   

Activation6   512   units   -   

MaxPool6   Kernel=2,   stride=2   -   

Conv7   512   filters   -   

Activation7   512   units   -   

Conv8   512   filters   -   

Activation8   512   units   -   

MaxPool8   Kernel=2,   stride=2   -   

FC9   4096   units   128   units   

Activation9   4096   units   128   units   

FC10   4096   units   128   units   

Activation10   4096   units   128   units   

FC11   4096   units   128   units   
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350 Figure  4.   Learning  rate  vs.  cross-entropy  loss  over  a  single  training  epoch.  Lower  learning  rates  fail  to  improve                    
351 the  loss,  while  higher  learning  rates  cause  it  to  diverge.  The  best  value  is  somewhere  on  the  negative  slope                     
352 between  ~5e-4  and  1e-2  (Smith  2015).  We  initialized  (Take  learning  rate,  blue  dot)  each  network  configuration                  
353 with   50%   of   the   maximum   learning   rate   (Peak   learning   rate,   green   dot).     

  

354 Network  training  and  initial  learning  rate  selection.  Given  that  our  networks  contain  mixtures  of                

355 activation  functions  with  different  input/output  scaling  properties,  it  was  important  to  use  a  training                

356 procedure  that  would  optimize  individual  parameters  at  different  learning  rates.  However,  Adam  -  our                

357 optimizer  (Kingma,  2015)  -  is  sensitive  to  the  initial  global  learning  rate  specified  during  instantiation.  As                  

358 with  stochastic  gradient  descent,  specifying  too  low  an  initial  learning  rate  results  in  small  updates  to                  

359 network  parameters  that  fail  to  reduce  the  loss  function  over  many  training  epochs,  while  specifying  too                  

360 high  a  learning  rate  prevents  the  optimizer  from  finding  loss  minima,  leading  to  divergent  behavior.  This                  

361 effect  is  particularly  challenging  in  our  case  because  a  given  network  configuration  can  have  its  own                  

362 optimum  initial  learning  rate  that  if  used  to  train  other  configurations  can  significantly  hamper  their                 

363 learning,  making  comparisons  of  final  accuracy  less  meaningful.  Therefore  we  adopted  a  routine  to                

364 choose  the  best  initial  learning  rate  per  network  configuration  from  a  range  of  values  based  on  loss                   

365 recorded  at  each  value  (Smith  2015).  The  global  learning  rate  is  swept  from  low  to  high  over  the  course  of                      

366 a  single  training  epoch,  stepping  the  learning  rate  and  recording  the  loss  after  each  minibatch.  The  best                   

367 initial  learning  rate  is  then  determined  to  be  the  highest  value  before  loss  starts  to  diverge,  i.e.  the  lowest                     

368 point  of  the  LR-loss  profile  in  Figure  4.  This  value  is  averaged  across  10  network  initializations  per                   

369 configuration,  divided  by  2  to  account  for  variance  in  the  LR-loss  profile  across  initializations  that  might                  

370 cause  the  routine  to  select  too  high  a  value,  and  given  as  input  to  the  Adam  optimizer  at  the  start  of                       

371 training.   
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372 Max  and  Linear  Predictions.   For  each  mixed  network,  we  define  a  maximum  and  linear  prediction.  For                  

373 each  corresponding  control  network,  we  compute  the  average  validation  accuracy  across  the  10  random                

374 initiations,  and  refer  to  this  as  the  control  accuracy.  The  maximum  prediction  is  the  maximum  control                  

375 accuracy  across  all  corresponding  control  networks.  The  linear  prediction  is  the  weighted  average               

376 between  the  corresponding  control  networks.  Unless  otherwise  specified,  our  control  networks  were              

377 mixed  in  a  1:1  ratio,  so  the  weighted  average  was  a  simple  average.  Where  presented  in  the  text,  95%                     

378 confidence  intervals  were  computed  by  assuming  normally  distributed  variations  across  the  10  random               

379 initiations.     

380 To  establish  statistical  significance  for  our  mixed  networks  compared  to  their  control  cases  we  utilized  a                  

381 1-sided  t-test  between  control  and  mixed  networks.  Pairs  of  initializations  from  both  groups  were                

382 randomly  selected.  We  corrected  for  multiple  comparisons  using  the  Benjamini-Hochberg  correction  to              

383 produce   a   corrected   false-positive   rate   of   p=0.05.   
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483 Appendix   
484 The   full   code   repository,   containing   all   training,   analysis,   and   visualization   code   can   be   found   here:   

485 https://github.com/briardoty/allen-inst-cell-types   
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