A conserved trans regulatory loop involving an odorant binding protein controls male mating behavior in flies

Pablo J Delclos†, Kiran Adhikari†, Oluwatomi Hassan¹, Alexander A Oderhowho¹, Vyshnika Sriskantharajah¹, Tammie Trinh¹, Richard P Meisel¹

¹Co-first author/equal contribution

Affiliation: ¹Department of Biology & Biochemistry, University of Houston, Houston, TX, USA

²Current affiliation: University of Texas Health Science Center School of Biomedical Informatics, Houston, TX, USA

³Current affiliation: University of Texas School of Dentistry, Houston, TX, USA
ABSTRACT

A major goal in evolutionary biology is to understand how natural variation is maintained in sexually selected and sexually dimorphic traits. Hypotheses to explain genetic variation in sexually selected traits include context-dependent fitness effects, epistatic interactions, and pleiotropic constraints. The house fly, Musca domestica, is a promising system to investigate how these factors affect polymorphism in sexually selected traits. Two common Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural house fly populations, appear to be locally adapted to different thermal habitats, and differentially affect male mating success. Here, we perform a meta-analysis of RNA-seq data which identifies genes encoding odorant binding proteins (in the Obp56h family) as differentially expressed between the heads of males carrying YM and IIIM. Differential expression of Obp56h has been associated with variation in male mating behavior in Drosophila melanogaster. We find differences in male mating behavior between house flies carrying the Y chromosomes that are consistent with the relationship between male mating behavior and expression of Obp56h in D. melanogaster. We also find that male mating behaviors in house fly are affected by temperature, and the same temperature differentials further affect the expression of Obp56h genes. However, we show that temperature-dependent effects cannot explain the maintenance of genetic variation for male mating behavior in house fly. Using a network analysis and allele-specific expression measurements, we find evidence that the house fly IIIM chromosome is a trans regulator of Obp56h gene expression. Moreover, we find that Obp56h disproportionately affects the expression of genes on the D. melanogaster chromosome that is homologous to the house fly IIIM chromosome. This provides evidence for a conserved trans regulatory loop involving Obp56h expression that affects male mating behavior in flies. The complex regulatory architecture controlling Obp56h expression suggests that variation in male mating behavior could be maintained by epistasis or pleiotropic constraints.
INTRODUCTION

Sexual selection occurs when there is heritable variation in reproductive success that arises from competition for access to mates (Jones 2016). Sexual selection can shape phenotypic variation within and among species (Seehausen and van Alphen 1999; Greene et al. 2000; Brooks and Endler 2001; van Doorn and Weissing 2002; Rueffler et al. 2006). If a trait is under strong sexual selection, one may expect the fixation of alleles that increase reproductive success. In contrast to this expectation, substantial genetic variation can exist in strongly sexually selected traits (e.g., the lek paradox), and explaining this variation has been a long-standing goal in evolutionary biology (Kirkpatrick and Ryan 1991; Tomkins et al. 2004). Addressing this goal includes determining the genetic basis of sexually selected traits, as well as the environmental drivers that affect variation in these traits (Jia et al. 2000; Ingleby et al. 2010).

Three potential, and non-exclusive, causes of variation in sexually selected traits are epistasis, pleiotropic constraints, and context-dependent fitness effects. Epistatic and pleiotropic constraints are signatures of a complex gene regulatory architecture underlying a trait, and both are predicted to be important genetic mechanisms in maintaining genetic variance, particularly for fitness-related traits (Fenster et al. 1997; Merilä and Sheldon 1999; Arnqvist et al. 2014). For example, although Y chromosome genotype is a major determinant of male fitness in Drosophila melanogaster, those fitness effects depend on the genetic background (Chippindale and Rice 2001). Epistatic interactions between Y-linked and X-linked or autosomal alleles can therefore reduce heritable variation for male fitness. Pleiotropy creates genetic covariation amongst unrelated traits, which can similarly reduce the response to selection and thereby allow genetic variation in sexually selected traits to be maintained (Fitzpatrick 2004; Chenoweth and McGuigan 2010). For instance, Drosophila cuticular hydrocarbons (CHCs) are lipid compounds used for both chemical communication and resistance to various environmental stressors, including desiccation (Chung and Carroll 2015). Disrupted expression of individual genes responsible for CHC production in D. melanogaster can result in significant alterations to both mating behaviors and ecologically relevant CHCs (Marcillac et al. 2005; Shorter et al. 2016).

Lastly, context-dependence, in the form of genotype-by-environment interactions, may also maintain variation when environments fluctuate substantially (Kokko and Heubel 2008). However, the combined effects of ecological and genetic variation on sexually selected and sexually dimorphic traits is especially unresolved, with conflicting evidence for the relative importance of sex-by-genotype-by-environment interactions (Delph et al. 2011; Connallon 2015; Allen et al. 2017; Lasne et al. 2018; Connallon et al. 2019; Ruzicka et al. 2020).

The house fly, Musca domestica, is a promising system to investigate the factors that maintain genetic variation for sexually selected traits. House fly has a polygenic sex determination system, in which multiple male and female determining loci segregate as polymorphisms in natural
populations (Hamm et al. 2015). This polymorphism has remained stable in natural house fly populations since at least the mid-20th century (Kozielska et al. 2008; Meisel et al. 2016). Two common proto-Y chromosomes (IIIM and YM) are distributed along latitudinal clines across multiple continents, with IIIM most common in the south and YM most common in the north (Franco et al. 1982; Tomita and Wada 1989; Hamm et al. 2005). This clinal distribution suggests that geographically heterogeneous selection pressures are responsible for maintaining polygenic sex determination (Levene 1953; Hedrick et al. 1976). Consistent with this prediction, seasonality in temperature is the best predictor of the frequencies of the proto-Y chromosomes across populations (Feldmeyer et al. 2008). The YM and IIIM chromosomes also affect male mating success, with IIIM males exhibiting an advantage over YM males (Hamm et al. 2009).

Together, the geographic distribution of the proto-Y chromosomes and their effects on male mating behavior raise the possibility that polymorphic house fly proto-Y chromosomes affect sexually selected traits in a context-dependent (i.e., environment-specific) manner.

Here, we utilized the house fly system to test the potential roles of context-dependence and genetic architecture (epistasis and pleiotropy) in the maintenance of genetic variation of a sexually selected trait. To those ends, we tested for genotype-by-temperature interactions affecting differences in male mating behavior between YM and IIIM males. We also used RNA-seq data to investigate the genetic basis of differences in mating performance between YM and IIIM males (Meisel et al. 2015; Son et al. 2019; Adhikari et al. 2021). Our results implicate genes encoding odorant binding proteins (Obps) in an evolutionarily conserved trans regulatory loop involving a chromosome that independently became sex-linked in both house fly and Drosophila.

 METHODS

 RNA-seq differential gene expression analysis

We analyzed published RNA-seq data from M. domestica male heads (NCBI Gene Expression Omnibus accessions GSE67065, GSE126685, and GSE126689, shown in Table S1). The RNA-seq data include nine YM and fifteen IIIM samples (Meisel et al. 2015; Son et al. 2019). We aligned RNA-Seq reads to house fly transcripts from genome assembly v2.0.2 and annotation release 102 (Scott et al. 2014) using kallisto in single-end read mode (Bray et al. 2016). All RNA-seq reads were single-end, and we set the average fragment length to 300 bp and standard deviation to 30 bp for all samples.

We tested for differentially expressed (DE) genes between males with a YM chromosome and males with a IIIM chromosome using a combination of DESeq2 (Love et al. 2014), sva (Leek et al. 2012), and limma (Ritchie et al. 2015). Read counts per gene that passed an initial threshold filter (0.5 counts per million in at least 4 samples) were normalized by variance stabilizing transformation in DESeq2. To remove batch effects across data sets, we used the sva package to
identify and estimate surrogate variables that adjust for latent sources of variation (e.g., batch effects). To identify genes DE between \(Y^M \) and III\(^M \) males, we used the \texttt{lmFit()} function in limma to fit a linear model comprised of male type (\(Y^M \) vs III\(^M \)) and our surrogate variables as fixed effects, and read counts as the response variable. We then computed contrasts between male types and calculated test statistics using the \texttt{eBayes()} function. Genes below a false discovery rate (FDR) adjusted \(p \) value of 0.05 were categorized as DE (Benjamini and Hochberg 1995).

Weighted gene co-expression network analysis

We used weighted gene co-expression network analysis (WGCNA) to identify modules of housefly genes whose expression correlates with male type (\(Y^M \) or III\(^M \)) on normalized read count data that were adjusted for batch effects in sva (Langfelder and Horvath 2008). For all pairs of genes with variable expression across samples, we calculated Pearson’s correlation coefficient across all samples. We created an unsigned correlation matrix and adjusted the soft-threshold value (\(\beta \)) to which among-gene covariances are exponentially raised to ensure a scale-free topology (this resulted in \(\beta = 7 \)), thereby creating a weighted network of gene expression. An unsigned matrix allows us to identify connected genes whose expression is either positively or negatively correlated. Within this topological overlapping network (Li and Horvath 2007), genes were hierarchically clustered, and modules were identified based on the degree of similarity among genes. We used a merging threshold of 0.2, with a minimum module size of 30 and a mean connectivity threshold of greater than or equal to 0.7. We used the default parameters of WGCNA for the rest of the analyses. We then correlated module eigengene values for a given module across samples via Pearson’s correlation and identified modules differentially regulated between male types at FDR-adjusted \(p < 0.05 \).

To visualize WGCNA genetic covariance results among modules significantly associated with male type, we exported final co-expression networks to Cytoscape (Shannon et al. 2003). We attached information on \(\log_2 \) fold-change in expression between III\(^M \) and \(Y^M \) males, as well as chromosomal location, to the network as metadata so this information could be visualized. To identify genes that may have more central functions within and across our significant modules, we ranked genes in descending order based on intramodular connectivity (kWithin), calculated in WGCNA. Hub genes identified by intramodular connectivity are generally functionally important genes within a module (Langfelder et al. 2013).

We further analyzed among-gene connections involving a family of odorant-binding protein genes (\(Obp56h \)). Specifically, to identify genes that may regulate or be regulated by genes within the family, we calculated a “connection score” \(C_i \) for every gene \(i \) as follows:
where \(a_{ij} \) represents the adjacency (the Pearson correlation coefficient raised to the soft-threshold power \(\beta \)) between gene \(i \) and \(Obp56h \) gene \(j \), and \(F_i \) represents the log\(_2\) fold-change in expression between \(III^M \) and \(Y^M \) males for \(Obp56h \) gene \(j \). This weighted product ensured that connections with \(Obp56h \) genes that are more differentially expressed between male types were prioritized in calculating a gene’s connection score. Genes were then ranked by \(C_i \) to identify candidate genes that may be strongly tied to \(Obp56h \) gene expression. Genes with the 100 highest \(Obp56h \) connection scores were classified as “central genes”. We tested for chromosomal enrichment among these central genes using Fisher’s exact tests (comparing the number of central and non-central genes on a focal chromosome with the number of central and non-central genes on all other chromosomes) to determine whether the expression of \(Obp56h \) genes (which are all located on the \(M. domestica \) chromosome V) might be involved in trans regulation with genes located on the \(III^M \) proto-Y chromosome.

Gene ontology enrichment analysis

To identify gene ontology (GO) classes and molecular pathways that are enriched among DE genes, across gene modules identified in WGCNA, or among central genes co-expressed with \(Obp56h \) genes, we used the BiNGO plug-in within Cytoscape (Maere et al. 2005). We identified \(D. melanogaster \) orthologs for each house fly gene within a given gene list via NCBI blastx best hits (with default parameters) and used the \(D. melanogaster \) gene name as input. We identified GO terms that are significantly enriched in BiNGO for biological processes, cellular components, and molecular function.

Allele-specific expression analysis

We tested for differential expression of house fly chromosome III genes between the allele on the \(III^M \) chromosome and the allele on the standard third chromosome in \(III^M \) males. To do so, we followed methods as in previous studies (Meisel et al. 2017; Son and Meisel 2021), which use the Genome Analysis Toolkit (GATK) best practices workflow for single nucleotide polymorphism (SNP) calling to identify sequence variants in our RNA-Seq data (McKenna et al. 2010). We focused our analysis on libraries that were sequenced from head tissue of male house flies that comprise a CS genetic background (Meisel et al. 2015; Son et al. 2019; Adhikari et al. 2021). We used STAR (Dobin et al. 2013) to align reads from a total of 30 head libraries (15 \(III^M \) and 15 \(Y^M \) libraries) to the house fly reference genome (Musca_domestica-2.0.2). We then followed the same methods and applied the same parameters as we have done previously to identify SNPs and genotype individual strains (Meisel et al. 2017; Son and Meisel 2021).
performed separate joint genotyping for each house fly strain within a given experiment (a total of 4 IIIM and 4 YM strain-by-experimental batch combinations).

We use the following approach to differentiate between IIIM and standard chromosome III alleles. We first identified SNPs in the exonic regions of the top “hub” genes within a WGCNA module that mapped to house fly chromosome III. We selected SNPs in those genes that are heterozygous in IIIM males and homozygous in YM males. We used the genotype of these SNPs in YM males (which possess two standard third chromosome alleles) to determine the standard chromosome III allele. The allele not found in YM genotypes was assigned to the IIIM chromosome. We also identified positions where IIIM males appear monoallelic for an allele not found in YM males. These positions that exhibit a complete bias for a IIIM allele are suggestive of monoallelic expression of the IIIM allele (i.e., no expression from the III allele).

We tested for differences in expression of IIIM and standard chromosome III alleles by following best practices for comparing allele-specific expression (Castel et al. 2015). First, for each strain-by-experimental batch combination, we calculated the normalized read depth at each variable site as the number of mapped reads at that site divided by the total number of mapped reads throughout the genome. At each variable site, we used Wilcoxon rank sum tests to make three different pairwise comparisons per site. First, we compared normalized read depths between IIIM and III alleles in IIIM males (IIIM-III). Second, we compared the read depths of the IIIM allele in IIIM males with the normalized read depth of both III alleles in YM males (IIIM-YM). Third, we compared the read depths of the III allele in IIIM males with the normalized read depth of both III alleles in YM males (III-YM). We set a threshold of significance at \(p < 0.05 \) for all comparisons.

Drosophila melanogaster RNA-seq data analysis

We analyzed RNA-seq results reported in a previous study (Shorter et al. 2016) to determine how knockdown of Obp56h affects gene expression in *D. melanogaster*. Shorter et al. (2016) identified DE genes between Obp56h knockdown and control samples. This analysis was done separately in males and females, and in separate tissue samples within a given sex (head or the remaining body). We conducted GO enrichment analysis, as described above, on the list of DE genes in *D. melanogaster* male head tissue upon Obp56h knockdown.

We tested if an excess of DE genes (between Obp56h knockdown and controls) are found on the *D. melanogaster* X chromosome, which is homologous to house fly chromosome III (Foster et al. 1981; Weller and Foster 1993). This chromosome is known as Muller element A across flies (Meisel and Scott 2018; Schaeffer 2018). Obp56h is located on *D. melanogaster* chromosome 2R (Muller element C), which is homologous to house fly chromosome V. We used Fisher’s exact tests (comparing the number of X and non-X chromosome genes that are DE in a given
tissue within a given sex with the number of X and non-X chromosome genes that are not DE) to
determine whether Obp56h knockdown in D. melanogaster results in the disproportionate
differential expression of X chromosome genes in male heads, male bodies, female heads, or
female bodies.

We also tested if the same genes are DE between IIIM vs YM house flies and Obp56h knockdown
vs control D. melanogaster. Using NCBI blastx best hits, we identified 20 M. domestica
transcripts that are orthologous to D. melanogaster genes that are DE upon knockdown of
Obp56h (11 matches to upregulated D. melanogaster genes, and 9 matches to downregulated D.
melanogaster genes). We compared the mean log\textsubscript{2} fold-changes between YM and IIIM house fly
males for those 20 genes to 10,000 random subsets of log\textsubscript{2} fold-change values taken from our
data (10,000 subsamples without replacement of 11 genes to test for an excess of positive log\textsubscript{2}
fold-change values, and 10,000 subsamples of 9 genes to test for an excess of negative log\textsubscript{2}
fold-change values; see Additional Files for R script). We assessed significance by calculating
the proportion of replicated subsamples that generated a mean log\textsubscript{2} fold-change value more
extreme than our observed mean.

Competitive mating assays

We performed competitive mating experiments in which two different house fly males were
combined with a single female, and we recorded the “winning” male (i.e., the one who
successfully mated with the female), similar to what was done previously (Hamm et al. 2009). In
these experiments, we used the same two house fly strains as in Hamm et al. (2009): a IIIM strain
called CS and a YM strain called IsoCS. These two strains have a common genetic background
(CS), and only differ in which proto-Y chromosome they carry. Both strains are represented in
the RNA-seq data we analyzed (Meisel et al. 2015; Son et al. 2019), and IsoCS was also
included in a previous RNA-seq study comparing the effects of proto-Y chromosome and
temperature on gene expression (Adhikari et al. 2021). Our experiment differed from previous
work because we reared larvae from each strain at either 18°C and 29°C, whereas Hamm et al.
(2009) worked with flies raised at 28°C. We used the same larval wheat bran diet as done
previously, and we fed adults an ad libitum supply of water and an ad libitum 1:1 mixture of
dry-milk:sugar. This is also the same diet and rearing protocol used for the flies in the RNA-seq
datasets that we analyzed (Meisel et al. 2015; Son et al. 2019). Male flies were isolated from
females within ~1 hour of eclosion, and each sex was kept separately to ensure that flies had not
mated prior to the experiment.

We carried out two distinct competitive mating experiments: 1) inter-strain competition between
males with different genotypes (i.e., YM vs IIIM) that were reared at the same temperature (363
successful mating trials out of 490 total attempts across 27 experimental batches); and 2)
intra-strain mating between males with the same genotype that were reared at different
temperatures (104 successful mating trials out of 129 total attempts across 7 batches). When we
competed flies with different genotypes raised at the same temperature, all males were aged
4-6 d post pupal emergence. When we compared flies with the same genotype raised at different
temperatures, 29°C males were aged 4-5 d post emergence and 18°C males were aged 6-7 d post
emergence. We aged flies from the colder temperature for more days than flies from the warmer
temperature because developmental rate is positively correlated with developmental temperature
in flies (Atkinson 1996). The ages we selected ensure that all males were physiologically capable
of mating, while also sampling flies at similar physiological ages across experiments. Aging
calculations are reported in Supporting Information 1.

The two males in each experiment were labeled using red and blue luminous powder (BioQuip)
by shaking the flies in an 8 oz paper cup. The color assigned to males was switched in each
successive batch (i.e., blue YM and red IIIM in one batch, and then red YM and blue IIIM in the
next batch). In addition, we included the genotype or developmental temperature of the
blue-colored male as a fixed effect in our statistical analysis (see below), which provides an
additional control for color.

For each replicate of the competitive mating assay, we placed the two different males in a 32 oz
transparent plastic container, along with a single virgin female. Each plastic container also
contained a 1:1 mixture of dry milk:sugar in a 1 oz paper cup and water in a glass scintillation
vial plugged with a cotton roll. Virgin females from the LPR strain (Scott et al. 1996) raised at
25°C were used for all combinations of males. The LPR strain has a different genetic background
than the males used in the assay, minimizing any effects of co-adaptation between females and a
particular subset of males. All flies were transferred into the mating containers using an aspirator
and without anesthesia. All matings were performed in a 25°C incubator because copulation
latency is too long for experimentally tractable measurement at lower temperatures. The color
(i.e., genotype) of the first male to mate was recorded, as well as the time to mate.

We used the glmer() function in the lme4 package in R (Bates et al. 2015) to test for the effects
of genotype and temperature on male mating success. First, to test the effect of genotype, we
constructed a logistic regression model with developmental temperature, genotype of the blue
male, and their interaction as fixed effects. Experimental batch was modeled as a random effect,
with the winning male (CS vs IsoCS) as a response variable. We then assessed significance of
fixed effects (type II sum of squares) using the Anova() function in the car package in R (Fox et
al. 2013). To test for the effect of temperature on mating success, we similarly constructed a
logistic regression model with genotype and the developmental temperature of the blue male as
fixed effects and experimental batch as a random effect, with the winning male (18°C vs 29°C)
as a response variable.
Single-choice mating assays

We performed experiments to measure copulation latency, or the amount of time elapsed before successful mating, according to male type (Y^M or III^M). In these experiments, we used the same IsoCS (Y^M) and CS (III^M) strains as above and in Hamm et al. (2009). We also tested another strain from each genotype. CSRab (III^M) was created by backcrossing the III^M chromosome from the rspin strain isolated in New York onto the CS background (Shono and Scott 2003; Son et al. 2019). CSaY (Y^M) was created by backcrossing the Y^M chromosome from the aabys genome reference strain onto the CS background (Scott et al. 2014; Meisel et al. 2015). Virgin females used in the assays were all from the LPR strain (Scott et al. 1996), which has a different genetic background than all males tested. In addition, we also assayed LPR males to determine how copulation latencies of III^M and Y^M males compare to those of males from the same genetic background as the females.

We first attempted to test flies reared at the same temperatures as in our competitive mating assays (18°C and 29°C), as well as at an intermediate developmental temperature (22°C). However, we did not generate enough flies at 18°C, and so we only have data for flies raised at 22°C and 29°C. Our results demonstrate that 22°C is a sufficiently low temperature to detect effects of both genotype and developmental temperature on mating success (see below). All larvae from each male strain were reared in 32 oz plastic containers on the same wheat bran diet described above (Hamm et al. 2009). Upon emergence, unmated male and female progeny were separated and fed water and a 1:1 mixture of dry milk:sugar ad libitum until assays were conducted. Assays of males raised at 22°C were conducted 10-11 days after eclosion, while those of males raised at 29°C were conducted 6-7 days after eclosion. This ensures that males were assayed at similar physiological ages. Females were all raised at 25°C, and unmated females were aged 8-9 days after eclosion (see Supporting Information 1 for all accumulated degree day calculations).

We followed a similar protocol as in a previous experiment testing copulation latency in <i>D. melanogaster</i> (Shorter et al. 2016). Briefly, five males from a single strain were aspirated without anesthesia into an 8 oz container covered with a fine mesh cloth secured by rubber band. Five LPR females were similarly transferred into the container, marking the start of the mating assay. The house flies were then observed every ten minutes over the course of four hours. Copulation latency was determined in two ways. First, we measured the amount of time elapsed between the start of an assay and each successful mating within a container, defined as a male remaining attached to a female for at least 1 minute (Hamm et al. 2009). Male house flies typically remain attached to females for >60 minutes (Bryant 1980), making it unlikely, although possible, for us to miss matings within 10 minute intervals. Individuals who did not mate were excluded from this analysis. Second, we used a binary variable noting whether each male mated during the 4 hour assay. Although we were unable to distinguish between individual males in this
 assay, we did not observe any males mate more than once within 4 hours in a pilot study conducted between one male and five females, suggesting that observed matings were by different males. All trials were conducted at 22–23°C.

To determine the effects of male type on the amount of time taken to mate, we used the glmer() function in the lme4 package in R (Bates et al. 2015) to create a mixed effects model, including male genotype, developmental temperature, and their interaction as fixed effects and batch and strain as random effects. For the binary measure of copulation latency, we used a binomial logistic regression of the same model, with whether a fly mated as our dependent variable. We then assessed significance of fixed effects (type II sum of squares) using the Anova() function in the car package in R (Fox et al. 2013). Pairwise comparisons between male types (III^M, Y^M, and LPR) were conducted using Z-tests of proportions.

RESULTS AND DISCUSSION

Differential expression of odorant binding protein genes between III^M and Y^M males

We confirmed that the gene expression profiles of III^M and Y^M male heads are minimally differentiated (Meisel et al. 2015; Son et al. 2019). There are only 40 DE genes between heads of III^M and Y^M adult males (21 upregulated in Y^M males, 19 upregulated in III^M, Table S2). Gene ontology analysis revealed no significant biological process, molecular function, or cellular component terms enriched within the list of DE genes.

Within the list of DE genes, we identified one Obp gene (*LOC105261916*) upregulated in Y^M males. House fly Obp genes can be grouped into families corresponding to their *D. melanogaster* orthologs (Scott et al. 2014). The DE Obp gene in our analysis is orthologous to *Obp56h*. The *Obp56h* family, as well as other Obp families, was greatly expanded within muscids (house fly and close relatives, including stable fly and horn fly) compared to *D. melanogaster* (Scott et al. 2014; Olafson and Sasaki 2020; Olafson et al. 2021). In addition to *LOC105261916*, seven of the remaining eight house fly *Obp56h* genes for which we obtained RNA-seq count data showed similar trends of greater expression in Y^M than III^M males, with three of these showing significant DE (*p*<0.05) before an FDR correction (Fig. 1). All but one of the *Obp56h* genes has higher expression in Y^M than III^M males (8/9, regardless of significance), which is significantly greater than the fraction of other genes with higher expression in Y^M males, regardless of significance, in the rest of the genome (Fisher’s exact test, *p* = 0.019). Moreover, the expression levels of several house fly *Obp56h* genes are sensitive to developmental temperature or the interaction between temperature and male genotype (Fig S1).
Figure 1 - Neighbor-joining phylogenetic tree of the *Obp56h* gene family within *M. domestica* and *D. melanogaster* based on protein sequences constructed in MEGA X (Kumar et al. 2018). Amino acid sequences were aligned by MUSCLE (Edgar 2004). *M. domestica* *Obp56h* genes are identified based on gene IDs. The bootstrap consensus tree was inferred from 10,000 replicates. Branch lengths are scaled according to the number of amino acid substitutions per site. The phylogeny was arbitrarily rooted at *D. melanogaster* *Obp56h*. Batch-adjusted expression levels for each *M. domestica* *Obp56h* gene from each replicate are displayed at the branch tips (small circles). Large circles show the average across all replicates, with error bars denoting the standard error (unfilled stars: *p* < 0.05 before FDR correction for multiple comparisons; filled star: *p* < 0.05 after correction).

III

III^M confers a mating advantage that is robust to developmental temperature

Knockdown of *Obp56h* in *D. melanogaster* results in decreased male copulation latency, or the time it takes for a male to begin to mate with a female after they are first exposed to one another (Shorter et al. 2016). The *Obp56h* gene family is generally expressed higher in Y^M males relative to III^M males (Fig. 1). A previous study identified a competitive mating advantage of III^M over Y^M male house flies (Hamm et al. 2009), consistent with shorter copulation latency in III^M males because of lower expression of *Obp56h* genes. Segregating variation in such a strongly sexually selected trait likely requires some other factor to maintain the difference in copulation latency between Y^M and III^M males (Kirkpatrick and Ryan 1991; Ingleby et al. 2010). The clinal distribution of Y^M and III^M (Tomita and Wada 1989; Hamm et al. 2005; Koziełska et al. 2008) are suggestive that temperature may differentially affect males carrying these proto-Y chromosomes. In addition, two *Obp56h* genes are only upregulated in Y^M males at 29°C, but not at 18°C (Fig S1), suggesting the effect of Y^M on male mating success may be temperature-dependent. The previous experiment only compared mating performance of Y^M and III^M males at 28°C (Hamm et al. 2009). We therefore tested if the differences in mating success between Y^M and III^M males are sensitive to temperature and are thus context-dependent.
We performed competitive mating assays in which we allowed males carrying III\(^M\) or Y\(^M\), reared at either 18°C or 29°C, to compete for a female of an unrelated strain. We found that III\(^M\) males were more successful at mating than Y\(^M\) males regardless of developmental temperature (ANOVA, \(p = 6.53 \times 10^{-6}\), Fig. 2A). This mating advantage of III\(^M\) males is consistent with reduced copulation latency as a result of lower expression of *Obp56h* genes. However, our results suggest that there is not an effect of developmental temperature on the III\(^M\) male mating advantage.

![A](https://example.com/image1.png) ![B](https://example.com/image2.png) ![C](https://example.com/image3.png)

Figure 2 - III\(^M\) chromosome and developmental temperature affect male mating success. A) Outcomes of competitive mating assays between III\(^M\) and Y\(^M\) males reared at 18°C or 29°C. Data points represent experimental batches. Horizontal lines denote the median across all batches. B) Outcomes of competitive mating assays conducted between males reared at 29°C and 18°C. Trials were conducted between males of the same proto-Y chromosome genotype (III\(^M\) or Y\(^M\)). Each data point represents ten replicate trials within a single batch. C) Outcomes of single-choice mating assays in males reared at 22°C. Data points refer to the percentage of males (five males within one replicate) that mated with females within 4 hours within each experimental trial. Horizontal lines denote means within male groups. All females used were from the LPR strain.

To further investigate if there are effects of developmental temperature on mating success, we tested whether males reared at different developmental temperatures, but with the same genotype, have a difference in mating success. We found that males reared at 18°C outcompeted males reared at 29°C (ANOVA, \(p = 2.93 \times 10^{-4}\), Fig. 2B), regardless of genotype. This is consistent with decreased *Obp56h* expression in Y\(^M\) males reared at 18°C (Fig S1), which outcompete Y\(^M\) males raised at 29°C. In contrast, III\(^M\) males exhibited low *Obp56h* expression, regardless of developmental temperature (Fig. S1), yet III\(^M\) males raised at 18°C outcompeted III\(^M\) males reared at 29°C. Therefore, *Obp56h* expression levels alone cannot explain the effect of developmental temperature on mating success.
We conclude that there is substantial evidence that both proto-Y chromosome genotype and developmental temperature affect male mating success. Notably, the effect of temperature on mating success is consistent across Y^M and III^M male types, suggesting that context-dependence, in the form of a genotype-by-temperature interaction, cannot explain why genetic variation in male mating success is maintained in house fly. However, our mating assays were all performed at the same temperature (25°C), with male house flies that developed at two different temperatures. We therefore cannot rule out the possibility that differences in mating success are affected by courtship temperature (as opposed to developmental temperature).

III^M males have reduced copulation latency

Our competitive mating assays (Fig. 2A), as well as previously published results (Hamm et al. 2009), raise the possibility that III^M males have a reduced copulation latency relative to Y^M males, which could be explained by the lower expression of Obp56h genes in III^M males (Fig. 1). We therefore directly measured copulation latency in single-choice mating assays. To do so, we combined five males from a single strain raised at a single temperature with five females from the unrelated strain used in our competitive mating assays. Developmental temperature had a significant effect on copulation latency (ANOVA, \(p = 9.40 \times 10^{-5} \)), with males reared at 22°C mating faster than those reared at 29°C (Fig. S2A). In general, successful matings were rare for males that developed at 29°C regardless of whether they carry the Y^M or III^M chromosome (15 successful matings out of 75 males tested). These results are consistent with increased mating success of males raised at 18°C relative to those raised at 29°C in our competitive mating assays (Fig. 2B).

We found no significant effect of male genotype (ANOVA, \(p = 0.89 \)), or the interaction between male genotype and developmental temperature (ANOVA, \(p = 0.37 \)), on the time it takes males to mate. When we consider only males who mated within 4 hours, the time to mate for Y^M and III^M males did not significantly differ at either 22°C (Tukey’s post-hoc, \(p = 0.99 \)) or 29°C (Tukey’s post-hoc, \(p = 0.78 \)). However, this analysis is problematic because we have no measure of copulation latency for males that did not mate within the 4 hour experimental window, which amounts to >70% of males in three of the four genotype-by-temperature combinations. It is therefore possible that copulation latency does indeed differ between Y^M and III^M males in a way that is not detected in our censored data.

To overcome the problems associated with censored data, we next treated copulation latency as a binary variable by calculating the proportion of the five males per trial that mated within the 4 hour assay. We observed significant effects of male genotype (ANOVA, \(p = 6.18 \times 10^{-3} \)) and developmental temperature (ANOVA, \(p = 9.04 \times 10^{-4} \)) on the proportion of males that mated. The effect of developmental temperature was largely a result of very few matings for males that developed at 29°C relative to 22°C (Fig. S2B). The lower copulation latency for flies that
developed at 22°C is consistent with our competitive mating assays that showed males that
developed at a lower temperature have higher mating success (Fig. 2B). In the 22°C treatment, a
significantly greater proportion of IIIM males mated within 4 hours than YM (61.7% v. 28.3%;
Z-test of proportions, p = 1.21 x 10-4; Fig. 2C). This is evidence that IIIM males have reduced
copulation latency, which is consistent with their previously documented competitive mating
advantage (Hamm et al. 2009), the competitive mating advantage that we observe (Fig. 2A), and
the reduced expression of Obp56h genes (Fig. 1).

The YM and IIIM males we and others used in mating experiments all share the CS genetic
background that comes from a IIIM strain (Hamm et al. 2009). This raises the possibility that IIIM
males perform better because they have a proto-Y chromosome that is co-adapted to its genetic
background. To test this hypothesis, we measured copulation latency in YM males from the same
strain (LPR) as the females in our experiments. We observed a greater proportion of IIIM males
mating within 4 hours when compared to the LPR YM males (Z-test of proportions, p = 0.038),
although the copulation latency in LPR males was highly variable (Fig. 2C). Therefore, the
reduced copulation latency conferred by the IIIM chromosome overwhelms any potential effects
of coadaptation of the proto-Y chromosome to male genetic background or male-female
co-adaptation within strains. The reduced copulation latency of IIIM males is only detectable
when house flies develop at 22°C, suggesting that it is either temperature-dependent or we lack
the resolution to detect it when males develop at warmer temperatures (because they take too
long to mate). Our results also provide evidence that the effect of temperature on copulation
latency is independent of genotype, suggesting that context-dependent effects of the proto-Y
chromosomes cannot explain the maintenance of the polymorphism.

**House fly chromosome III genes and Drosophila X chromosome genes have correlated
expression with Obp56h genes**

In order to identify the regulatory architecture underlying the differential expression of Obp56h
genes between YM and IIIM males, we identified 27 co-expression modules across house fly male
heads. One of these modules (containing 122 genes, Table S3) is differentially expressed
between YM and IIIM males (FDR adjusted p = 0.001, Fig. 3). GO analysis revealed significant
enrichment (FDR adjusted p < 0.05) of 15 biological process terms including those related to
immune system processes (GO:0032501), responses to stress (GO:0006950), and response to
external stimuli (GO:0009605) within this module (Table S4). This module is also enriched for
house fly chromosome III genes (31 chromosome III genes versus 38 genes assigned to other
chromosomes, Fisher’s exact test p < 1 x 10-5, with 53 genes not assigned to a chromosome) and
for DE genes between YM and IIIM males (16 DE genes in this module versus 24 DE genes
assigned to other modules, Fisher’s exact test p < 1 x 10-5). We used the WGCNA measure of
intramodular connectivity, kWithin, to identify hub genes within the module that likely have
important roles in the regulation of gene expression. The top five hub genes are (with
D. melanogaster orthologs in parentheses: LOC101887703 (CG8745), LOC105262120 (CG10514), LOC101894501 (Gr98c), LOC101893264 (gd), and LOC101893651 (CG2120) (Fig. 3, S3).

Figure 3 - Network visualization of the co-expression module that is differentially regulated between IIIM and YM males. Each circle within the module is a gene, and Obp56h genes are indicated with purple fill. Lines represent edge connections between genes. Genes labeled with “+” are within the top 100 most strongly connected to Obp56h genes. Genes are ordered from top to bottom according to intramodular connectivity (kWithin), with genes of higher connectivity (i.e., hub genes) on top, and peripheral genes on the bottom. Borders around genes denote \log_2 fold-change in expression between YM and IIIM male heads, with darker blue borders denoting upregulation in YM, and darker red borders denoting upregulation in IIIM. Chromosomal locations in house fly (Mdom) and D. melanogaster (Dmel) are shown for the 5 hub genes and Obp56h.

Three Obp56h genes that are DE between IIIM and YM males (LOC105261916, LOC101891822, and LOC101891651) are all assigned to the co-expression module (Fig. 3). The Obp56h gene cluster itself is found on house fly chromosome V, which is unlikely to differ between the YM and IIIM males in our experiments—the majority of males compared in the RNA-seq data and mating experiments have a common genetic background (including chromosome V) and differ only in whether they carry IIIM or YM. Removing samples with a different background did not affect the general difference in Obp56h expression between IIIM and YM males (see Supporting Information 2 for a summary of these results). We therefore hypothesized that differential Obp56h expression is at least partly controlled by trans regulatory variation that maps to YM, IIIM, or both.
If Obp56h gene expression is regulated by trans factors that map to chromosome III, then we expect the Obp56h gene family to be found within, or strongly connected to genes within, the module that is differentially regulated between III^M and Y^M males. Indeed, we find that the module is enriched for Obp56h genes relative to other Obp genes—three Obp56h genes and no other Obp genes were assigned to this module (Fisher’s exact test, \(p = 5.1 \times 10^{-3} \), Fig. 3). This suggests that Obp56h expression is strongly correlated with, and is either regulated by or regulates, genes whose expression is affected by the III^M chromosome. We cannot perform the same analysis for the effect of Y^M because only 51 genes have been assigned to the house fly X/Y^M chromosome (Meisel and Scott 2018), limiting our power to detect an excess of genes.

To test for trans regulators of Obp56h gene expression, we identified house fly genes whose expression covaries with Obp56h genes (Table S5). We found significant enrichment for chromosome III genes within the 100 genes whose expression covaries most with Obp56h gene expression (corresponding to the top 0.55% covarying genes); of the 100 genes with the highest Obp56h connection scores, 26 are on chromosome III (Fisher’s exact test \(p = 2.0 \times 10^{-4} \), Fig. 4A). This enrichment is robust to varying the threshold used to classify a gene as in the top covarying; considering genes with the top 1%, 5%, 10% covarying expression also resulted in significant enrichment of chromosome III genes (Fisher’s exact test, all \(p < 0.05 \)). This supports the hypothesis that trans regulatory variants that differ between III^M and the standard chromosome III are at least partially responsible for DE Obp56h genes between III^M and Y^M house fly males.

Our network analysis does not ascribe directions to the edges connecting house fly genes, and it is therefore possible that Obp56h DE has trans regulatory effects on chromosome III expression. To test this hypothesis, we examined available RNA-seq data from an experiment comparing wild type D. melanogaster with flies in which Obp56h had been knocked down (Shorter et al. 2016). Obp56h is on the right arm of the second chromosome in D. melanogaster (2R, or Muller element C), which is homologous to house fly chromosome V (Foster et al. 1981; Weller and Foster 1993). House fly chromosome III is homologous to the D. melanogaster X chromosome, which is known as Muller element A (Meisel and Scott 2018; Schaeffer 2018). The D. melanogaster males in the RNA-seq experiment all share the same X chromosome, and only differ in one copy of their second chromosome (which either carries a UAS-RNAi knockdown construct or does not). If Obp56h genes have trans regulatory effects on element A genes in males, we would expect an excess of DE D. melanogaster X chromosome genes Obp56h knockdown flies. Indeed, we found that Obp56h knockdown in D. melanogaster resulted in excess DE of X chromosome genes in male head (Fisher’s exact test, \(p = 0.011 \), Fig. 4B) and body (\(p = 0.038 \), Fig. S4), but not in either tissue sample in females (Fisher’s exact test, both \(p > 0.49 \)). These results suggest that there is male-specific trans regulatory control of D. melanogaster X-linked genes by Obp56h. This regulatory architecture associated with Obp56h expression may create epistatic or pleiotropic constraints that inhibit selection to reduce
expression of *Obp56h* genes, which should otherwise be favored because reduced expression shortens copulation latency.

Figure 4 - Percent of genes on each chromosome within (A) the top 100 genes with the strongest connections to the *Obp56h* family in house fly, and (B) genes differentially expressed (DE) between *Obp56h* knockdown and control *D. melanogaster* (black bars: males, grey bars: females). Asterisks indicate a significant difference between observed (bars) and expected (red lines) counts of genes on each chromosome compared to all other chromosomes (Fisher’s exact test, *p* < 0.05).

Our house fly results suggest that alleles differing between III^M^ and the standard chromosome III have *trans* effects on *Obp56h* expression. The *D. melanogaster* data suggest that variation in *Obp56h* expression affects the expression of genes on the *D. melanogaster* X chromosome (which is homologous to house fly chromosome III). This raises the possibility that there is *trans* regulatory feedback from *Obp56h* genes that affects chromosome III gene expression in house fly. If that regulatory feedback is conserved between house fly and *D. melanogaster*, we expect that orthologous genes would be DE on Muller element A (house fly chromosome III and the *D. melanogaster* X chromosome) between III^M^ and Y^M^ house flies and between *Obp56h* knockdown and wild-type *D. melanogaster*. Consistent with this expectation, we found that genes that are downregulated upon knockdown of *Obp56h* in *D. melanogaster* have house fly orthologs that are more downregulated in III^M^ male house flies (i.e., lower log_2 fold-change) than expected by chance (*p* = 5.60 x 10^-3, Fig. S5A). In contrast, genes that were upregulated upon *Obp56h* knockdown in *D. melanogaster* were not significantly differentially regulated between Y^M^ and III^M^ male genotypes, although the observed trend suggests that these genes may be more downregulated in III^M^ males than expected (*p* = 0.103, Fig. S5B). Our results therefore suggest that, genome-wide, the genes which vary in expression along with *Obp56h* (regardless of the direction of *trans* regulation) are evolutionarily conserved between *M. domestica* and *D. melanogaster*. Consistent with this hypothesis, we identified the GO term “response to stress” (GO:0033554) to be significantly enriched amongst genes with strong connection scores with *Obp56h* expression in *M. domestica* and in the list of DE genes in *D. melanogaster* upon *Obp56h*
knockdown (Table S6). This provides further evidence that there is an evolutionarily conserved trans regulatory feedback loop involving Obp56h expression in Drosophila and house fly through similar molecular functions.

Network analysis reveals candidate regulators of Obp56h expression

The house fly co-expression module contains candidate genes and pathways through which Obp56h genes, and likely male copulation latency, are regulated. For example, within the list of DE genes, we identified one gustatory receptor gene (LOC101894501, the ortholog of D. melanogaster Gr98c) upregulated in III^M males (p_{ADJ} = 0.037). Although Obps can have a variety of functions, they most typically interact with chemosensory receptors (odorant, ionotropic, and gustatory receptors) in the detection of chemical cues or signals (Zhou 2010; Benoit et al. 2017; Sun et al. 2018). If Obp56h serves a sensory detection role in male house fly heads, then Gr98c is a promising candidate gene with which it interacts. The M. domestica ortholog of Gr98c (LOC101894501, which we will refer to as Md-Gr98c) is a hub gene in the co-expression module containing Obp56h (Fig. 3). Md-Gr98c is the only chemosensory receptor assigned to this module, it is located on chromosome III, and its expression is negatively correlated with Obp56h. A negative correlation between the expression of a chemosensory receptor and its interacting binding protein has previously been reported in a pair of genes that modulate male Drosophila mating behavior (Park et al. 2006).

Figure 5 - Allele-specific expression (ASE) in A) LOC101894501 (Md-Gr98c), B) LOC101893264 (Md-gd), and C) LOC101893651 (CG2120 ortholog). The x-axis depicts base pair positions (scaffold coordinates) of the informative single nucleotide polymorphisms (SNPs) that differ between III^M and standard chromosome III alleles. The y-axis and data points depict the read depth of a given allele normalized by the total mapped reads for a given strain-by-experimental batch group combination (FPM = fragments per million). Lines depict mean read depths at each diagnostic site for III (turquoise) and III^M.
(salmon) alleles in III^M males, and mean read depths at each site for III alleles in Y^M males (black). Tables under each graph mark significant differences (*: p < 0.05) in normalized read depths at each diagnostic site for each of three pairwise comparisons: III^M allele vs. III allele in III^M males (III^M–III), III^M allele in III^M males vs both III alleles in Y^M males (III^M–Y^M), III allele in III^M males vs. both III alleles in Y^M males (III–Y^M).

We tested if Md-Gr98c is differentially regulated between the III^M chromosome and standard chromosome III by comparing expression in III^M males (i.e., heterozygotes for III^M and a standard chromosome III) with males homozygous for the standard chromosome III. Differential expression of the III^M and III chromosome alleles would implicate this gene as having a causal effect on Obp56h expression. Md-Gr98c contains 4 exonic SNPs differentiating the III^M and III chromosomes. Within each III^M strain in each RNA-seq experiment, we observed significantly greater expression of the III^M allele than the standard chromosome III allele at two of the four diagnostic SNP sites (Fig. 5A). The other two SNPs showed the same pattern of III^M-biased expression but were not significant (both p > 0.05). The III^M allele is also expressed higher than both III alleles in Y^M males. Higher expression of the III^M allele is consistent with cis regulatory divergence between the III^M and standard chromosome III being partially responsible for elevated Md-Gr98c expression in III^M males. Furthermore, the standard chromosome III allele is expressed significantly higher in III^M males than Y^M males at two of the four diagnostic SNP sites (Fig. 5A); we observe the same pattern at the other two sites without significance (p > 0.05). Higher expression of the III allele in III^M males than Y^M males suggests that trans regulators further increase the expression of Md-Gr98c in III^M males. This combination of cis and trans regulatory affects on Md-Gr98c expression are consistent with the trans-regulatory loop we hypothesize between Obp56h and chromosome III that regulates male mating behavior. Future experiments could determine whether Gr98c and Obp56h do indeed interact and, if so, what pheromonal or other chemical compounds they detect.

A serine protease gene, LOC101893264, orthologous to D. melanogaster gd (Konrad et al. 1998), is also among the top 5 hub genes within the co-expression module (Fig. 3). This gene is predicted to encode a positive regulator of the Toll signaling pathway (Valanne et al. 2011), suggesting that the M. domestica ortholog of gd (Md-gd) could have an important gene regulatory function within the module via Toll signaling. Md-gd is located on chromosome III, and it is upregulated in III^M males (adj. p = 0.022). We identified seven sites where all RNA-seq reads were mapped to the III^M allele, while no reads were mapped to the standard chromosome III allele in III^M males (Fig. 5B). At all seven diagnostic SNP sites in this gene, the III^M allele is significantly more highly expressed than the III allele in III^M males (all p = 0.021), and it is more highly expressed than both III alleles in Y^M males at six of seven sites (all p = 0.021). The lack of expression of the III allele in either III^M or Y^M males is consistent with monoallelic gene
expression of the III^M allele, although further evidence is required to confirm this hypothesis (see Supporting Information 3 for detailed discussion).

We identified similar evidence of monoallelic gene expression within another hub gene, LOC101893651, which is orthologous to *D. melanogaster* CG2120 (Fig. 5C). LOC101893651 is among the most central genes within the co-expression module (Fig. 3), and it is strongly upregulated in III^M males (log2 fold-change: 1.33, adjusted \(p = 0.033 \)). LOC101893651 is found on house fly chromosome III and is predicted to encode a transcription factor. At all four diagnostic sites within LOC101893651, the III^M allele is significantly more highly expressed than the III allele in III^M males (all \(p = 0.021 \)), as well as both III alleles in Y^M males (all \(p \leq 0.027 \)). Within the WGCNA module, Obp56h expression is most strongly correlated with LOC101893651, suggesting that LOC101893651 could encode the transcription factor that is directly responsible for the repression of Obp56h expression in III^M males.

Based on their differential expression, allele-specific expression, centrality within the co-expression module, and their location on chromosome III, Md-Gr98c, Md-gd, and LOC101893651 are all strong candidate genes that may directly or indirectly affect the expression of house fly Obp56h genes. However, the expression of genes on other chromosomes are also strongly correlated with Obp56h expression (Fig. 3), suggesting other chromosomes may also be involved in the *trans* regulatory loop. In addition, many house fly genes are not yet mapped to chromosomes (Meisel and Scott 2018), limiting our ability to infer the chromosomes involved in regulating Obp56h expression. We describe two genes (LOC105262120 and LOC101887703) that may be located on other chromosomes below.

Expression of LOC101893651 (the ortholog of CG2120 that is predicted to encode a transcription factor) is most strongly correlated with LOC105262120 (an ortholog of CG10514), which is predicted to encode an ecdysone kinase. Expression of Obp56h and CG10514 are correlated with the production of CHCs that are involved in social behavior in *D. melanogaster* (Shorter et al. 2016) and *Drosophila serrata* (McGraw et al. 2011), respectively. CHCs are often under strong sexual selection across insect systems, with individual or combinations of CHCs serving as important mating cues (Thomas and Simons 2009,Berson et al. 2019a,b). The correlation of these genes with CHC profiles in *Drosophila* provides additional evidence that Obp56h expression, and the house fly co-expression module more generally, are related to male mating behavior, and possibly under sexual selection. However, cuticular hydrocarbons also provide protection against biotic and abiotic stressors (Otte et al. 2018) and play a crucial role in desiccation resistance (Lockey 1988). This dual role of CHCs in mating and stress resistance suggests that sexual selection on Obp56h expression could be pleiotropically constrained by trade-offs with stress response. Our GO enrichment analysis on both the house fly and *D. melanogaster* RNA-seq data also revealed that Obp56h expression is correlated with the expression of genes involved in general stress responses, supporting this hypothesis. Pleiotropic
constraints on Obp56h expression (because of correlated changes in CHCs) could therefore reduce the response to selection on male copulation latency, contributing to the maintenance of genetic variance. Future studies should aim at determining whether IIIM and YM male house flies also differ in CHC profiles, as well as their resistance to desiccation and other environmental stressors.

![Figure 6](image.png)

Figure 6 - Correlations of gene expression between Obp56h (house fly LOC105261916) and CG8745 (LOC101887703) in (A) house fly male head tissue, and (B) D. melanogaster male head tissue. Values for *D. melanogaster* are from count data as reported in Shorter et al. (2016). Linear regression models were used to determine 95% confidence intervals (shaded in grey) summarizing the effect of Obp56h expression on CG8745 expression in each species.

LOC105262120 expression is most strongly correlated with the most central gene within the co-expression module, **LOC101887703**. **LOC105262120** and **LOC101887703** are both upregulated in IIIM males (**LOC101887703**: log\textsubscript{2} fold-change: 2.21, adj. *p* = 0.016; **LOC105262120**: log\textsubscript{2} fold-change: 2.26, adj. *p* = 0.007). **LOC101887703** is orthologous to *D. melanogaster* CG8745, which is predicted to encode an ethanolamine-phosphate phospho-lyase and is broadly expressed in many *D. melanogaster* tissues (Chintapalli et al. 2007). In both *D. melanogaster* and house fly, Obp56h expression is significantly negatively correlated with the expression of CG8745 or LOC101887703, respectively (Fig. 6).

LOC101887703 has a paralog (**LOC101890114**) that is predicted to be on chromosome III. The two transcripts encoded by these paralogs are <1% diverged in their nucleotide sequences, suggesting a recent duplication event. Gene duplication is hypothesized to be involved in the resolution of inter-sexual conflict (Connallon and Clark 2011; Gallach and Betrán 2011; Van Kuren and Long 2018), raising the possibility that at least one of the two house fly paralogs is partitioned into a sex-specific function. Moreover, broadly expressed genes often give rise to paralogs with sex-specific expression (Meisel et al. 2009). Notably, chromosome III is a proto-X chromosome (IIIM is the proto-Y), and there is a general excess of gene duplication from X chromosomes to the autosomes across flies and other animals, possibly driven by selection on sex-specific functions (Betrán et al. 2002; Emerson et al. 2004; Meisel et al. 2009; Baker and...
Wilkinson 2010). Future work could address a potential sexually dimorphic subfunctionalization of the two CG8745 paralogs in the house fly genome.

Together, the hub genes in the co-expression module are likely to be members of an evolutionarily conserved trans regulatory feedback loop that controls and/or is controlled by Obp56h expression (Fig. 7A). Specifically, we infer that Obp56h regulates CG8745 (LOC101887703) because knockdown of Obp56h causes an increase in CG8745 expression in D. melanogaster (Fig. 6B). Based on their locations on house fly chromosome III, positions as hub genes in the house fly co-expression module (Fig. 3), and divergent expression between the IIIM and standard III chromosomes (Fig. 5), we also hypothesize that LOC101893651 (CG2120), Md-gd, and/or Md-Gr98c regulate Obp56h in house fly (Fig. 7B). Md-Gr98c is a particularly promising candidate, because chemosensory binding proteins and receptors are known to co-regulate one another (Park et al. 2006). Future manipulative experiments will help in further evaluating the direction of regulation of these co-expressed genes.

Figure 7 - Hypotheses on connections between Obp56h expression, proto-Y chromosome genotype, and male mating behavior based on house fly and D. melanogaster gene expression data. A) Summary of evidence for an evolutionarily conserved trans regulatory loop between Obp56h and Muller Element A (house fly chromosome III, and D. melanogaster X chromosome). Our hypothesis is based on differential expression between IIIM vs. YM male house flies, Obp56h knockdown vs. control D. melanogaster, and network connectivity of Obp56h family gene expression within house fly. B) Summary of candidate genes implicated in conserved trans regulatory loop. Three of the top five hub genes of module A are located on house fly chromosome III, are negatively correlated with Obp56h expression, and exhibit either allele-specific expression (ASE) or show signs of monoallelic gene expression biased towards the IIIM allele. Similar correlations between expression measures of Obp56h and CG8745 (LOC101887703) in D. melanogaster and house fly male head tissue suggest that Obp56h regulates CG8745, which is the primary hub gene in the WGCNA module that is differentially expressed between IIIM and YM male house
flies. Shared correlations between Obp56h expression and copulation latency in both house fly and D. melanogaster also suggest that Obp56h regulates male fly mating behavior.

CONCLUSIONS

In this study, we aimed to identify a genetic mechanism explaining phenotypic variation in male mating performance across male proto-Y chromosome genotypes in house fly (Hamm et al. 2009). An Obp56h gene is among our small list of genes differentially expressed between IIIM and YM male heads (Fig. 1). In D. melanogaster, Obp56h expression affects male copulation latency (Shorter et al. 2016), and we identified a similar difference in copulation latency between male proto-Y genotypes in house fly (Fig. 2). We also identified an excess of house fly chromosome III (Muller element A) genes strongly co-expressed with the Obp56h gene family, suggesting trans regulation of Obp56h by genes from element A (Fig. 3, 4, 5). Similarly, we observe evidence for excess trans regulation of element A genes in D. melanogaster by Obp56h (Fig. 4). The inferred directions of trans regulation between Obp56h and element A are in opposite directions in house fly and D. melanogaster (Fig. 7A), but an excess of the same element A genes are correlated with Obp56h expression in both species. This suggests that there is an evolutionarily conserved trans regulatory loop affecting and affected by Obp56h expression (Fig. 7) between fly species that diverged >50M years ago (Wiegmann et al. 2011). The shared relationship between Obp56h expression and copulation latency in both species suggests that this trans regulatory loop has conserved effects on male mating behavior across distantly related flies.

House flies and Drosophila have independently acquired the same sex chromosome (Muller element A is house fly chromosome III, which is homologous to the Drosophila X). This raises the possibility that element A is primed to be recruited as a sex chromosome because of the trans regulatory connections with a gene (Obp56h) that has important effects on male mating behavior. Convergent sex-linkage of the same chromosomal region has been observed in vertebrates (O’Meally et al. 2012; Furman and Evans 2016; Ezaz et al. 2017), which could be explained by the same gene independently acquiring a sex determining allele in multiple independent lineages (Takehana et al. 2014). Genes with sex-specific effects (including sexually antagonistic variants) are also expected to be an important selective force in the formation of new sex chromosomes (van Doorn and Kirkpatrick 2007) and the subsequent evolution of X and Y chromosomes (Gibson et al. 2002; Charlesworth et al. 2005; Abbott et al. 2017). Our results suggest that an enrichment of genes that regulate sexually selected behaviors could promote the sex-linkage of the same chromosome in distantly related species without convergent evolution of a master sex determinant.
The apparently simple correlation between *Obp56h* expression and male mating behavior suggests that selection for reduced male copulation latency in house fly could easily be achieved by downregulation of *Obp56h* expression. Our results address three possible mechanisms for the paradoxical maintenance of genetic variation underlying this sexually selected trait: context-dependence, epistasis, and pleiotropy. To address context-dependence, we tested if the effects of Y\(^M\) and III\(^M\) on copulation latency vary across temperatures. Y\(^M\) and III\(^M\) are distributed across a latitudinal cline, suggesting that temperature differentially affects the fitness of males according to proto-Y chromosome genotype (Tomita and Wada 1989; Hamm et al. 2005; Feldmeyer et al. 2008; Kozielska et al. 2008). We found that temperature does indeed affect male mating performance, but III\(^M\) males outperform Y\(^M\) males regardless of temperature (Fig. 2). In addition, the *Obp56h* gene with the strongest signal of differential expression (LOC105261916) is only differentially expressed in Y\(^M\) males across temperatures (Fig S1), suggesting that *Obp56h* expression levels alone cannot explain the effect of temperature on mating success. Therefore, we hypothesize that proto-Y chromosome genotype and developmental temperature have independent effects on male mating success and copulation latency. The lack of a genotype-by-environment interaction suggests that context-dependent effects cannot explain the maintenance of variation in male copulation latency in house flies.

The interaction between proto-Y chromosome genotype and *Obp56h* expression is suggestive that epistasis may reduce the response to selection on copulation latency in house fly. Similar to our results, Y chromosome genotype in *D. melanogaster* is a major determinant of male fitness, but this effect depends on genetic background (Chippindale and Rice 2001). This suggests that epistatic interactions reduce the efficacy of selection on male-beneficial Y-linked alleles in *D. melanogaster*. Our experiments were not explicitly designed to test for the effect of genetic background. Nonetheless, we found that LPR males exhibit similar delayed copulation latencies as the other Y\(^M\) males we tested (Fig. 2C), despite having a different genetic background. This suggests that epistatic interactions do not necessarily modulate the effect of Y\(^M\) and/or III\(^M\) on male mating. However, we are unable to tease apart the effects of the Y\(^M\) chromosome from those of the remaining genetic background, as LPR males also possess a different Y\(^M\) chromosome than the other Y\(^M\) males we tested. Regardless of this limitation, our results are consistent with the hypothesis that the effect of *Obp56h* expression on male copulation latency depends on male proto-Y chromosome genotype via *trans* regulation, which leaves open the possibility that epistasis constrains the response to selection for this trait.

Our results provide stronger evidence that pleiotropic constraints maintain genetic variation for male mating behavior in house fly. The *trans* regulatory loop between *Obp56h* expression and multiple genes on Muller element A may create pleiotropic constraints that weaken the efficacy of selection on this trait. For example, *trans* regulators are predicted to have pleiotropic effects, which could impede the response to selection on traits they affect (Carroll 2005). In addition, the genes implicated in the *Obp56h trans* regulatory loop may affect other phenotypes, which can
create correlations between traits and weaken the response to selection (Lande and Arnold 1983). Notably, the expression of both *Obp56h* and *CG10514* are associated with CHC profiles in *Drosophila* (McGraw et al. 2011; Shorter et al. 2016). CHCs serve dual functions for both chemical communication and protection against environmental stressors (Blomquist and Bagnères 2010). Selection on *Oqp56h* expression and male mating behavior could thus be weakened by trade-offs between mating behavior and stress response. This is consistent with the general prediction that pleiotropy can maintain genetic variance for sexually selected traits in natural populations (Kirkpatrick and Ryan 1991; Turelli and Barton 2004; Johnston et al. 2013; Heinen-Kay et al. 2020). Our results therefore provide a potential example of how the regulatory architecture underlying a sexually selected trait can create pleiotropic constraints that could impede selection on the trait, maintaining genetic variation in spite of strong selection on the trait.

ACKNOWLEDGEMENTS

Rebecca Presley assisted with house fly mating experiments. This material is based upon work supported by the National Science Foundation under Grant No. DEB-1845686. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
REFERENCES

Hamm, R. L., R. P. Meisel, and J. G. Scott. 2015. The evolving puzzle of autosomal versus Y-linked male

914 Koštál, V., J. Korbelová, T. Štětina, R. Poupardin, H. Colinet, H. Zahradničková, I. Opekarová, M. Moos,

Rueffler, C., T. J. M. Van Dooren, O. Leimar, and P. A. Abrams. 2006. Disruptive selection and then

Yazdi, and T. Connallon. 2020. The search for sexually antagonistic genes: Practical insights from

Schaeffer, S. W. 2018. Muller “elements” in Drosophila: How the search for the genetic basis for

Scott, J. G., P. Sridhar, and N. Liu. 1996. Adult specific expression and induction of cytochrome P450lpr

Reid, F. D. Rinkevich, H. M. Robertson, T. B. Sackton, D. B. Sattelle, F. Thibaud-Nissen, C.
fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment.

Genome Biol. 15:466.

Seehausen, and van Alphen. 1999. Can sympatric speciation by disruptive sexual selection explain rapid

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and

Shono, T., and J. G. Scott. 2003. Spinosad resistance in the housefly, Musca domestica, is due to a

C. Schal, T. F. C. Mackay, and R. R. H. Anholt. 2016. Obp56h modulates mating behavior in

van Doorn, G. S., and M. Kirkpatrick. 2007. Turnover of sex chromosomes induced by sexual conflict.

