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ABSTRACT      

 

Patient stem cell-derived models enable imaging of complex disease phenotypes and the 

development of scalable drug discovery platforms. Current preclinical methods for assessing 

cellular activity do not, however, capture the full intricacies of disease-induced disturbances, and 

instead typically focus on a single parameter, which impairs both the understanding of disease 

and the discovery of effective therapeutics.  Here, we describe a cloud-based image processing 

and analysis platform that captures the intricate activity profile revealed by GCaMP fluorescent 

recordings of intracellular calcium changes and enables discovery of molecules that correct 153 

parameters that define the amyotrophic lateral sclerosis motor neuron disease phenotype. In a 

high-throughput screen we identified compounds that revert the multiparametric disease profile 

to that found in healthy cells, a novel and robust measure of therapeutic potential quite distinct 

from unidimensional screening. This platform can guide the development of therapeutics that 

counteract the multifaceted pathological features of diseased cellular activity. 
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INTRODUCTION 
 
 Neurodegenerative diseases are among the most difficult to treat. One such disease, 

amyotrophic lateral sclerosis, is associated with a progressive loss of upper and lower motor 

neurons leading to a gradual loss of control over the muscles vital for walking, talking, 

swallowing, and breathing, a debilitating and typically rapidly fatal outcome for patients.  ALS 

remains a clinical challenge with only two FDA-approved drugs, both though with minimal life-

prolonging effects. The prognosis for patients diagnosed with ALS is poor, with most patients 

succumbing to the disease within 3 to 5 years. The lack of effective treatments stems both from 

an incomplete understanding of the biological basis of the disease as well as the use of 

preclinical drug screening approaches that are not predictive of efficacy in patients. 

 

In its familial form, ALS is caused by mutations in the SOD1, C9orf72, FUS, and 

TARBP1 genes, among many others (1), and motor neuron electrical activity is severely 

impacted, as detected both in patients and patient-derived motor neurons (2,3). Mouse models as 

well as patient iPSC-derived motor neurons reveal alterations in the excitability phenotype across 

multiple parameters, including membrane potential, sodium and potassium peak currents, action 

potential firing, and synaptic activity (4,5,6). The development of therapies targeting aberrant 

electrophysiological properties usually focus only on a single electrophysiological property, the 

action potential firing rate (7). A recent study from our group successfully applied the approach 

of using a reduction in ALS human motor neuron firing rate to validate two known ALS activity 

modulators (Kv7.2/3 ion channels and AMPA receptors) and identify D2 dopamine receptors as 

a novel target (8). However, the excitability phenotype in ALS motor neurons is closely linked to 

multiple changes in cell health, such as ER-stress and unfolded protein response (6), and to 
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changes in ion channel composition, molecular architecture and post-translational state, 

membrane trafficking, intra- and extracellular ion concentrations, and synapse strength, which 

impact diverse aspects of neuronal activity, especially in neurodegenerative disorders (6). We 

hypothesized that a multifaceted disease etiology requires a multiparameter analysis method and 

that simultaneous measurements of distinct cellular activity parameters such as peak amplitude, 

frequency, rise and fall time, and other kinetics, might provide a more comprehensive, and 

therefore superior basis, for defining complex disease phenotypes. In turn, multiparameter 

compound screening may also better detect disease-modifying actions of drugs than traditional 

single parameter-based assays. Molecules that counteract the disease pathology across multiple 

dimensions may provide superior rescue from a disease state and have a greater impact on 

disease progression than simply focusing on the restoration of a single feature, opening the 

possibility for novel and more precise therapeutics targeting the complexity of the disease state. 

 

Here, we describe the development and application of a high-throughput cloud-based 

image processing and unbiased multiparametric activity profiling analytic platform. We call it 

CELLXPEDITE for its ability to process large volumes of cellular imaging data, thereby 

accelerating drug screening, and make it open source for use by the neuroscience community. By 

analyzing 153 parameters simultaneously we can automatically capture the complex activity 

profiles produced by diseased cells (ALS-patient derived carrying the SOD1(A4V) mutation) and 

the effects of candidate compounds on such cells, and from this identify compounds that convert 

the complex disease profile to one similar to that present in healthy cells. We show that such a 

platform can identify subtle perturbances in the activity of motor neurons and enables a robust 

selection of compounds that reverse the complex disease phenotype.  
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Most drugs for neurodegenerative diseases fail in clinical trials due to poor efficacy or 

unforeseen side effects, which is costly for the pharmaceutical industry and a health risk for the 

patients. Here we combine advances in human stem cell derived neuronal models, fluorescent 

reporters, high throughput live cell imaging systems, and cloud analysis platforms, to enable the 

discovery of molecules that can transform a complex disease phenotype to a healthy phenotype. 

 
RESULTS 

 
Extraction of Cellular Activity 

During action potential firing, voltage-dependent calcium channels are activated and 

deactivated, leading to changes in intracellular calcium that allow measurement of neuronal 

activity through the genetically encoded calcium reporter GCaMP6 (9). We developed a robust 

high-throughput 384-well single-cell GCaMP6-based activity assay to record the spontaneous 

firing of iPSC-derived human motor neurons with and without the highly penetrant SOD1(A4V) 

mutation (Fig. 1A). To capture a multiparametric representation of GCaMP activity in each 

individual cell, we developed a scalable cloud-based live-cell image processing pipeline that 

automatically compensates for imaging artifacts, performs photobleaching corrections, identifies 

individual neurons, and extracts and denoises calcium transients (Fig. 1B,C). In contrast to 

existing commercial or open-source software packages (10,11,12,13), our workflow is seamless, 

extracts multiple complex parameters, and is suitable for large-scale drug screening. Our aim 

was to better capture the intricacies of cellular activity for disease modeling and enable high-

throughput disease phenotype correction screening. 
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High-throughput plate readers generally have an uneven spatial distribution of light 

across the field of view, which impacts both image segmentation and fluorescence quantification. 

We therefore incorporated into our pipeline modules from the open-source software CellProfiler 

(14) to perform illumination correction and enhance the visibility of neurons expressing 

GCaMP6 (Fig. S1). Our approach spatially resolved all cells, regardless of temporal activity, 

allowing us to determine the proportion of active cells and assess well contamination and 

compound toxicity. Calcium traces were automatically extracted for each neuron and 

compensated for background luminescence and photobleaching effects (Fig. S2). To validate that 

the residual signals were reflective of spiking activity, we extracted fluorescence traces in the 

presence and absence of tetrodotoxin (TTX), a sodium channel blocker that inhibits the firing of 

action potentials in neurons (15). TTX eliminated the spontaneous calcium wave fluctuations 

observed in control cells (DMSO vehicle) (Fig. 1D). Baseline fluorescence was also lower in the 

presence of TTX, suggesting that the measurements are sensitive to both absolute and relative 

differences in calcium levels. 
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Fig. 1.  Cellular Activity Extraction Pipeline. (A) Schematic overview of the differentiation, plating, maturation, 

and imaging (whole field, 5x) of GCaMP6-positive human ALS patient-derived motor neurons. (B) Analysis of the 

fluorescence imaging data at a single time point does not allow for identification of inactive cells (“original” & 

“pre”). Temporal projection of the calcium imaging data over 45 seconds, combined with spatial filtering, enables 

identification of all cells regardless of activity (“post” & “cells”). (C) Fluorescence traces of cells identified in (B). 

(D) Spontaneous neuronal activity in dimethyl sulfoxide treated cells is eliminated by tetrodotoxin treatment (TTX). 

 

Multiparametric GCaMP Phenotypes 

 The comparison of GCaMP calcium transients between neurons, as well as changes due 

to drug action, has traditionally relied on counting the total number of peaks in fluorescence as 
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the sole parameter (Fig. 2A), an extension of spike counting by electrophysiological recordings. 

However, because GCaMP6 fluorescence fluctuations are heterogenous and unevenly dispersed 

in time (Fig. 1C,D), simple metrics such as peak count or amplitude convey an incomplete 

picture (Fig. 2A). The disparity between the complex nature of cellular activity and its historical 

unidimensional characterization raises concerns over the accuracy of such measurements for 

reflecting the disease state of the neuron and its response to drug treatment. 

 

 To provide a more comprehensive readout of excitability in diseased and healthy motor 

neurons, we set out to parametrize spontaneous fluctuations of the calcium reporter signal. We 

identified peaks in activity using a differential approach with high sensitivity to rapid 

fluctuations as well as continuous wavelet transforms (16) to account for multi-scale peaks (Fig. 

2B). Peaks were then individually parsed to quantify subtle kinetic differences and fluorescence 

shifts (Fig. 2C). Relative and absolute changes were detected by establishing 3 baselines for the 

measurements, namely the well background intensity, the cell minimum intensity, and the 

intensity at peak onset (Fig. 2D). To complement the individual peak dissection with signal-wide 

features, statistical dispersion metrics were computed along with the area under each signal (Fig. 

2D). Finally, the power spectrum of the calcium traces, i.e. the distribution of power into 

frequency components composing the signals, were obtained by computing their discrete Fourier 

transform. A total of 153 parameters spanning both time and frequency domains were acquired 

to describe the activity of each cell (Fig. 2E), providing a comprehensive breakdown of activity, 

and widening the scope of the activity phenotype across multiple axes. 
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Fig. 2.  Parametrization of Cellular Activity. (A) Traditional peak counting does not identify temporal (e.g. 

uneven inter-spike intervals) or amplitude differences in calcium transients. (B) A combination of differential 

and continuous wavelet transforms accurately identifies peaks in activity. (C) Automated peak deconvolution 

quantifies the rise, apex, fall, amplitude, and full width at half maximum of an individual peak. (D) Cellular 

peak parameters are quantified relative to three baselines: well background intensity, cell minimum intensity, 

and intensity at the peak onset (left). Signal-wide features of activity, including dispersion metrics (minimum, 

maximum, mean) and the area under the curve (AUC), are automatically captured (right). (E) Breakdown of 
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the 153 activity parameters computed for each cell. A single node under the differential and wavelet methods 

is expanded for clarity; the other nodes share the same parameter subtree. (F) Spontaneous GCaMP activity 

analysis of SOD1A4V human motor neurons compared to isogenic corrected motor neurons (39b-cor) reveal 

variable differences across five example parameters. Features are normalized to the average of the 39b group 

and presented as mean ± SEM using Welch’s t-test. 

 

Healthy and Disease Activity Profiles 

To characterize the complex ALS disease phenotype, we utilized the image processing 

and analysis platform to generate and study all the parameters derived from the spontaneous 

activity of two cell lines derived from a human ALS patient (39b: ALS disease model and 39b-

cor: isogenic corrected healthy control). In addition to the expected increased peak counts in the 

disease cell line, we discovered changes in activity parameters reflective of slower kinetics and 

higher peak amplitudes (Fig. 2F). With the demonstration that cellular activity is best captured 

using multiple parameters, we then conducted a full multiparametric analysis of the disease (39b) 

and control (39b-cor) motor neuron activity phenotypes. These phenotypes were generated by 

averaging the multiparametric activity profiles across 8 replicates for each cell line. From these 

profiles, we calculated the absolute difference across all parameters between the two cell lines, 

which resulted in a disease profile consisting of 153 activity parameters (top 50 distinguishing 

features presented in Fig. 3B). Surprisingly, the largest differences were found in features related 

to peak amplitude as opposed to peak count, though the latter remained in the top 5 

distinguishing features. We found properties from the frequency domain to be of lesser 

importance. The multiparametric disease profile was then used to identify phenotypic rescue of 

all the disease distinguishing cellular activity parameters back to those in the healthy control. 
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ALS Multiparametric Drug Screen 

Given the rich multiparametric readout of the ALS hyperexcitability phenotype, we 

sought to identify disease correcting drug candidates based on their specific effects on disease 

activity profiles. We screened 1902 compounds from the Selleck bioactive compound library, 

which includes FDA-approved compounds, active pharmaceutical agents, chemotherapeutic 

agents, and natural products. Compounds were mapped to points in the multidimensional space 

defined by the 153 features in their activity profiles (Fig. 2E), with distances between them 

reflecting the degree of similarity between the phenotypes they produced. We discovered a 

cluster of compounds which caused the disease-allele-containing cells to change and resemble 

control healthy cells, providing a pool of promising disease-correcting candidates (Fig. 3C). 

Among these were phosphodiesterase inhibitors and inhibitors of the mTOR pathway, both 

previously associated with neuroprotection (17,18). Because our pilot screen suggested that 

different activity profiles between the disease and control states reflect the modulation of 

activity, as opposed to a complete blockade of activity, we also investigated the effects produced 

by calcium-channel blockers which abolish the GCaMP signals triggered by action potentials. 

While these blockers clustered together, they were separated from the control phenotype and 

were not disease correcting, highlighting the sensitivity of the multiparametric approach to 

discriminate distinct activity states. 

 

After excluding compounds that resulted in potent inhibition of neuronal activity 

(including for example, 5 µM tetrodotoxin, see table S1), we selected the 65 compounds with the 

shortest distance (strongest similarity) to the control profile, and tested an additional 6 replicates 

for each candidate over two independent recording sessions. We advanced the 80% most-
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consistent compounds (Fig. S3C) for further analysis. After ordering these compounds by their 

ability to normalize the disease state back to a healthy phenotype, as measured by the distance 

between the multiparametric profiles, the three compounds that most strongly and reproducibly 

normalized activity in the disease motor neurons were apremilast CC-10004 (phosphodiesterase 

inhibitor), halcinonide (glucocorticoid receptor agonist), and PU-H71 (a heat shock protein 

inhibitor). 

 

Next, we wanted to confirm the benefits of using a multiparametric method over the 

traditional unidimensional approach. In addition to the 48 compounds that abolished neuronal 

activity (Table S1), i.e. compounds that resulted in complete activity suppression as opposed to a 

normalization of the disease activity profile, we also identified hits which only reduced the total 

number of calcium transient peaks, the top three of which included dexmedetomidine (adrenergic 

receptor agonist), bimatoprost (prostanoid receptor agonist), and tianeptine (atypical 

antidepressant). The hit compounds obtained using the multiparametric approach were 

approximately 20% closer to the targeted healthy control than those obtained from a one-

dimensional peak count metric. These results demonstrate that utilization of multiparametric 

selection criteria offers superior specificity by imposing strict constraints, reducing the hits to 

only those that reverse the disease phenotype across all 153 dimensions. Therefore, screening 

against multiple disease-related parameters, as opposed to a single one, is likely to lead to the 

identification of completely different sets of compounds with distinct mechanisms of action and 

molecular targets, and which are therefore likely to have quite different efficacy profiles for the 

disease in patients. 
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Activity Fingerprints 

 Next, we compared the hit compounds by converting their activity profiles into 

quantifiable visual representations (phenotypic signatures), negating the need to perform 

dimensionality reduction by providing a lens into the multidimensional activity space. We found 

the activity signatures of the ALS disease phenotype and the healthy phenotype to be quite 

different, while the signatures from compounds that closely matched the control phenotype were 

similar to each other and to the healthy profile (Fig. 3D). Compounds that introduced changes 

distinct from the disease or healthy state (potential undesired effects) had very different 

signatures (Fig. 3D). Interestingly, while the activity signatures of the disease-phenotype-

correcting hits were comparable, their molecular structures and targets were different (Fig. 3E). 

These results suggest either that multiple different molecular mechanisms can be utilized to 

normalize pathological excitability profiles in SOD1A4V motor neurons or that the off-target 

effects of these quite distinct compounds might be similar, although the latter is statistically most 

unlikely. 
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Fig. 3.  Multiparametric Drug Screening Strategy. (A) Schematic illustrating that both genetic mutation 

correction and drug action can restore a healthy activity phenotype in a diseased cell line. (B) Ranking of the top 25 

individual parameter differences between the disease (39b) and corrected cell line (39b-cor) reveal relative 

importance of features. (C) Hierarchically-clustered heatmap of 1902 compounds from the Selleck bioactive library 

6h and 24h after treatment; each compound is represented using the 153 activity features normalized to the control 

phenotype. Compound name, mechanism of action, and molecular targets of the 4 hits that resulted in cellular 

activity closest to the healthy phenotype at each timepoint is shown. (D) Comparison of the multiparametric activity 
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signatures for the disease phenotype (39b), the healthy phenotype (39b-corrected), a hit compound (Apremilast) and 

a non-hit compound (Obatoclax Mesylate) on 39b MN distinguishes activity patterns. Features are ordered based on 

preassigned positions in the grid and normalized to fit on the same intensity scale. (E) Comparison of the negative 

control (DMSO) and 3 hits (Apremilast, Halcinonide, PU-H71) that replicated in a validation screen on 39b MN 

reveals similar activity profiles and distinct molecular structures across the hits. (F) Depiction of phenotypic 

signatures capturing complex activity phenotypes in control and disease neuronal populations (first two rows). The 

action of an effective drug on diseased cells restores the control (healthy) phenotype (third row). No phenotypic 

signatures are produced for inactive cells (fourth row). Comparison of signatures provide a basis for measuring drug 

efficacy. 

 

DISCUSSION 
 

 We have designed a computational approach that combines the temporal and spatial 

resolution of high content microscopy imaging and automated high-throughput screening with 

the scalability of cloud computing, to accelerate the search for new molecules capable of 

rescuing an ALS motor neuron disease phenotype. The pipeline processes imaging data from 

individual wells in parallel to maximize throughput. Imaging artifacts are removed by a multi-

layered correction algorithm and objects are identified by CellProfiler modules combined with a 

temporal profile analysis.  While we collect information about the morphology, eccentricity, and 

surface area of cells, our analytic approach focuses on the dissection of temporal dynamics of 

GCaMP activity. The calcium dynamics encoded in each time series is parameterized into 153 

features that are normalized and combined to form an overall representation of cellular activity 

(an activity fingerprint or profile). The generation of a multiparametric disease profile combined 

with unbiased hierarchical clustering of drug efficacy over 153 parameters simultaneously, 

allowed us to identify drugs that can convert a disease profile into a healthy profile, and also 
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identify potential undesired side effects, from the perspective of a distortion in the 

multidimensional representation of healthy activity.  

 

Through our large-scale bioactive compound drug disease phenotype correcting screen, 

we identified Apremilast, Halcinonide and PU-H71 as compounds that normalize the 

multifaceted GCaMP-based disease activity phenotype back to a healthy phenotype, providing a 

proof-of-principle for a new drug screening paradigm for ALS, and other diseases, though future 

study is needed to identify the molecular targets underlying these three compound’s actions. 

Although there are similarities in the chemical structures of Apremilast, Halcinonide and PU-

H71, they are not members of the same class of molecules and have different annotated 

molecular targets, specifically phosphodiesterase 4, corticosteroid hormone receptor and heat 

shock protein 90, respectively. It is therefore possible or even likely that the observed drug 

effects are the result of interactions with different targets, thus any structure-activity relationship 

(SAR) campaign following this kind of multidimensional phenotypic screen will have to 

embrace the complexity of the disease and include a multi-target deconvolution process. This 

strategy may be a necessity for the development of successful therapeutics for complex 

neurological disorders such as ALS and represents a move from single target identification.  

 
The ability to generate complex stem cell derived neuronal models for diseases such as 

ALS has provided a powerful tool to understand the known genetic forms of the disease. 

However, for most ALS patients the cause of their disease is unknown, and they are classified as 

sporadic. The development and execution of an automated and unbiased high throughput 

multiparameter activity profiling platform provides an unprecedented opportunity to interrogate 

neurons derived from many sporadic patient stem cell lines. Such an interrogation could lead to 
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the identification of patients with a shared abnormal activity profile, and in this way, aid our 

understanding of common complex changes in neuronal activity in disease conditions, as well as 

the discovery of compounds that can rescue a comprehensive disease phenotype to a healthy one. 

 

We evaluated the performance of our computational approach in terms of its usability, 

speed, and accuracy. In comparison to previous approaches, the automated measurement of 153 

features of activity for each cell removes the inherent bias associated with manual selection of a 

subset of features and provides a highly sensitive framework for identifying activity 

disturbances. From a usability standpoint, this negates the need for user-specified parameters that 

are often arbitrarily chosen and biased. Additionally, our cloud-based design can theoretically 

scale to any number of wells provided sufficient computing resources are available. Since wells 

are processed in parallel and the results combined in constant time, increasing the number of 

compounds in a drug screen only marginally increases total processing time. Prior assays that 

include manual interventions are time-consuming, error-prone, and often not reproducible. Once 

adjusted for the type of cells being studied and the recording frequency, our approach does not 

require human intervention and can be applied to any number of recordings, provides 

comprehensive activity profiles, and is entirely reproducible. This is particularly useful when 

studying complex genetic diseases such as ALS, since it allows for the comparison of the activity 

profiles of different mutations under the same treatment. Therefore, this computationally 

efficient and deterministic approach, one that can be launched by the push of a button, is we 

argue, superior to previous methods in many regards. 
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In principle, our approach can be used with any cell, for any cellular functional activity 

that can be fluorescently tagged, and for which dynamics is a biologically relevant property. 

Because it is readily deployable on cloud infrastructures, it provides a seamless way to 

interrogate disease activity and the corrections in this phenotype introduced by drug actions. 

However, the reliance on dynamic data alone excludes morphological changes such as cell size 

and dendritic arbor changes, which may be important for disease progression. Previous studies, 

as well as our own observations, indicate that the soma size of motor neurons carrying the 

SOD1A4V mutation is altered as the disease progresses (2, 19). A next logical step for the platform 

would be to combine activity-based phenotypes with detection of morphological aberrations.  

 

We anticipate that sophisticated phenotypic screens that embrace the complexity of 

cellular function and delineate multiple facets of drug action will accelerate the discovery of 

successful and novel therapeutic interventions. Our findings demonstrate the existence of 

multiple complex and previously unexploited facets of the ALS excitability phenotype and the 

discovery of compounds that robustly correct many parameters of this phenotype simultaneously. 

This discovery, coupled with the sensitive cloud-based high-throughput multiparametric 

framework for capturing and analyzing subtle changes in cellular activity, represents a 

substantial leap forward for comprehensive disease profiling and drug screening in the pursuit of 

novel treatments for ALS and other diseases. Improvements to the earliest phases of the 

translational process, which are inextricably linked to success of clinical trials, have the potential 

to both significantly reduce costs and health risks for patients as well as improve efficacy. 

Ultimately, the combination of human stem cell models and novel multiparametric screening 

approaches have, we argue, the promise to lead to safer and more effective therapeutics for ALS. 
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MATERIALS AND METHODS 
 
Single Cell GCaMP6 Screen  

iPSC’s were expanded and differentiated into motor neurons using an embryonic body-based 

(EB) protocol as previously described (2). At day 24, EBs were dissociated to single cells with 

accutase, frozen and stored in liquid nitrogen until FACS purification of motor neurons that were 

NCAM (BD Biosciences, #561903) positive and EpCAM (BD Biosciences, #347198) negative. 

Motor neurons were co-cultured in Greiner Bio-one cell culture plates 384-well plates at a 

density of 7,500 cell per well with 10,000 glial cells obtained from P0–P2 C57BL/6 pups 

(Jackson Laboratory) as described in Di Giorgio (20). Mouse procedures were approved by 

Boston Children’s Hospital Institutional Animal Care and Use Committee (IACUC). 

 

Cells were plated in the presence of 10 µM ROCK inhibitor Y-27632 (Tocris) and 1µM EDU 

(Thermo) in motor neuron media (Neurobasal media) (NB, Invitrogen, Carlsbad, CA), 

supplemented with B27, N2 supplement, glutamax and non-essential amino acids (GIBCOTM, 

Thermo Fisher), 10 ng/ml each of BDNF, GDNF, and CNTF (R&D Systems, Minneapolis, MN), 

and 0.2 mg/ml ascorbic acid (Sigma). After incubation for 2 days, media was replaced every 3 or 

4 days by Neurobasal media. LV-synapsin-GCaMP6 viral infections were performed in weeks 2 

and 3 at a MOI of 5. After 3-4 weeks, synaptic blockers are added to each well at the following 

concentrations: Bicuculline 25µM, Strychnine 10µM, AP-5 100µM, CNQX 10µM. After 2hr 

chemogenomic library compounds from the Selleck Bioactive Compound Library (plates 3651-

3656; ICCB Longwood Screening Facility) were added at a final concentration of 3µM. DMSO 

was used as a negative control at 0.03%. Tetrodotoxin 5µM in 0.03% DMSO was used as a 

positive control. After 6hr and 24hr, the plates were recorded for 4-5hr in the ArrayscanTM XTI 
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(Thermo Fisher) with excitation at 485 nm and emission at 521 nm. Recordings were acquired at 

1Hz for 45 seconds over two independent sessions. 

 

Illumination Correction 

Uneven illumination was corrected across the field of view using a CellProfiler (14) pipeline that 

sequentially applies two built-in modules. The module CorrectIllumCalculate was first included 

to calculate the illumination function from all images across cycles. The smoothing method was 

set to Median Filter with default settings to capture global illumination disparities rather than 

cell-specific variations in brightness. The other parameters of the module were left unchanged. 

The SaveImages module was then added to save the output upon the last cycle as a 32-bit 

floating-point tiff image. 

 

Maximum Projection 

The maximum value of each pixel across all frames in the recording was computed and saved as 

an 8-bit frame representing the maximum projection of the recording using the Python 

programming language (21). 

 

Cellular Fragments Identification 

Cells were first identified and morphologically characterized from the maximum projection 

image by applying a CellProfiler (14) pipeline that combines thirteen sequential modules. A 

sample maximum projection subimage is followed through each module in Figure S1 B. Starting 

with the original image (b1), a median filter is applied to blur away small artifacts, with the 

typical artifact parameter set to 3 (b2). Neurites are then computationally enhanced to become 
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more visible and identifiable using the EnhanceOrSuppressFeatures module, with the tubeness 

enhancement method and smoothing scale set to 2 (b3). The ImageMathmodule is used to 

average the enhanced features with the blurred image, generating a cleaner delineation of the 

contours of interest (b4). Clustering-based image thresholding is performed using the Otsu’s 

method to separate foreground from background pixels using the IdentifyPrimaryObjects module 

(b5). Simultaneously, objects with diameters ranging from 5 to 35 pixels are identified and their 

contours outlined (b6). The IdentifySecondaryObjects module is used to identify secondary 

objects such as neurites using the propagation method, which helps find dividing lines between 

clumped objects and refine cell segregation (b7). The brightness, morphology, and texture of 

individual fragments is characterized using a combination of modules, specifically 

MeasureImageIntensity, MeasureObjectIntensity, MeasureObjectSizeShape, and 

MeasureTexture. Consolidation of the location of all pixels belonging to cellular fragments 

generate a numerical mask saved as a 16-bit tiff image which can be used to identify all or 

specific subsets of cells (b8). Background pixels are assigned a value of 0 while other pixels are 

assigned a unique fragment-specific integer identifier between 1 and K, where K is the total 

number of fragments identified in the well. 

 

Spatial Proximity Assessment 

Pairwise spatial proximity of fragments is assessed by measuring the Euclidean distance between 

their centroids. Centroids are calculated using Python’s SciPy library. This generates an NxN 

matrix, where N is the number of fragments and each entry in the matrix the distance in pixels 

between two non-overlapping fragments. 
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Activity Similarity Assessment 

Pairwise time series similarity is assessed using the standard implementation of the dynamic time 

warping algorithm included in the mlpy (22) Python library with default parameters. An 

unnormalized minimum-distance warp path is computed for each pair of signals. An NxN matrix 

is thus constructed, where N is the number of fragments and each entry in the matrix the cost 

associated to the warping path between the signals of two non-overlapping fragments.  

  

Cellular Fragments Consolidation 

The matrices described in Figure S1 D are first normalized to their respective means through 

division. The geometric mean of their normalized forms is then computed from the Python 

implementation included in the scipy.stats library (SciPy version 1.2.1) (23), yielding a matrix 

with each entry being a unified distance between each pair of fragments. The resulting matrix is 

fed into an agglomerative hierarchical clustering algorithm (24) that utilizes complete linkage to 

merge the subtrees. More specifically, the scipy.cluster.hierarchy library is used to compute the 

linkage matrix and to retrieve flat clusters from it, with a threshold of 0.1. The threshold 

corresponds to the height at which the dendrogram resulting from the hierarchical clustering is 

cut. Branches below the cut threshold are pruned, yielding consolidated fragments. Branches 

above the threshold are deemed part of distinct cells. The cell mask previously generated is 

updated so that pixels belonging to the same cell are assigned the same unique integer identifier. 

The identifiers assigned range from 1 to N, where N is the total number of cells after the 

fragments have been recombined. 
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Extraction of Cellular Activity  

From the whole-cell mask obtained by combining cellular fragments, a mapping from unique cell 

identifiers to their respective set of pixels is constructed. The activity of individual cells is 

extracted by averaging at each time point the brightness of their respective pixels. 

 

Decay Correction 

The decay in fluorescence is estimated by averaging the decay of randomly selected pixels from 

each well. Specifically, 100 pixels from each well were randomly selected and grouped. A first-

degree exponential decay function was fitted to the aggregated data using the scipy curve fitting 

module, with the model function 𝑦 = 𝑎𝑒!"# + 𝑐, the bounds constricted to the positive range, 

and an initial guess of the parameters of 𝑎 = 2000, 𝑏 = 0.01, and 𝑐 = 200. The resulting fit 

curve is normalized through division by its maximum value. The activity of each cell over time 

is then divided by this normalized decay curve. 

 

Background Subtraction 

Using the cell mask to identify background pixels, a sample of 10,000 background pixels are 

randomly selected and their intensity averaged at each time point. This generates a time series 

that estimates background intensity over time. This curve is then subtracted from the activity of 

each cell. 
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Peak Identification 

Peaks in cellular activity were identified using code derived from the find_peak function of the 

scipy package. Peaks were labeled on their rising edge with a minimum interpeak distance of 1. 

Troughs were identified by applying the same approach onto the inverse of the time series. Peaks 

were also identified using the continuous wavelet transform method provided in the scipy 

package. Wavelets of width up to 4 (W4) and up to 8 (W8) were used separately to identify 

distinct sets of peaks, each time with a gap threshold of 3 and a maximum distance of half the 

maximum width. The W4 approach used a minimum ridge line length of 3, a minimum SNR 

ratio of 1, and a noise percentile of 10. The W8 approach used a minimum ridge line length of 5, 

a minimum SNR ratio of 2, and a noise percentile of 10. 

 

Baselines 

Three baselines were established to compute individual peak characteristics. Since background 

intensity was subtracted from each signal, measurements relative to the y=0 line were used to 

obtain features relative to the background intensity. The respective minimum fluorescence value 

of each cell across the 45-second recording was used a second baseline. The third baseline was 

determined for each peak by taking the fluorescence value at the onset of the peak. 

 

Peak Threshold 

For each baseline, a peak threshold was computed to distinguish noise from actual peaks. The 

noise level was established by taking the amplitude distribution of all peaks in the positive 

control wells, here those treated with tetrodotoxin. The spontaneous peak level was established 

by taking the amplitude distribution of all peaks in the negative control wells, here those treated 
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with dimethyl sulfoxide (DMSO). The peak threshold was then calculated using the Otsu method 

from the combined distribution of peak heights using the SciPy Python package. 

 

Peak Features 

Under the differential method, for each peak and each baseline, amplitude was measured relative 

to the baseline. Peaks whose height fell below the minimum peak threshold were discarded. Peak 

count was computed as the remaining number of peaks. Rise time was calculated as the time 

between the peak apex and the previous trough. Fall time was calculated as the time between the 

peak apex and the following trough. Peak width was measured as the time between the onset of 

the rise and the end of the fall. The area under a given peak was computed using the trapezoidal 

rule along the width of the peak. The average and variance of the time interval between peaks 

was also calculated. 

 

Under the wavelet methods, the full width at half maximum was used as a reference point for 

computing the peak features. Rise time was calculated as the time between the half-maximum 

point along the rise and the peak apex. Fall time was calculated as the time between the peak 

apex and the half-maximum point along the fall. The other peak features were obtained using the 

same logic used under the differential method.  

  

Signal Features 

Statistical metrics including the minimum, maximum, mean, and variance of each trace were 

computed using the numpy (25) package (version 1.18) in Python. The area under the entire 

signal was approximated using the trapezoidal rule provided in the same package. The power 
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spectral density of each trace was obtained using the periodogram module of the scipy.signal 

package. 

 

Multidimensional Activity Clustering 

Individual cell activity is described by the set of 153 features. Individual well activity is 

computed as the mean of each feature across all cells in the well. The control phenotype is 

obtained by averaging the features from the control wells, here the healthy control line (39b-cor). 

The disease activity phenotype is obtained by averaging the features from the disease wells, here 

ALS (39b). For each well, the features were normalized to the control phenotype features using 

Cytominer (26), which normally distributes the data around the control phenotype. Pairwise 

comparison of well activity phenotypes is evaluated by measuring the Euclidean distance 

between the wells in the multidimensional feature space using the SciPy spatial module. The 

resulting matrix is plotted as a hierarchically clustered heatmap using seaborn (27) (version 

0.9.0). Compounds that result in similar activity phenotypes are observed as clusters in the 

heatmap. From the pairwise distance matrix, wells with activity phenotypes most similar to the 

control phenotype are extracted and ranked. 

 

Activity Signatures 

For each well, each feature is normalized to the [0;1] range based on all observed values. The 

normalized feature vector representing each well is converted into a matrix of size 13x13 using 

the Python package numpy. The first 153 entries in the matrix correspond to the normalized 

features; the remaining entries are set to 0. The resulting matrix is used as the well activity 

signature and visualized in the form of a color-coded grid generated using the Python package 
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matplotlib (28). Grid squares are colored based on a grayscale gradient where 0 is black and 1 is 

white. The position of each feature in the grid is preassigned to allow direct comparison of 

signatures. 

 

CELLXPEDITE Platform 

We have released our implementation of the cloud-based processing and analysis platform as an 

open-source software (https://github.com/brunoboivin/cellxpedite). It is currently designed for 

deployment on Amazon Web Services, but it is also compatible with local clusters and other 

cloud computing service providers with minimal changes to the deployment scripts. 

 
Supplementary Materials 

Fig. S1.  Cell Identification Strategy. 
Fig. S2.  Imaging Artifacts Removal. 

Fig. S3.  Quality Control. 
Table S1. Toxic Compounds. 
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Supplementary Materials: 

 
 
Fig. S1.  Cell Identification Strategy. (A) Uneven illumination captured using our pipeline. (B) 

Cell identification workflow applied onto a portion of the field of view. Starting from the 

maximum projection of the original recording (b1), a median blur is applied (b2) and combined 

with enhanced neurite features (b3) through averaging (b4). Background/foreground pixels are 

distinguished (b5), primary cell contours outlined (b6), secondary clumped cells separated (b7), 

ultimately producing a mask for all neurons (b8). (C) Cells identified in the entire field of view 

using our workflow. (D) Strategy for combining cellular fragments into cells based on spatial 

proximity (Euclidean distance) and activity similarity (temporal cross-correlation). A threshold 

(<0.1) is applied to the geometric mean of the matrices to determine which fragments to 

combine.  
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Fig. S2.  Imaging Artifacts Removal. (A) A cell mask is applied to the original GCaMP 

recording to extract the calcium trace of each spatial footprint. (B) Photobleaching effects are 

modeled as an exponential decay in the GCaMP signal over time and removed from the calcium 

traces. (C) Background luminescence is estimated by averaging the intensity of randomly 

selected non-cell pixels (green pixels) and removed from a sample cellular calcium trace. 
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Fig. S3.  Quality Control. (A) Unsupervised dimensionality reduction using t-Distributed 

Stochastic Neighbor Embedding (t-SNE) shows no plate bias six hours after treatment. (B) No 

plate bias is present even twenty-four hours after treatment. (C) Normalized peak counts from 

two independent recording sessions across all wells show positive correlation between the 

replicates. A reference correlation line is shown (dashed red line) between ± 1 bands (solid red 

lines). (D) A representative GCaMP signal obtained from an active cell (black) and an inactive 

cell (red) show separation of the activity states captured by our pipeline. 
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Table S1.  Toxic Compounds. Compounds from our high-throughput screen, including those 

from the Selleck chemogenomic library, that resulted in low cellular activity (<20 active cells) 

grouped to show origin plate, well identifier, and compound name. 
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