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As the COVID-19 outbreak spreads, there is a growing need for an efficient tool to

identify conserved RNA structures as critical targets for diagnostics and therapeu-

tics. To address this need, we present LinearTurboFold, an algorithm that scales

linearly with sequence length, to predict conserved structures for a set of unaligned

RNA homologs. LinearTurboFold uses the same iterative refinement of structures

and alignments as TurboFold, but is substantially faster than previous methods and

can fold full-length coronavirus genomes without constraints on base-pairing dis-

tance. It also significantly improves structure prediction accuracy and achieves com-

parable alignment accuracy. On SARS-CoV-2 genomes, LinearTurboFold identifies

not only conserved structures but also accessible and conserved regions as poten-

tial targets for designing efficient small-molecule drugs, antisense oligonucleotides,

siRNAs, CRISPR-Cas13 gRNAs and RT-PCR primers.
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Introduction1

RNAs play important roles in many cellular processes (1, 2). To maintain their functions, secondary2

structures of RNA homologs are conserved across evolution (3, 4, 5). These conserved structures3

provide critical targets for diagnostics and treatments. Thus, there is a need for developing fast and4

accurate computational methods to identify structurally conserved regions.5

Commonly, conserved structures involve compensatory base pair changes, where two positions6

in primary sequences mutate across evolution and still conserve a base pair, for instance, an AU or a7

CG pair replaces a GC pair in homologous sequences. These compensatory changes provide strong8

evidence for evolutionarily conserved structures (6,7,8,9,10). Meanwhile, they make it harder to align9

sequences when structures are unknown. To solve this issue, Sankoff proposed a dynamic algorithm10

that simultaneously predicts structures and a structural alignment for two or more sequences (11).11

The major limitation of this approach is that the algorithm runs in O(n3k) against k sequences with12

the average sequence length n. Several software packages provide implementations of the Sankoff13

algorithm (12, 13, 14, 15, 16, 17) that use simplifications to reduce runtime.114

As an alternative, TurboFold II (18), an extension of TurboFold (19), provides a more computa-15

tionally efficient method to align and fold sequences. Taking multiple unaligned sequences as input,16

TurboFold II iteratively refines alignments and structure predictions so that they conform more closely17

to each other and converge on conserved structures. TurboFold II is significantly more accurate than18

other methods (12,14,20,21,22) when tested on RNA families with known structures and alignments.19

However, the cubic runtime and quadratic memory usage of TurboFold II prevent it from scaling20

to longer sequences such as full-length SARS-CoV-2 genomes which contain ⇠30,000 nucleotides;21

in fact, no joint-align-and-fold methods can scale to these genomes which are the longest among22

RNA viruses. As a (not very principled) workaround, most existing efforts for modeling SARS-23

CoV-2 structures (23, 24, 25, 26, 27, 28) resort to local folding methods (29, 30) with sliding windows24

plus a limited pairing distance, abandoning all non-local interactions, and only consider one SARS-25

1Besides these joint-fold-and-align algorithms, there exist two alternative approaches to homologous folding: align-
then-fold and fold-then-align; see Fig. S1 for details.
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CoV-2 genome (Fig. 1B–C), ignoring homology signals. To address this challenge, we design a26

linearized version of TurboFold II, LinearTurboFold (Fig. 1A), which is a global homologous folding27

algorithm that scale linearly with sequence length. This linear runtime makes it the first joint-fold-28

and-align algorithm to scale to full-length coronavirus genomes without any constraints on window29

size or pairing distance, taking about 13 hours to analyze a group of 25 SARS-CoV homologs. It also30

leads to significant improvement on secondary structure prediction accuracy as well as an alignment31

accuracy comparable to or higher than all benchmarks.32

Over a group of 25 SARS-CoV-2 and SARS-related homologous genomes, LinearTurboFold pre-33

dictions are close to the canonical structures (31) and structures modeled with the aid of experimental34

data (24, 25, 26) for several well-studied regions. Thanks to global rather than local folding, Lin-35

earTurboFold discovers a long-range interaction involving 5’ and 3’ UTRs (⇠29,800 nt apart), which36

is consistent with recent purely experimental work (27), and yet is out of reach for local folding meth-37

ods used by existing studies (Fig. 1B–C). In short, our in silico method of folding multiple homologs38

can achieve results similar to, and sometimes more accurate than, experimentally-guided models for39

one genome. Moreover, LinearTurboFold identifies conserved structures supported by compensatory40

mutations, which are potential targets for small molecule drugs (32) and antisense oligonucleotides41

(ASOs) (28). We further identify regions that are (a) sequence-level conserved, (b) at least 15 nt long,42

and (c) accessible (i.e., likely to be completely unpaired) as potential targets for ASOs (33), small43

interfering RNA (siRNA) (34), CRISPR-Cas13 guide RNA (gRNA) (35) and reverse transcription44

polymerase chain reaction (RT-PCR) primers (36).45

LinearTurboFold is a general technique that can also be applied to other RNA viruses (e.g., in-46

fluenza, Ebola, HIV, Zika, etc.) for full-length genome studies.47

Results48

The framework of LinearTurboFold has two major aspects (Fig. 1A): linearized structure-aware pair-49

wise alignment estimation (module 1); and linearized homolog-aware structure prediction (module 2).50

LinearTurboFold iteratively refines alignments and structure predictions, specifically, updating pair-51
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wise alignment probabilities by incorporating predicted base-pairing probabilities (from module 2) to52

form structural alignments, and modifying base-pairing probabilities for each sequence by integrat-53

ing the structural information from homologous sequences via the estimated alignment probabilities54

(from module 1) to detect conserved structures. After several iterations, LinearTurboFold generates55

the final multiple sequence alignment (MSA) based on the latest pairwise alignment probabilities56

(module 3) and predicts secondary structures using the latest pairing probabilities (module 4).57

LinearTurboFold achieves linear time regarding sequence length with two major linearized mod-58

ules: our recent work LinearPartition (37) (Fig. 1A module 2), which approximates the RNA partition59

function (38) and base pairing probabilities in linear time, and a novel algorithm LinearAlignment60

(module 1). LinearAlignment aligns two sequences by Hidden Markov Model (HMM) in linear61

time by applying the same beam search heuristic (39) used by LinearPartition. Finally, LinearTur-62

boFold assembles the secondary structure from the final base pairing probabilities using an accurate63

and linear-time method named ThreshKnot (40) (module 4). LinearTurboFold also integrates a linear-64

time stochastic sampling algorithm named LinearSampling (41) (module 5), which can independently65

sample structures according to the homolog-aware partition functions and then calculate the probabil-66

ity of being unpaired for regions, which is an important property in siRNA sequence design (34). So67

overall, the end-to-end runtime of LinearTurboFold scales linearly with sequence length (see Meth-68

ods for more details).69

Scalability and Accuracy70

To evaluate the efficiency of LinearTurboFold against the sequence length, we collected a dataset con-71

sisting of seven families of RNAs with sequence length ranging from 210 nt to 30,000 nt, including72

five families from the RNAstralign dataset plus 23S ribosomal RNA, HIV and SARS-CoV genomes,73

and each family has five homologous sequences (see Methods for more details). Fig. 2A compares the74

running times of LinearTurboFold with TurboFold II and two Sankoff-style simultaneous folding and75

alignment algorithms, LocARNA and MXSCARNA. Clearly, LinearTurboFold scales linearly with76

sequence length n, and is substantially faster than other benchmarks which scale superlinearly. The77
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linearization in LinearTurboFold brought orders of magnitude speedup over the cubic-time TurboFold78

II, taking only 12 minutes on the HIV family (average length 9,686 nt) while TurboFold II takes 3.179

days (372⇥ speedup). More importantly, LinearTurboFold takes only 40 minutes on five SARS-CoV80

sequences while all other benchmarks fail to scale. Regarding the memory usage (Fig. 2B), Lin-81

earTurboFold costs linear memory space with sequence length, while other benchmarks use quadratic82

or more memory. In Fig. 2C–D, we also demonstrate that the runtime and memory usage against the83

number of homologs (k = 5 ⇠ 20), using homologs of 16S rRNAs about 1,500 nt in length. The84

apparent complexity against the group size of LinearTurboFold is higher than TurboFold II because85

the cubic-time partition function calculation, which dominates the runtime of TurboFold II, has been86

linearized in LinearTurboFold by LinearPartition (Fig. S5C).87

We next compare the accuracies of predicted secondary structures and MSAs between LinearTur-88

boFold and several benchmark methods. Besides Sankoff-style LocARNA and MXSCARNA, we89

also consider three types of negative controls: (a) single sequence folding (partition function-based):90

Vienna RNAfold (30) (-p mode) and LinearPartition; (b) sequence-only alignment: MAFFT (21) and91

LinearAlignment (a standalone version without structural information); and (c) an align-then-fold92

method that predicts consensus structures from MSAs (Fig. S1): MAFFT + RNAalifold (20).93

For secondary structure prediction, LinearTurboFold, TurboFold II and LocARNA achieve higher94

F1 scores than single sequence folding methods (Vienna RNAfold and LinearPartition) (Fig. 2E),95

which demonstrates folding with homology information performs better than folding sequences sepa-96

rately. Overall, LinearTurboFold performs significantly better than all the other benchmarks on struc-97

ture prediction. For the accuracy of MSAs (Fig. 2F), the structural alignments from LinearTurboFold98

obtain higher accuracies than sequence-only alignments (LinearAlignment and MAFFT) on all four99

families, especially for families with low sequence identity. On average, LinearTurboFold performs100

comparably with TurboFold II and significantly better than other benchmarks on alignments. We also101

note that the structure prediction accuracy of the align-then-fold approach (MAFFT + RNAalifold)102

depends heavily on the alignment accuracy, and is the worst when the sequence identity is low (e.g.,103

SRP RNA) and the best when the sequence identity is high (e.g., 16S rRNA) (Fig. 2E–F).104
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Highly Conserved Structures in SARS-CoV-2 and SARS-related Betacoron-105

aviruses106

RNA sequences with conserved secondary structures play vital biological roles and provide potential107

targets. The current COVID-19 outbreak raises an emergent requirement of identifying potential108

targets for diagnostics and therapeutics. Given the strong scalability and high accuracy, we used109

LinearTurboFold on a group of full-length SARS-CoV-2 and SARS-related (SARSr) genomes to110

obtain global structures and identify highly conserved structural regions.111

We used a greedy algorithm to select the 16 most diverse genomes from all the valid SARS-CoV-112

2 genomes submitted to the Global Initiative on Sharing Avian Influenza Data (GISAID) (42) up to113

December 2020 (Methods). We further extended the group by adding 9 SARS-related homologous114

genomes (5 human SARS-CoV-1 and 4 bat coronaviruses). In total, we built a dataset of 25 full-115

length genomes consisting of 16 SARS-CoV-2 and 9 SARS-related sequences (Tab. S2). The average116

pairwise sequence identities of the 16 SARS-CoV-2 and the total 25 genomes are 99.9% and 89.6%,117

respectively. LinearTurboFold takes about 13 hours and 43 GB on the 25 genomes.118

To evaluate the reliability of LinearTurboFold predictions, we first compare them with the Hus-119

ton et al.’s SHAPE-guided models (24) for regions with well-characterized structures across betacoro-120

naviruses. For the extended 5’ and 3’ untranslated regions (UTRs), LinearTurboFold’s predictions are121

close to the SHAPE-guided structures (Fig. 3A–B), i.e., both identify the stem-loops (SLs) 1–2 and122

4–7 in the extended 5’ UTR, and the bulged stem-loop (BSL), SL1, and a long bulge stem for the123

hypervariable region (HVR) including the stem-loop II-like motif (S2M) in the 3’ UTR. Interestingly,124

in our model, the high unpaired probability of the stem in the SL4b indicates the possibility of being125

single-stranded as an alternative structure, which is supported by experimental studies (28, 25). In126

addition, the compensatory mutations LinearTurboFold found in UTRs strongly support the evolu-127

tionary conservation of structures (Fig. 3A).128

The most important difference between LinearTurboFold’s prediction and Huston et al.’s experimentally-129

guided model is that LinearTurboFold discovers an end-to-end interaction (29.8 kilobases apart) be-130

tween the 5’ UTR (SL3, 60-82 nt) and the 3’ UTR (final region, 29845-29868 nt), which fold locally131

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2020.11.23.393488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.393488
http://creativecommons.org/licenses/by-nc-nd/4.0/


by themselves in Huston et al.’s model. Interestingly, this 5’-3’ interaction matches exactly with the132

one discovered by the purely experimental work of Ziv et al. (43) using the COMRADES technique133

to capture long-range base-pairing interactions (Fig. 3C). These end-to-end interactions have been134

well established by theoretical and experimental studies (44, 45, 46) to be common in natural RNAs,135

but are far beyond the reaches of local folding methods used in existing studies on SARS-CoV-2 sec-136

ondary structures (24,25,26,27). By contrast, LinearTurboFold predicts secondary structures globally137

without any limit on window size or base-pairing distance, enabling it to discover long-distance in-138

teractions across the whole genome. The similarity between our predictions and the experimental139

work shows that our in silico method of folding multiple homologs can achieve results similar to,140

if not more accurate than, those experimentally-guided single-genome prediction. We also observed141

that LinearPartition, as a single sequence folding method, can also predict a long-range interaction142

between 5’ and 3’ UTRs, but it involves SL2 instead of SL3 of the 5’ UTR (Fig. 3A), which indi-143

cates that the homologous information assists to adjust the positions of base pairs to be conserved in144

LinearTurboFold. Additionally, the align-then-fold approach (MAFFT + RNAalifold) fails to predict145

such long-range interactions (Fig. S6B).146

The frameshifiting stimulation element (FSE) is another well-characterized region. For an ex-147

tended FSE region, the LinearTurboFold prediction consists of two substructures (Fig. 4A): the 5’148

part includes an attenuator hairpin and a stem, which are connected by a long internal loop (16 nt)149

including the slippery site, and the 3’ part includes three stem loops. We observe that our predicted150

structure of the 5’ part is consistent with experimentally-guided models (24, 25, 27) (Fig. 4B–D). In151

the attenuator hairpin, the small internal loop motif (UU) was previously selected as a small molecule152

binder which stabilizes the folded state of the attenuator hairpin and impairs frameshifting (32). For153

the long internal loop including the slippery site, we will show in the next section that it is both highly154

accessible and conserved (Fig. 5), which makes it a perfect candidate for drug design. For the 3’ re-155

gion of the FSE, LinearTurboFold successfully predicts stems 1–2 (but misses stem 3) of the canonical156

three-stem pseudoknot (31) (Fig. 4E). Our prediction is closer to the canonical structure compared to157

the experimentally-guided models (24, 25, 27) (Fig. 4B–D); one such model (Fig. 4B) identified the158
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pseudoknot (stem 3) but with an open stem 2. Note that all these experimentally-guided models for159

the FSE region were estimated for specific local regions. As a result, the models are sensitive to the160

context and region boundaries (27, 24, 47) (see Fig. S7D–F for alternative structures of Fig. 4B–D161

with different regions). LinearTurboFold, by contrast, does not suffer from this problem by virtue of162

global folding without local windows. Besides SARS-CoV-2, we notice that the estimated structure163

of the SARS-CoV-1 reference sequence (Fig. 4F) from LinearTurboFold is similar to SARS-CoV-2164

(Fig. 4A), which is consistent with the observation that the structure of the FSE region is highly con-165

served among betacoronaviruses (31). Finally, as negative controls, both the single sequence folding166

algorithm (LinearPartition in Fig. 4G) and the align-then-fold method (RNAalifold in Fig. S7G) pre-167

dict quite different structures compared with the LinearTurboFold prediction (Fig. 4A) (39%/61% of168

pairs from the LinearTurboFold model are not found by LinearPartition/RNAalifold, respectively).169

In addition to the well-studied UTRs and FSE regions, LinearTurboFold discovers 50 conserved170

structures with identical structures among 25 genomes, and 26 regions are novel compared to pre-171

vious studies (23, 24) (Fig. 4H and Tab. S4), which might be potential targets for small-molecule172

drugs (32) and antisense oligonucleotides (28, 48). LinearTurboFold also recovers fully conserved173

base pairs with compensatory mutations (Tab. S3), which imply highly conserved structural regions174

whose functions might not have been explored.175

Highly Accessible and Conserved Regions in SARS-CoV-2 and SARS-related176

Betacoronaviruses177

Studies show that the siRNA silencing efficiency, ASOs inhibitory efficacy, CRISPR-Cas13 knock-178

down efficiency and RT-PCR testing efficiency all correlate with the target accessibility (34,35,36,49),179

which is the probability of a target site being fully unpaired. To get unstructured regions, Ran-180

gan et al. (23) imposed a threshold on unpaired probabilities of each position, which is not a truly cor-181

rect method because the unpaired probabilities are dependent. By contrast, the widely-used stochastic182

sampling algorithm (50, 41) builds a representative ensemble of structures by sampling independent183

secondary structures according to their probabilities in the Boltzmann distribution. Thus the acces-184
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sibility for a region can be approximated as the fraction of sampled structures in which the region185

is single-stranded. LinearTurboFold utilized LinearSampling (41) to generate 10,000 independent186

structures for each genome according to the modified partition functions after the iterative refinement187

(Fig. 1A module 5), and calculated accessibilities for regions at least 15 nt long. We then identify188

accessible regions with at least 0.5 accessibility among all 16 SARS-CoV-2 genomes (Fig. 5A–B).189

In addition to accessibility, sequence conservation is another critical aspect for efficient therapeu-190

tic and diagnostic target sites. We further identify accessible and conserved regions that are not only191

structurally accessible among SARS-CoV-2 genomes, but also fully conserved among SARS-CoV-2192

genomes with at most one mutation at each position across SARS-related genomes (Fig. 5C). These193

regions are less likely to accumulate mutations in the future. Finally, we identified 35 accessible and194

conserved regions (Fig. 5G and Tab. S5). Because the nucleotide content and specificity are also key195

factors influencing siRNA efficient (51), we searched BLAST against the human mRNA dataset for196

these regions and calculated the GC content (Tab. S5). Among these regions, region 16 corresponds197

to the internal loop containing the slippery site in the extended FSE region, and it is conserved at198

both structural and sequence levels (Fig. 5D and 5H). Region 29 in the ORF3a gene is fully con-199

served among all the 25 genomes with average accessibility 0.936 (Fig. 5D). Besides SARS-CoV-2200

genomes, the SARS-related genomes such as the SARS-CoV-1 reference sequence (NC 004718.3)201

and a bat coronavirus (BCoV, MG772934.1) also form similar structures around the slippery site202

(Fig. 5A). To investigate if the the mutations are sensitive to the sampled SARS-CoV-2 genomes, we203

further checked the conservation of these regions among a dataset including 257,672 valid genomes204

submitted to GISAID up to December 2020, and most of these regions are still highly conserved2
205

(Tab. S5). The mutations of new lineages of SARS-CoV-2 in South African, Brazil3 and India4 are206

outside of these predicted regions, which implies that the sequence conservation constraint imposed207

on SARS-related genomes is helpful in selecting evolutionarily conserved regions.208

We also designed a negative control by analyzing the SARS-CoV-2 reference sequence alone,209

2the fraction of valid genomes in which the whole region is identical.
3https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html
4https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
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which can also obtain some accessible regions. However, these regions are not structurally conserved210

among the other 15 SARS-CoV-2 genomes, resulting in vastly different accessibilities, except for one211

region in the M gene (Tab. S6). The reason behind this is that even with a high sequence identity (over212

99.9%), single sequence folding algorithms still predict greatly dissimilar structures for the SARS-213

CoV-2 genomes (Fig. 5E–F). Both regions (in nsp11 and N genes) are fully conserved among the214

16 SARS-CoV-2 genomes, yet they still fold into vastly different structures due to mutations outside215

the regions; as a result, the accessibilities are either low (nsp11) or in a wide range (N) (Fig. 5D).216

Conversely, addressing this by folding each sequence with proclivity of base pairing inferred from all217

homologous sequences, LinearTurboFold structure predictions are more consistent with each other218

and thus can detect conserved structures (Fig. 5A–B).219

Summary220

We have presented LinearTurboFold, an end-to-end linear-time algorithm for structural alignment and221

conserved structure prediction of RNA homologs, which is the first joint-fold-and-align algorithm to222

scale to full-length SARS-CoV-2 genomes without imposing any constraints on base-pairing distance.223

We also demonstrate that LinearTurboFold leads to significant improvement on secondary structure224

prediction accuracy as well as an alignment accuracy comparable to or higher than all benchmarks.225

Unlike existing work using local folding workarounds, LinearTurboFold enables unprecedented226

global structural analysis on the SARS-CoV-2 genomes; in particular, it can capture long-range in-227

teractions, especially the one between 5’ and 3’ UTRs across the whole genome, which matches228

perfectly with a recent purely experiment work. Over a group of 25 SARS-CoV-2 and SARS-related229

homologs, LinearTurboFold identifies not only conserved structures supported by compensatory mu-230

tations and experimental studies, but also accessible and conserved regions as vital targets for design-231

ing efficient small-molecule drugs, siRNAs, ASOs, CRISPR-Cas13 gRNAs and RT-PCR primers.232

LinearTurboFold is widely applicable to the analysis of other RNA viruses (influenza, Ebola, HIV,233

Zika, etc.) and full-length genome analysis.234
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Figure 1: A: The LinearTurboFold framework. Like TurboFold, LinearTurboFold also takes multi-

ple unaligned homologous sequences as input and then outputs a multiple sequence alignment and

structures for each sequence, but unlike TurboFold, it employs two linearizations to ensure linear run-

time: a linearized alignment computation (module 1) to predict posterior co-incidence probabilities

(red squares) for all pairs of sequences and a linearized partition function computation (module 2) to

estimate base-pairing probabilities (yellow triangles) for all the sequences. These two modules take

advantage of information from each other and iteratively refine predictions (see Fig. S2 for details).

After several iterations, module 3 generates the final multiple sequence alignments, and module 4 pre-

dicts secondary structures. Module 5 is an optional output to stochastically sample structures. B–C:

Most prior studies (expect for a purely experimental work by Ziv et al.) used local folding methods

with limited window size and maximum pairing distance. B shows the local folding of the SARS-

CoV-2 genome by Huston et al. Some work also used homologous sequences to identify conserved

structures, but they only predicted structures for one genome and utilized sequence alignments to

extract mutations. By contrast, LinearTurboFold is a global folding method without any limitations

on sequence length or paring distance, and it jointly folds and aligns homologs to obtain conserved

structures. Consequently, LinearTurboFold can capture long-range interactions even across the whole

genome (the long arc in B, Fig. 3).
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Figure 2: End-to-end Scalability and Accuracy Comparisons. A–B: End-to-end runtime and memory

usage comparisons between benchmarks and LinearTurboFold against the sequence length. C–D:

End-to-end runtime and memory usage comparisons against the group size. LinearTurboFold is the

first joint-fold-and-align algorithm to scale to full-length coronavirus genomes (⇠30,000 nt) due to

linear runtime. E–F: The F1 accuracy scores of the structure prediction and multiple sequence align-

ment (see Tab. S1 for more details). LocARNA and MXSCARNA are Sankoff-style simultaneous

folding and alignment algorithms for homologous sequences. As negative controls, LinearParti-

tion and Vienna RNAfold predicted structures for each sequence separately; LinearAlignment and

MAFFT generated sequence-level alignments; RNAalifold folded pre-aligned sequences (e.g., from

MAFFT) and predicted conserved structures. Statistical significances (two-tailed permutation test)

between the benchmarks and LinearTurboFold are marked with one star (?) on the top of the corre-

sponding bars if p < 0.05 or two stars (??) if p < 0.01. The benchmarks whose accuracies are sig-

nificantly lower than LinearTurboFold are annotated with black stars, while benchmarks higher than

LinearTurboFold are marked with dark red stars. Overall, on structure prediction, LinearTurboFold

achieves significantly higher accuracy than all evaluated benchmarks, and on multiple sequence align-

ment, it achieves accuracies comparable to TurboFold II and significantly higher than other methods

(See Tab. S1 for detailed accuracies).
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Figure 3: Secondary structures predictions of SARS-CoV-2 extended 5’ and 3’ UTRs. A: LinearTur-

boFold prediction.The nucleotides and base pairs are colored by unpaired probabilities and base-

pairing probabilities, respectively. The compensatory mutations extracted by LinearTurboFold are

annotated with alternative pairs in red boxes (see Tab. S3 for more fully conserved pairs with co-

variational changes). B: SHAPE-guided model by Huston et al. (24) (window size 3000 nt sliding by

300 nt with maximum pairing distance 500 nt). The nucleotides are colored by SHAPE reactivities.

Dash boxes circle the different structures between A and B. Our model is close to Huston et al.’s, but

the major difference is that LinearTurboFold predicts the end-to-end pairs involving 5’ and 3’ UTRs

(solid box in A), which is exactly the same interaction detected by Ziv et al. using the COMRADES

experimental technique (43) (C). Such long-range interactions cannot be captured by the local folding

methods used by prior experimentally-guided models (Fig. 1B). The similarity between models A and

B as well as the exact agreement between A and C show that our in silico method of folding multiple

homologs can achieve results similar to, if not more accurate than, experimentally-guided single-

genome prediction. As negative controls (Fig. S6), the align-then-fold (RNAalifold) method cannot

predict such long-range interactions. Although the single sequence folding algorithm (LinearParti-

tion) predicts a long-range 5’-3’ interaction, the positions are not the same as the LinearTurboFold

model and Ziv et al.’s experimental result.
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Figure 4: A–D: Secondary structure predictions of SARS-CoV-2 extended frameshifting stimula-

tion element (FSE) region (13425–13545 nt). A: LinearTurboFold prediction. B–D: Experimentally-

guided predictions from the literature (24,27,25), which are sensitive to the context and region bound-

aries due to the use of local folding methods (Fig. S7). E: The canonical pseudoknot structure by the

comparative analysis between SARS-CoV-1 and SARS-CoV-2 genomes (31). For the 5’ region of

the FSE shown in dotted boxes (attenuator hairpin, internal loop with slippery site, and a stem), the

LinearTurboFold prediction (A) is consistent with B–D; for the 3’ region of the FSE shown in dashed

boxes, our prediction (predicting stems 1–2 but missing 3) is closer to the canonical structure in E

compared to B–D. F: LinearTurboFold prediction on SARS-CoV-1. G: Single sequence folding algo-

rithm (LinearPartition) prediction on SARS-CoV-2, which is quite different from LinearTurboFold’s.

As another negative control, the align-then-fold method (RNAalifold) predicts a rather dissimilar

structure (Fig. S7G). H: Five examples from 59 fully conserved structures among 25 genomes (see

Tab. S4 for details), 26 of which are novel compared with prior work (23, 24).
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Figure 5: An illustration of accessible and conserved regions that LinearTurboFold identifies. A–B:

Identified structurally-conserved accessible regions by LinearTurboFold with the help of considering

alignment and folding simultaneously. The regions at least 15 nt long with accessibility of at least 0.5

among all the 16 SARS-CoV-2 genomes are shaded on blue background. Structures are encoded in

dot-bracket notation. “(” and “)” indicates nucleotides pairing in the 3’ and 5’ direction, respectively.

“.” indicates an unpaired nucleotide. The positions with mutations compared to the SARS-CoV-

2 reference sequence among three different subfamilies (SARS-CoV-2, SARS-CoV-1 and BCoV)

are underlined. C: Accessible and conserved regions are not only accessible among SARS-CoV-2

genomes (pink circle) but also conserved (at sequence level) among both SARS-CoV-2 and SARS-

related genomes (green circle). D: Three examples out of 35 accessible and conserved regions found

by LinearTurboFold. Region 16 and Region 32 correspond to the accessible regions in A and B,

respectively. Region 16 is also the long internal loop including the slippery site in the FSE region (H).

Region 29 is fully conserved among all 25 genomes. E–F: Single sequence folding algorithms predict

greatly different structures even if the sequence identities are high (grey boxes). These two regions,

fully conserved among SARS-CoV-2 genomes, still fold into different structures due to mutations

outside the regions. G: The positions of these 35 regions (red bars) across the whole genome (see

Tab. S5 for more details). All the accessible and conserved regions are potential targets for siRNAs,

ASOs, CRISPR-Cas13 gRNAs and RT-PCR primers.
20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 24, 2021. ; https://doi.org/10.1101/2020.11.23.393488doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.393488
http://creativecommons.org/licenses/by-nc-nd/4.0/

