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Abstract 

Robotic leg prostheses and exoskeletons can provide powered locomotor assistance to older 
adults and/or persons with physical disabilities. However, the current locomotion mode 
recognition systems being developed for intelligent high-level control and decision-making use 
mechanical, inertial, and/or neuromuscular data, which inherently have limited prediction 
horizons (i.e., analogous to walking blindfolded). Inspired by the human vision-locomotor control 
system, we designed and evaluated an advanced environment classification system that uses 
computer vision and deep learning to forward predict the oncoming walking environments prior 
to physical interaction, therein allowing for more accurate and robust locomotion mode 
transitions. In this study, we first reviewed the development of the ExoNet database – the largest 
and most diverse open-source dataset of wearable camera images of indoor and outdoor real-
world walking environments, which were annotated using a hierarchical labelling architecture. 
We then trained and tested over a dozen state-of-the-art deep convolutional neural networks 
(CNNs) on the ExoNet database for large-scale image classification of the walking environments, 
including: EfficientNetB0, InceptionV3, MobileNet, MobileNetV2, VGG16, VGG19, Xception, 
ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169, and DenseNet201. Lastly, we 
quantitatively compared the benchmarked CNN architectures and their environment 
classification predictions using an operational metric called NetScore, which balances the image 
classification accuracy with the computational and memory storage requirements (i.e., 
important for onboard real-time inference). Although we designed this environment 
classification system to support the development of next-generation environment-adaptive 
locomotor control systems for robotic prostheses and exoskeletons, applications could extend to 
humanoids, autonomous legged robots, powered wheelchairs, and assistive devices for persons 
with visual impairments.   
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1 Introduction 

There are currently hundreds of millions of individuals worldwide with mobility impairments 
resulting from aging and/or physical disabilities. For example, the number of people with limb 
amputations in the United States alone is expected to more than double from ~1.6 million in 
2005 to ~3.6 million in 2050 (Ziegler-Graham et al., 2008); this increased prevalence is primarily 
driven by the aging population and higher rates of dysvascular diseases, especially diabetes, 
among older adults. The World Health Organization recently projected that the number of 
individuals above 65 years will increase from ~524 million in 2010 to ~1.5 billion in 2050 
(Grimmer et al., 2019). The global prevalence of musculoskeletal disorders like osteoarthritis is 
~151 million and neurological conditions like Parkinson’s disease, cerebral palsy, and spinal cord 
injury affect approximately 5.2 million, 16 million, and 3.5 million persons, respectively (Grimmer 
et al., 2019). Moreover, the number of individuals needing physical rehabilitation due to 
immobility and/or disease has recently been exacerbated by the coronavirus disease 2019 
(COVID-19) (Negrini et al., 2021). Mobility impairments, especially those resulting in wheelchair 
dependency, are often associated with reduced independence and secondary health 
complications, including osteoporosis, coronary artery disease, obesity, hypertension, and 
sarcopenia (Grimmer et al., 2019).  

Fitted with conventional passive assistive devices, individuals with mobility impairments tend to 
fall more frequently and walk more energetically inefficient and with greater biomechanical 
asymmetries compared to healthy young adults, which have implications on joint and bone 
degeneration resulting from disproportionate loading on the unaffected limb (i.e., assuming 
unilateral impairments) (Tucker et al., 2015). One reason for these gait abnormalities is that 
many locomotor activities, like climbing stairs, require net positive mechanical work about the 
lower-limb joints via power generation from the human muscles. However, limb amputation or 
paralysis removes/diminishes these sources of biological actuation, therein compromising the 
user’s ability to effectively and efficiently perform many locomotor activities of daily living. 
Fortunately, robotic leg prostheses and exoskeletons can replace the propulsive function of the 
amputated or impaired biological limbs and allow users to perform locomotor activities that 
require net positive mechanical work by using motorized hip, knee, and/or ankle joints (Krausz 
and Hargrove, 2019; Laschowski and Andrysek, 2018; Tucker et al., 2015; Young and Ferris, 2017; 
Zhang et al., 2019a). However, control of these robotic assistive devices is exceptionally difficult 
and often considered one of the leading challenges to real-world deployment (Tucker et al., 
2015; Young and Ferris, 2017).  

Most robotic prosthesis and exoskeleton control systems for human locomotion involve a 
hierarchical architecture, including high, mid, and low-level controllers (Tucker et al., 2015; 
Young and Ferris, 2017) (see Figure 1). The high-level controller is responsible for state 
estimation and inferring the user’s locomotor intent (e.g., climbing stairs, sitting down, or level-
ground walking). The mid-level controller converts the locomotor activity into mode-specific 
reference trajectories often using dynamic equations of the human-robot system; this level of 
control consists of individual finite-state machines with discrete mechanical impedance 
parameters like stiffness and damping coefficients, which are heuristically tuned for different 
locomotor activities to generate the desired actuator joint torques (i.e., the desired device 
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state). Tunning these system parameters can be time-consuming as the number of parameters 
increases with the number of states per locomotor activity, the number of activity modes, and 
the number of actuated joints. The low-level controller uses standard controls engineering 
algorithms like proportional-integral-derivative (PID) control to calculate the error between the 
measured and desired device states and command the robotic actuators to minimize the error 
using reference tracking and closed-loop feedback control (Krausz and Hargrove, 2019; Tucker et 
al., 2015; Young and Ferris, 2017; Zhang et al., 2019a).  

Nonrhythmic movements and high-level transitions between different locomotor activities 
remain significant challenges. Inaccurate and/or delayed decisions could result in loss-of-balance 
and injury, which can be especially problematic when involving stairs. Switching between 
different mid-level controllers is supervised by the high-level controller, which infers the 
locomotor intent using either sensor data (i.e., for devices under research and development) or 
direct communication from the user (i.e., for commercially available devices) (see Figure 1). 
Commercial devices like the Össur Power Knee prosthesis and the ReWalk and Indego powered 
lower-limb exoskeletons require the users to perform exaggerated movements or use hand 
controls to manually switch between locomotion modes (Tucker et al., 2015; Young and Ferris, 
2017). Although highly accurate in communicating the user’s locomotor intent, such manual 
high-level control and decision making can be time-consuming, inconvenient, and cognitively 
demanding (Karacan et al., 2020). Researchers have thus been working on developing 
automated locomotion mode recognition systems using pattern recognition algorithms and data 
from wearable sensors like inertial measurement units (IMUs) and surface electromyography 
(EMG), therein shifting the high-level control burden from the user to an intelligent controller 
(Tucker et al., 2015; Young and Ferris, 2017) (see Figure 2). The ideal automated high-level 
controller would estimate the individual states and interactions within the overall human-robot-
environment system.  

Mechanical sensors embedded in robotic prostheses and exoskeletons (e.g., potentiometers, 
pressure sensors, magnetic encoders, and strain gauge load cells) can be used for state 
estimation by measuring the joint angles and angular velocities, and interaction forces and/or 
torques between the human and device, and between the device and environment. For 
example, Varol and colleagues (2010) used onboard mechanical sensors and a Gaussian mixture 
model classification algorithm for automated intent recognition and high-level control. IMU 
sensors can measure angular velocities, accelerations, and direction using an onboard 
gyroscope, accelerometer, and magnetometer, respectively. Although mechanical and inertial 
sensors allow for fully integrated control systems (i.e., no additional instrumentation or wiring 
apart from the device need be worn), these sensor technologies can only respond to the user’s 
movements. In contrast, the electrical potentials of biological muscles, as recorded using surface 
EMG, precede movement initiation and thus could predict locomotion mode transitions with 
small prediction horizons. Using only surface EMG and a linear discriminant analysis (LDA) 
pattern recognition algorithm, Huang et al (2009) differentiated between seven locomotion 
modes with 90% classification accuracy. In addition to locomotion mode recognition, EMG 
signals could be used for proportional myoelectric control (Nasr et al., 2021). Although 
researchers have explored using brain-machine interfaces for direct neural control of robotic 
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prostheses and exoskeletons (i.e., using either implanted or electroencephalography-based 
systems) (Lebedev and Nicolelis, 2017), these methods are still highly experimental and 
infrequently used for locomotor applications.   

Fusing information from mechanical and/or inertial sensors with surface EMG, known as 
neuromuscular-mechanical data fusion, has shown to improve the automated locomotion mode 
recognition accuracies and decision times compared to implementing either system individually 
(Du et al., 2012; Huang et al., 2011a; 2011b; Krausz and Hargrove, 2021; Liu et al., 2016; Spanias 
et al., 2015; Wang et al., 2013). Huang et al (2011b) first demonstrated such improvements in 
classification predictions across six locomotion modes using a support vector machine (SVM) 
classifier, surface EMG signals, and measured ground reaction forces and torques on a robotic 
prosthesis. However, neuromuscular-mechanical data are user-dependent, therein requiring 
time-consuming experiments to amass individual datasets, and surface EMG sensors require 
calibration and are susceptible to fatigue, motion artifacts, changes in electrode-skin 
conductivity, and crosstalk between adjacent muscles (Tucker et al., 2015; Young and Ferris, 
2017). EMG signals may also be inaccessible in users with high amputations where insufficient 
neural content is available from the residual limb. Despite the developments in automated intent 
recognition using mechanical, inertial, and/or neuromuscular signals, further improvements in 
system performance are desired for safe and robust locomotor control, especially when 
involving stair environments.  

2 Literature Review 

Taking inspiration from the human vision-locomotor control system, supplementing 
neuromuscular-mechanical data with information about the oncoming walking environment 
could improve the automated high-level control performance (see Figure 2). Environment 
sensing would precede modulation of the user’s muscle activations and/or walking biomechanics 
(i.e., having an extended prediction horizon), therein allowing for more accurate and real-time 
transitions between different locomotion modes by minimizing the high-level decision space. 
During natural human locomotion, the central nervous system acquires state information from 
biological sensors (e.g., the eyes) through ascending pathways, which are subsequently used to 
actuate and control the musculoskeletal system through feedforward efferent commands (Patla, 
1997; Tucker et al., 2015). However, these control loops are compromised in persons using 
assistive devices due to limitations in the human-machine data communication. Environment 
sensing and classification could artificially restore these control loops for automated high-level 
control. In addition to supplementing the locomotion mode recognition system, environment 
information could be used to adapt the mid-level reference trajectories (e.g., increasing the 
actuator joint torques for toe clearance corresponding to an obstacle height) (Zhang et al., 
2020), optimal path planning (e.g., identifying opportunities for energy recovery) (Laschowski et 
al., 2019a; 2021a), and varying foot placement based on the walking surface. 

The earliest studies fusing neuromuscular-mechanical data with environment information for 
prosthetic leg control came from Huang and colleagues (Du et al., 2012; Huang et al., 2011a; Liu 
et al., 2016; Wang et al., 2013; Zhang et al., 2011). Different walking environments were 
statistically modelled as prior probabilities using the principle of maximum entropy and 
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incorporated into the discriminant function of an LDA classification algorithm. Rather than 
assuming equal prior probabilities as usually done, they simulated different walking 
environments by adjusting the prior probabilities of each class, which allowed their automated 
locomotion mode recognition system to dynamically adapt to different environments. For 
instance, when approaching an incline staircase, the prior probability of performing stair ascent 
would progressively increase while the prior probabilities of other locomotion modes would 
likewise decrease. Using these adaptive prior probabilities based on the terrain information 
significantly outperformed (i.e., 95.5% classification accuracy) their locomotion mode 
recognition system based on neuromuscular-mechanical data alone with equal prior probabilities 
(i.e., 90.6% accuracy) (Wang et al., 2013). These seminal papers showed 1) how environment 
information could be incorporated into an automated high-level controller, 2) that including such 
information could improve the locomotion mode recognition accuracies and decision times, and 
3) that the controller could be relatively robust to noisy and imperfect environment predictions 
such that neuromuscular-mechanical data dominated the high-level decision making (Du et al., 
2012; Huang et al., 2011a; Liu et al., 2016; Wang et al., 2013).    

Several researchers have explored using wearable radar detectors (Kleiner et al., 2018) and laser 
rangefinders (Liu et al., 2016; Wang et al., 2013; Zhang et al., 2011) for active environment 
sensing. Unlike camera-based systems, these sensors circumvent the need for computationally 
expensive image processing and classification. Radar can uniquely measure distances through 
non-conducting materials like clothing and are invariant to outdoor lighting conditions and 
surface textures. Using a leg-mounted radar detector, Herr’s research group (Kleiner et al., 2018) 
measured stair distances and heights with 1.5 cm and 0.34 cm average accuracies, respectively, 
up to 6.25 m maximum distances. However, radar reflection signatures usually struggle with 
source separation of multiple objects and have relatively low resolution. Huang and colleagues 
(Liu et al., 2016; Wang et al., 2013; Zhang et al., 2011) developed a waist-mounted system with 
an IMU and laser rangefinder to reconstruct the geometry of the oncoming walking environment 
between 300-10,000 mm ranges. Environmental features like the terrain height, distance, and 
slope were used for classification via heuristic rule-based thresholds. The system achieved 98.1% 
classification accuracy (Zhang et al., 2011). While simple and effective, their system required 
subject-specific calibration (e.g., the device mounting height) and provided only a single distance 
measurement.  

Compared to radar and laser rangefinders, cameras can provide more detailed information 
about the field-of-view and detect physical obstacles and terrain changes in peripheral locations 
(example shown in Figure 3). Most environment recognition systems have used RGB cameras (Da 
Silva et al., 2020; Diaz et al., 2018; Khademi and Simon, 2019; Krausz and Hargrove, 2015; 
Laschowski et al., 2019b; 2020b; 2021b; Novo-Torres et al., 2019; Zhong et al., 2020) and/or 3D 
depth cameras (Hu et al., 2018; Krausz et al., 2015; 2019; Krausz and Hargrove, 2021; Massalin 
et al., 2018; Varol and Massalin, 2016; Zhang et al., 2019b; 2019c; 2019d, 2020) mounted on the 
chest (Krausz et al., 2015; Laschowski et al., 2019b; 2020b; 2021b), waist (Khademi and Simon, 
2019; Krausz et al., 2019; Krausz and Hargrove, 2021; Zhang et al., 2019d), or lower-limbs (Da 
Silva et al., 2020; Diaz et al., 2018; Massalin et al., 2018; Varol and Massalin, 2016; Zhang et al., 
2019b; 2019c; 2020; Zhong et al., 2020) (see Table 1). Few studies have adopted head-mounted 
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cameras for biomimicry (Novo-Torres et al., 2019; Zhong et al., 2020). Zhong et al (2020) recently 
compared the effects of different wearable camera positions on classification performance. 
Compared to glasses, their leg-mounted camera more accurately detected closer walking 
environments but struggled with incline stairs, often capturing only 1-2 steps. Although the 
glasses could detect further-away environments, the head-mounted camera also captured 
irrelevant features like the sky, which decreased the overall image classification accuracy. The 
glasses also struggled with detecting decline stairs and had larger standard deviations in 
classification predictions due to head movement.  

For image classification, researchers have traditionally used statistical pattern recognition or 
machine learning algorithms like support vector machines, which require hand-engineering to 
develop feature extractors (Da Silva et al., 2020; Diaz et al., 2018; Hu et al., 2018; Krausz et al., 
2015; 2019; Krausz and Hargrove, 2021; Massalin et al., 2018; Varol and Massalin, 2016) (see 
Table 2). Hargrove’s research group (Krausz et al., 2015; 2019) used standard image processing 
and rule-based thresholds to detect convex and concave edges and vertical and horizontal 
planes for stair recognition. Although their algorithm achieved 98.8% classification accuracy, the 
computations were time-consuming (i.e., ~8 seconds/frame) and the system was evaluated using 
only five sampled images. In another example, Huang and colleagues (Diaz et al., 2018) achieved 
86% image classification accuracy across six environment classes using SURF features and a bag-
of-words classifier. Varol’s research group used support vector machines for classifying depth 
images, which mapped extracted features into a high-dimensional space and separated samples 
into different classes by constructing optimal hyperplanes with maximum margins (Massalin et 
al., 2018; Varol and Massalin, 2016). Their system achieved 94.1% classification accuracy across 
five locomotion modes using a cubic kernel SVM and no dimension reduction (Massalin et al., 
2018). The average computation time was ~14.9 ms per image. Although SVMs are effective in 
high-dimensional space and offer good generalization (i.e., robustness to overfitting), these 
algorithms require manual selection of kernel functions and statistical features, which is time-
consuming and suboptimal. 

The latest generation of environment recognition systems has used convolutional neural 
networks (CNNs) for image classification (Khademi and Simon, 2019; Laschowski et al., 2019b; 
2021b; Novo-Torres et al., 2019; Rai and Rombokas, 2018; Zhang et al., 2019b; 2019c; 2019d; 
2020; Zhong et al., 2020) (see Table 3 and Figure 4). One of the earliest publications came from 
Laschowski and colleagues (2019b), who designed and trained a 10-layer convolutional neural 
network using five-fold cross-validation, which differentiated between three environment classes 
with 94.9% classification accuracy. The convolutional neural network from Simon’s group 
(Khademi and Simon, 2019) achieved 99% classification accuracy across three environment 
classes using transfer learning of pretrained weights. Although CNNs typically outperform SVMs 
for image classification and circumvent the need for manual feature engineering (LeCun et al., 
2015), deep learning requires significant and diverse training data to prevent overfitting and 
promote generalization. Deep learning has become pervasive in computer vision ever since 
AlexNet (Krizhevsky et al., 2012) popularized CNNs by winning the 2012 ImageNet challenge with 
a top-1 accuracy of 63%. ImageNet is an open-source dataset containing ~15 million labelled 
images and 22,000 classes (Deng et al., 2009). The lack of an open-source, large-scale image 
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dataset of walking environments has impeded the development of environment-adaptive 
locomotor control systems for robotic prostheses and exoskeletons. To date, each of the 
aforementioned researchers individually collected experimental data to train their image 
classification algorithms. These repetitive measurements are time-consuming and inefficient, 
and individual private datasets have prevented comparisons between classification algorithms 
from different researchers (Laschowski et al., 2020a).  

Motivated by these limitations in the literature, we developed and evaluated an advanced 
environment classification system that uses computer vision and deep learning. In this study, we 
1) reviewed the development of the “ExoNet” database – the largest and most diverse open-
source dataset of wearable camera images of human walking environments; 2) trained and 
tested over a dozen state-of-the-art deep convolutional neural networks on the ExoNet database 
for large-scale image classification of the different walking environments; and 3) quantitatively 
compared the benchmarked CNN architectures and their environment classification predictions 
using an operational metric called “NetScore”, which balances the image classification accuracy 
with the computational and memory storage requirements (i.e., important for onboard real-time 
inference). The overall objective of this research is to support the development of next-
generation environment-adaptive locomotion mode recognition systems for robotic prostheses 
and exoskeletons.          

3 Materials and Methods  

3.1 Environment Sensing  

One participant without wearing an assistive device was instrumented with a lightweight 
smartphone camera system (iPhone XS Max) (see Figure 5). Compared to lower-limb systems (Da 
Silva et al., 2020; Diaz et al., 2018; Hu et al., 2018; Kleiner et al., 2018; Massalin et al., 2018; Rai 
and Rombokas, 2018; Varol and Massalin, 2016; Zhang et al., 2011; 2019b; 2019c; 2020), our 
chest-mounted camera can provide more stable video recording and allow users to wear pants 
and dresses without obstructing the sampled field-of-view. The chest-mount height was ~1.3 m 
from the ground when the participant stood upright. The smartphone has two 12-megapixel RGB 
rear-facing cameras and one 7-megapixel front-facing camera. The front and rear cameras 
provide 1920×1080 and 1280×720 video recording at 30 Hz, respectively. The smartphone 
weighs 0.21 kg and has an onboard rechargeable lithium-ion battery, 512-GB of memory storage, 
and a 64-bit ARM-based integrated circuit (Apple A12 Bionic) with a six-core CPU and four-core 
GPU; these hardware specifications can theoretically support onboard deep learning for real-
time environment classification. The relatively lightweight and unobtrusive nature of the 
wearable camera system allowed for unimpeded human locomotion. Ethical review and approval 
were not required for this research in accordance with the University of Waterloo Office of 
Research Ethics.  

Whereas most environment recognition systems have been limited to controlled indoor 
environments and/or prearranged walking circuits (Du et al., 2012; Hu et al., 2018; Khademi and 
Simon, 2019; Kleiner et al., 2018; Krausz et al., 2015; 2019; Krausz and Hargrove, 2021; Liu et al., 
2016; Rai and Rombokas, 2018; Wang et al., 2013; Zhang et al., 2011; 2019b; 2019c; 2019d), our 
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participant walked around unknown outdoor and indoor real-world environments while 
collecting images with occlusions and intraclass variations (see Figure 6). We collected data at 
various times throughout the day to include different lighting conditions. Similar to human gaze 
fixation during walking (Li et al., 2019), the field-of-view was 1-5 m ahead of the participant, 
therein showing the oncoming walking environment rather than the ground directly underneath 
the subject’s feet. This operating range allowed for detecting physical obstacles and terrain 
changes within several walking strides; research has shown that lower-limb amputees tend to 
allocate higher visual attention to oncoming terrain changes compared to healthy controls (Li et 
al., 2019). Our camera’s pitch angle slightly differed between data collection sessions. Images 
were sampled at 30 Hz with 1280×720 resolution. We recorded over 52 hours of video, 
amounting to ~5.6 million images. The same environment was never sampled twice to maximize 
diversity in the dataset. Images were collected during the summer, fall, and winter seasons to 
capture different weathered surfaces like snow, grass, and multicolored leaves. The image 
database, which we named “ExoNet”, was uploaded to the IEEE DataPort repository and is 
publicly available for download (Laschowski et al., 2020b). The file size of the uncompressed 
videos is ~140 GB.  

Given the subject’s self-selected walking speed, there were relatively minimal differences 
between consecutive images sampled at 30 Hz. We therefore downsampled and labelled the 
images at 5 frames/second to minimize the demands of manual annotation and increase the 
diversity in image appearances. However, for online environment-adaptive control of robotic leg 
prostheses and exoskeletons, higher sampling rates would be more advantageous for accurate 
and robust automated locomotion mode transitions. Similar to the ImageNet dataset (Deng et 
al., 2009), the ExoNet database was human-annotated using a hierarchical labelling architecture. 
Images were mainly labelled according to common high-level locomotion modes, rather than a 
purely computer vision perspective. For instance, images of level-ground environments showing 
either pavement or grass were not differentiated since both surfaces would be assigned the 
same level-ground walking locomotion mode. In contrast, computer vision researchers might 
label these different surface textures as separate classes.  

Approximately 923,000 images were manually annotated using a 12-class hierarchical labelling 
architecture (see Figure 5). The dataset included: 31,628 images of “incline stairs transition 
wall/door” (I-T-W); 11,040 images of “incline stairs transition level-ground” (I-T-L); 17,358 
images of “incline stairs steady” (I-S); 28,677 images of “decline stairs transition level-ground” 
(D-T-L); 19,150 images of “wall/door transition other” (W-T-O); 36,710 images of “wall/door 
steady” (W-S); 379,199 images of “level-ground transition wall/door” (L-T-W); 153,263 images of 
“level-ground transition other” (L-T-O); 26,067 images of “level-ground transition incline stairs” 
(L-T-I); 22,607 images of “level-ground transition decline stairs” (L-T-D); 119,515 images of 
“level-ground transition seats” (L-T-E); and 77,576 images of “level-ground steady” (L-S). These 
class labels were chosen and assigned post hoc to capture the different walking environments 
from the data collection. In comparison, Novo-Torres et al (2019) simultaneously sampled and 
labelled their images using a portable keyboard during data collection. Similar to previous 
research (Liu et al., 2016; Wang et al., 2013; Zhang et al., 2011), we included an “other” class to 
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maintain the image classification performance when unlabeled environments and/or objects like 
pedestrians, cars, and bicycles were observable.  

Taking inspiration from (Du et al., 2012; Huang et al., 2011a; Khademi and Simon, 2019; Liu et al., 
2016; Wang et al., 2013), our labelling architecture included both “steady” (S) and “transition” 
(T) states (see Figure 7). A steady state describes an environment where an exoskeleton or 
prosthesis user would continue to perform the same locomotion mode (e.g., an image showing 
only level-ground terrain). In contrast, a transition state describes an environment where an 
exoskeleton or prosthesis high-level controller might switch between locomotion modes (e.g., an 
image showing both level-ground terrain and incline stairs). Manually labelling these transition 
states was relatively subjective. For instance, an image showing level-ground terrain was labelled 
“level-ground transition incline stairs” (L-T-I) when an incline staircase was approximately within 
the sampled field-of-view. Similar labelling principles were applied to transitions to other 
conditions. Although the ExoNet database was labelled by one designated researcher, 
consistently determining the exact video frame where an environment would switch between 
steady and transition states was challenging; Huang et al (2011a) reported experiencing similar 
difficulties.   

3.2 Environment Classification  

We used convolutional neutral networks for the image classification. Unlike previous studies that 
used support vector machines that required hand-engineering (Massalin et al., 2018; Varol and 
Massalin, 2016), deep learning replaces manually extracted features with multilayer networks 
that can automatically and efficiently learn the optimal image features from the training data. 
Generally speaking, a CNN architecture contains multiple stacked convolutional and pooling 
layers with decreasing spatial resolutions and increasing number of feature maps. Starting with 
an input 3D tensor, the convolutional layers perform convolution operations (i.e., dot products) 
between the inputs and convolutional filters. The first few layers extract relatively general 
features, like edges, while deeper layers learn more problem-dependent features. The resulting 
feature maps are passed through a nonlinear activation function, typically a rectified linear unit 
(ReLU). The pooling layers spatially downsample the feature maps to reduce the computational 
effort by aggregating neighboring elements using either maximum or average values. The CNN 
architecture concludes with one or more fully connected layers and a softmax loss function, 
which estimates the probability distribution (i.e., scores) of each labelled class. Previous CNN-
based environment recognition systems (see Table 3) have used supervised learning such that 
the differences between the predicted and labelled class scores are computed and the learnable 
network parameters (i.e., weights) are optimized to minimize the loss function via 
backpropagation and stochastic gradient descent. After training, the CNN performs inference on 
previously unseen data to evaluate the generalizability of the learned parameters. These artificial 
neural networks are loosely inspired by biological neural networks.   

We used TensorFlow version 2.3 and the Keras high-level API to train and test over a dozen 
state-of-the-art deep convolutional neutral networks on the ExoNet database for large-scale 
image classification, including: EfficientNetB0 (Tan and Le, 2019); InceptionV3 (Szegedy et al., 
2015); MobileNet (Howard et al., 2017); MobileNetV2 (Sandler et al., 2018); VGG16 and VGG19 
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(Simonyan and Zisserman, 2014); Xception (Chollet, 2016); ResNet50, ResNet101, and 
ResNet152 (He et al., 2015); and DenseNet121, DenseNet169, and DenseNet201 (Huang et al., 
2017). During data preprocessing, the images were cropped to an aspect ratio of 1:1 and 
downsampled to 256x256 using bilinear interpolation. Random crops of 224x224 were used as 
inputs to the neural networks; this method of data augmentation helped further increase the 
sample diversity. The final densely connected layer of each CNN architecture was modified by 
setting the number of output channels equal to the number of environment classes in the 
ExoNet database. We used a softmax loss function to predict the individual class scores. The 
labelled images were split into training (89.5%), validation (3.5%), and testing (7%) sets, the 
proportions of which are consistent with ImageNet (Deng et al., 2009), which is of comparable 
size. We experimented with transfer learning of pretrained weights from ImageNet but found no 
additional performance benefit.  

Dropout regularization was applied before the final dense layer to prevent overfitting during 
training such that the learnable weights were randomly dropped (i.e., activations set to zero) 
during each forward pass at a rate of 0.5. Images were also randomly flipped horizontally during 
training to increase stochasticity and promote generalization. We trained each CNN architecture 
for 40 epochs using a batch size and initial learning rate of 128 and 0.001, respectively; these 
hyperparameters were experimentally tuned to maximize the performance on the validation set 
(see Figure 8). We explored different combinations of batch sizes of 32, 64, 128, and 256; epochs 
of 20, 40, and 60; dropout rates of 0, 0.2, 0.5; and initial learning rates of 0.01, 0.001, 0.0001, 
and 0.00001. The learning rate was reduced during training using a cosine weight decay schedule 
(Loshchilov and Hutter, 2016). We calculated the sparse categorical cross-entropy loss between 
the labelled and predicted classes and used the Adam optimization algorithm (Kingma and Ba, 
2015), which computes backpropagated gradients using momentum and an adaptive learning 
rate, to update the learnable weights and minimize the loss function. During testing, we used a 
single central crop of 224x224. Training and inference were both performed on a Tensor 
Processing Unit (TPU) version 3-8 by Google Cloud; these customized chips allow for accelerated 
CNN computations (i.e., matrix multiplications and additions) compared to traditional computing 
devices.  

3.3 NetScore Evaluation 

To facilitate onboard real-time inference for environment-adaptative control of robotic leg 
prostheses and exoskeletons, the ideal convolutional neural network would achieve high 
classification accuracy with minimal parameters, computing operations, and inference time. 
Motivated by these design principles, we quantitatively evaluated and compared the 
benchmarked CNN architectures (Ɲ) and their environment classification predictions on the 
ExoNet database using an operational metric called “NetScore” (Wong, 2018):  

Ω(Ɲ) = 20log + !(Ɲ)!

%(Ɲ)"&(Ɲ)#
,                                                                                                                      (1)  

where a(Ɲ) is the image classification accuracy during inference (0-100%), p(Ɲ) is the number of 
parameters expressed in millions, m(Ɲ) is the number of multiply–accumulates expressed in 
billions, and a, β, and γ are coefficients that control the effects of the classification accuracy, and 
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the architectural and computational complexities on the NetScore (W), respectively. We set the 
coefficients to {α = 2, β = 0.5, γ = 0.5} to better emphasize the classification accuracy while 
partially considering the parameters and computing operations, since neural networks with low 
accuracy are less practical, regardless of the size and speed. Note that the NetScore does not 
explicitly account for inference time. The number of parameters p(Ɲ) and multiply–accumulates 
m(Ɲ) are assumed to be representative of the architectural and computational complexities, 
respectively, both of which are inversely proportional to the NetScore.  

4 Results 

Table 4 summarizes the benchmarked CNN architectures (i.e., the number of parameters and 
computing operations) and their environment classification performances on the ExoNet 
database (i.e., prediction accuracies and inference times), including the NetScores. The 
EfficientNetB0 network achieved the highest image classification accuracy (Ca) during inference 
(i.e., 73.2% accuracy), that being the percentage of true positives (i.e., 47,265 images) out of the 
total number of images in the testing set (i.e., 64,568 images) (C! =

'()*	,-./0/1*.
'-0!2	3&!4*.

× 100%). In 

contrast, the VGG19 network produced the least accurate predictions, with an overall image 
classification accuracy of 69.2%. The range of accuracies across the different CNN architectures 
was thus relatively small (i.e., maximum arithmetic difference of 4 percentage points). We 
observed relatively weak correlations between both the number of parameters (i.e., Pearson r = 
-0.3) and computing operations (i.e., Pearson r = -0.59) and the classification accuracies on the 
ExoNet database across the different CNN architectures.   

Although the VGG16 and VGG19 networks involved the largest number of computations – i.e., 
~15.4 and ~19.5 billion multiply-accumulates, respectively – they resulted in the fastest 
inference times (i.e., on average 1.4 ms and 1.6 ms per image). For comparison, the 
DenseNet201 network had 72.1% and 78% fewer operations than VGG16 and VGG19, 
respectively, but was 364% and 306% slower. These results concur with Ding et al (2021), who 
recently showed 1) that the number of computing operations does not explicitly reflect the 
actual inference speed, and 2) that VGG-style architectures can run faster and more efficiently 
on CNN computing devices compared to more complicated architectures like DenseNets due to 
their relatively simple designs (i.e., consisting of basic convolutions and ReLU activations). Our 
inference times were calculated on the Cloud TPU using a batch size of 8. Note that the relative 
inference speeds between the benchmarked CNN architectures (i.e., their ordering from fastest 
to slowest) may differ across different computing devices given that some platforms are 
designed to accelerate certain operations better than others (e.g., cloud computing vs. those 
designed for mobile and embedded systems).  

Tables 5-17 show the multiclass confusion matrix for each CNN architecture. The matrix columns 
and rows are the predicted and labelled classes, respectively. The diagonal elements are the 
classification accuracies for each environment class during inference, known as true positives, 
and the nondiagonal elements are the misclassification percentages; darker shades represent 
higher classification accuracies. Despite slight numerical differences, most of the benchmarked 
CNN architectures displayed a similar interclass trend. The networks most accurately predicted 
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the “level-ground transition wall/door” (L-T-W) class (i.e., average Ca = 84.3% ± 2.1%), followed 
by the “level-ground steady” (L-S) class with an average accuracy of 77.3% ± 2.1% and the 
“decline stairs transition level-ground” (D-T-L) class with an average accuracy of 76.6% ± 2.4%. 
These results could be attributed to the class imbalances among the training data (i.e., there 
were significantly more images of L-T-W environments compared to other classes). However, 
some classes with limited images showed relatively good classification performance. For 
instance, the “incline stairs transition level-ground” (I-T-L) class comprised only 1.2% of the 
ExoNet database but achieved 71.2% ± 5.1% average classification accuracy. The least accurate 
predictions were for the environment classes that contained “other” features – i.e., the 
“wall/door transition other” (W-T-O) class with an average accuracy of 38.3% ± 3.5% and the 
“level-ground transition other” (L-T-O) class with an average accuracy of 46.8% ± 2.4%; these 
results could be attributed to the increased noise and randomness of the environments and/or 
objects in the images.  

5 Discussion 

In this study, we developed an advanced environment classification system for robotic leg 
prostheses and exoskeletons using computer vision and deep learning. Taking inspiration from 
the human vision-locomotor control system, environment sensing and classification could 
improve the automated high-level controller by reconstructing the oncoming walking 
environments prior to physical interaction, therein allowing for more accurate and real-time 
transitions between different locomotion modes. However, small-scale and private image 
datasets have impeded the development and comparison of environment classification 
algorithms from different researchers, respectively. We therefore developed ExoNet - the largest 
open-source dataset of wearable camera images of walking environments. Unparalleled in scale 
and diversity, ExoNet contains ~5.6 million images of indoor and outdoor real-world walking 
environments, of which ~923,000 images were annotated using a 12-class hierarchical labelling 
architecture. We then trained and tested over a dozen state-of-the-art deep convolutional 
neural networks on the ExoNet database for large-scale image classification of the walking 
environments, including: EfficientNetB0, InceptionV3, MobileNet, MobileNetV2, VGG16, VGG19, 
Xception, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169, and DenseNet201. 
This research provides a benchmark and reference for future comparisons. Although we 
designed our environment classification system for robotic prostheses and exoskeletons, 
applications could extend to humanoids, autonomous legged robots, powered wheelchairs, and 
assistive devices for persons with visual impairments.   

The use of deep convolutional neural networks was made possible by the ExoNet database. In 
addition to being open-source, the large scale and diversity of ExoNet significantly distinguishes 
itself from previous research (see Table 1). The ExoNet database contains ~923,000 labelled 
images. In comparison, the previous largest dataset, developed by Varol’s research group 
(Massalin et al., 2018), contained ~402,000 images. Whereas previous datasets included fewer 
than six environment classes, the most common being level-ground terrain and incline and 
decline stairs, the ExoNet database contains a 12-class hierarchical labelling architecture; these 
differences have important practical implications since deep learning requires significant and 
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diverse training data to prevent overfitting and promote generalization (LeCun et al., 2015). 
Furthermore, our image quality (1280×720) is considerably higher than previous datasets (e.g., 
224x224 and 320x240). Lower resolution images have shown to decrease the classification 
accuracy of walking environments (Da Silva et al, 2020; Novo-Torres et al., 2019). Although 
higher resolution images can increase the onboard computational and memory storage 
requirements, using efficient CNN architectures with fewer operations like EfficientNetB0 (Tan 
and Le, 2019) allow for processing larger images for relatively similar computational cost. As 
robotic leg prostheses and exoskeletons begin to transition out of research laboratories and into 
real-world environments, large-scale and challenging datasets like ExoNet are needed to support 
the development of next-generation image classification algorithms for environment-adaptive 
locomotor control.   

A potential limitation of the ExoNet database is the 2D nature of the environment information. 
Many researchers have likewise used a wearable RGB camera for passive environment sensing 
(Da Silva et al., 2020; Diaz et al., 2018; Khademi and Simon, 2019; Krausz and Hargrove, 2015; 
Laschowski et al., 2019b; 2020b; Novo-Torres et al., 2019; Zhong et al., 2020). Although multi-
camera systems could be used to capture 3D information (i.e., comparable to how the human 
visual system uses triangulation for depth perception) (Patla, 1997), each pixel in an RGB image 
contains only light intensity information. Other researchers have used depth cameras to 
explicitly capture images containing both light intensity information and distance measurements 
(Hu et al., 2018; Krausz et al., 2015; 2019; Krausz and Hargrove, 2021; Massalin et al., 2018; 
Varol and Massalin, 2016; Zhang et al., 2019b; 2019c; 2019d, 2020). These range imaging 
systems work by emitting infrared light and measuring the light time-of-flight between the 
camera and oncoming walking environment to calculate distance. Depth sensing can uniquely 
extract environmental features like step height and width, which can improve the mid-level 
control of robotic prostheses and exoskeletons (e.g., increasing actuator joint torques to assist 
with steeper stairs).   

Despite these benefits, depth measurement accuracy typically degrades in outdoor lighting 
conditions (e.g., sunlight) and with increasing distance (Krausz and Hargrove, 2019; Zhang et al., 
2019a). Consequently, most environment recognition systems using depth cameras have been 
tested in controlled indoor environments and/or have had limited capture volumes (i.e., 1-2 m of 
maximum range imaging) (Hu et al., 2018; Krausz et al., 2015; 2019; Massalin et al., 2018; Varol 
and Massalin, 2016, Zhang et al., 2020). These systems usually require an onboard 
accelerometer or IMU to transform the 3D environment information from the camera 
coordinate system into global coordinates (Krausz et al., 2015; Krausz and Hargrove, 2021; Zhang 
et al., 2019b; 2019c; 2019d; 2020). The application of depth cameras for active environment 
sensing would also require robotic prostheses and exoskeletons to have onboard 
microcontrollers with high computing power and low power consumption. The current 
embedded systems would need significant modifications to support the real-time processing and 
classification of depth images given their added complexity. These practical limitations motivated 
our decision to use RGB images for the environment classification.    

The EfficientNetB0 network (Tan and Le, 2019) achieved the highest image classification 
accuracy on the ExoNet database during inference (i.e., 73.2% accuracy). However, for 
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environment-adaptive control of robotic leg prostheses and exoskeletons, higher classification 
accuracies are desired since even rare misclassifications could cause loss-of-balance and injury. 
Although we used state-of-the-art deep convolutional neural networks, the architectures 
included only feedforward connections, therein classifying the walking environment frame-by-
frame without knowing the preceding classification decisions. Moving forward, sequential 
information over time could be used to improve the classification accuracy and robustness, 
especially during steady-state environments. This computer vision technique is analogous to how 
light-sensitive receptors in the human eye capture dynamic images to control locomotion (i.e., 
known as optical flow) (Patla, 1997). Sequential data could be classified using majority voting 
(Wang et al., 2013; Massalin et al., 2018; Varol and Massalin, 2016) or deep learning models like 
Transformers (Vaswani et al., 2017) or recurrent neural networks (RNNs) (Zhang et al., 2019b). 
Majority voting works by storing sequential decisions in a vector and generates a classification 
prediction based on the majority of decisions.   

Recurrent neural networks process sequential data while maintaining an internal hidden state 
vector that implicitly contains temporal information. Training RNNs can be challenging though, 
due to exploding and vanishing gradients. Although these neural networks were designed to 
learn long-term dependencies, research has shown that they struggle with storing sequential 
information over long periods (LeCun et al., 2015). To mitigate this issue, RNNs can be 
supplemented with an explicit memory module like a neural Turning machine or long short-term 
memory (LSTM) network, therein allowing for uninterrupted backpropagated gradients. Fu’s 
research group (Zhang et al., 2019b) explored using sequential data for environment 
classification. Sequential decisions from a baseline CNN were fused and classified using a 
recurrent neural network, LSTM network, majority voting, and a hidden Markov model (HMM). 
The baseline neural network achieved 92.8% image classification accuracy across five 
environment classes. Supplementing the baseline CNN with an RNN, LSTM network, majority 
voting, and HMM resulted in 96.5%, 96.4%, 95%, and 96.8% classification accuracies, 
respectively (Zhang et al., 2019b). Although using sequential data can improve the classification 
accuracy of walking environments, these decisions require longer computation times and thus 
could impede real-time locomotor control.   

The development of deep convolutional neural networks has traditionally focused on improving 
classification accuracy, often leading to more accurate yet inefficient algorithms with greater 
computational and memory storage requirements (Canziani et al., 2016). These design features 
can be especially problematic for deployment on mobile and embedded systems, which 
inherently have limited operating resources. Despite the advances in computing platforms like 
graphics processing units (GPUs), the current embedded systems in robotic leg prostheses and 
exoskeletons would struggle to support the architectural and computational complexities 
typically associated with deep learning for computer vision. Accordingly, we quantitatively 
evaluated and compared the benchmarked CNN architectures and their environment 
classification predictions on the ExoNet database using an operational metric called “NetScore” 
(Wong, 2018), which balances the image classification accuracy with the computational and 
memory storage requirements (i.e., important for onboard real-time inference). Although the 
ResNet152 network achieved one of the highest image classification accuracies on the ExoNet 
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database (i.e., 71.6% accuracy), it received the lowest NetScore (i.e., W = 46) due to the 
disproportionally large number of parameters (i.e., containing more parameters than any other 
CNN architecture we tested). Interestingly, the EfficientNetB0 network did not receive the 
highest NetScore (i.e., W = 72.6) despite achieving the highest classification accuracy and the 
architecture having been optimally designed using a neural architecture search to maximize the 
accuracy while minimizing the number of computing operations (Tan and Le, 2019). 

The MobileNetV2 network developed by Google (Sander et al., 2019), which uses depthwise 
separable convolutions, received the highest NetScore (i.e., W = 76.2), therein demonstrating the 
best balance between the classification accuracy (i.e., 72.9% accuracy) and the architectural and 
computational complexities. The authors previously demonstrated the ability of their CNN 
architecture to perform onboard real-time inference on a mobile device (i.e., ~75 ms per image 
on a CPU-powered Google Pixel 1 smartphone) (Sander et al., 2019). However, our classification 
system could theoretically generate even faster runtimes since 1) the smartphone we used (i.e., 
the iPhone XS Max) has an onboard GPU, and 2) we reduced the size of the final densely 
connected layer of the MobileNetV2 architecture from 1,000 outputs (i.e., as originally used for 
ImageNet) to 12 outputs (i.e., for the ExoNet database). Compared to traditional CPUs, GPUs 
have many more core processors, which permit faster and more efficient CNN computations 
through parallel computing (LeCun et al., 2015). Moving forward, we recommend using the 
existing CPU embedded systems in robotic prostheses and exoskeletons for performing the high-
level locomotion mode recognition based on neuromuscular-mechanical data, which is less 
computationally expensive, and a supplementary GPU computing platform for the image-based 
environment classification; these recommendations concur with those recently proposed by 
Huang and colleagues (Da Silva et al, 2020). 

Lastly, given that the environmental context does not explicitly represent the user’s locomotor 
intent, although it constrains the movement possibilities, data from computer vision should 
supplement, rather than replace, the automated locomotion mode control decisions based on 
mechanical, inertial, and/or neuromuscular signals. Images from our wearable smartphone 
camera could be fused with its onboard IMU measurements to improve the high-level control 
performance. For example, when an exoskeleton or prosthesis user wants to sit down, the 
acceleration data would indicate stand-to-sit rather than level-ground walking, despite the level-
ground terrain being accuracy detected within the field-of-view (bottom right image in Figure 7). 
Inspired by previous work (Da Silva et al., 2020; Diaz et al., 2018; Khademi and Simon, 2019; 
Wang et al., 2013; Zhang et al., 2011), our smartphone IMU measurements could also help 
minimize the onboard computational and memory storage requirements via sampling rate 
control (i.e., providing an automatic triggering mechanism for the image capture). Whereas 
faster walking speeds can benefit from higher sampling rates for continuous classification, 
standing still does not necessarily require environment information and thus the smartphone 
camera could be powered down or the sampling rate decreased, therein conserving the onboard 
operating resources. However, relatively few researchers have fused environment data with 
mechanical and/or inertial measurements for automated locomotion mode recognition (Du et 
al., 2012; Huang et al., 2011a; Krausz et al., 2019; Krausz and Hargrove, 2021; Liu et al., 2016; 
Wang et al., 2013; Zhang et al., 2011) and only one study (Zhang et al., 2020) has used such 
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information for online environment-adaptive control of a robotic prosthesis during walking (i.e., 
stepping over an obstacle). These limitations in systems integration offer exciting challenges and 
opportunities for future research.   
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Figure 1. Hierarchical control architecture of robotic leg prostheses and exoskeletons, including high, mid, and low-
level controllers. The high-level controller selects the desired locomotion mode using either (1) manual 
communication from the user (i.e., for commercially available devices) or (2) automated systems (i.e., for devices 
under research and development).    
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Figure 2. An automated locomotion mode recognition system for robotic prostheses and exoskeletons, also known 
as an intent recognition system or intelligent high-level controller. These systems can be supplemented with an 
environment recognition system to forward predict the walking environments prior to physical interaction, therein 
minimizing the high-level decision space. Note that the photograph (right) is the lead author wearing our robotic 
exoskeleton.   
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Figure 3. Photograph of the lead author walking with our robotic exoskeleton with camera-based environment 
sensing superimposed.   
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Figure 4. Examples of convolutional neural networks previously used for image classification of walking 
environments. The top and bottom schematics were adapted from Dan Simon (Cleveland State University, USA) and 
Chenglong Fu (Southern University of Science and Technology, China), respectively.  
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Figure 5. Development of the “ExoNet” database, including (1) photograph of the wearable camera system used for 
large-scale data collection; (2) examples of high-resolution RGB images of walking environments; and (3) schematic 
of the 12-class hierarchical labelling architecture.  
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Figure 6. Examples of the wearable camera images of indoor and outdoor real-world walking environments in the 
ExoNet database. Images were collected at various times throughout the day and across different seasons (i.e., 
summer, fall, and winter).   
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Figure 7. Examples of both “steady” and “transition” states in the ExoNet hierarchical labelling architecture. The top 
and bottom rows are labelled as steady states and the middle row is labelled a transition state. For each column, the 
left images show the lead author walking with our robotic exoskeleton and the right images show the concurrent 
field-of-view of the wearable camera system (i.e., what the exoskeleton sees).  
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Figure 8. The loss and image classification accuracies during training and validation on the ExoNet database using 
state-of-the-art deep convolutional neural networks, including: EfficientNetB0, InceptionV3, MobileNet, 
MobileNetV2, VGG16, VGG19, Xception, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169, and 
DenseNet201.   
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Table 1. Experimental datasets used for image classification of walking environments for robotic prostheses and 
exoskeletons. Note that the ExoNet database was published in Laschowski et al (2020b).  

Reference Camera Body Position Dataset Size Image Resolution Classes 
Da Silva et al (2020) RGB  Lower-limb 3,992 512×512 6 
Diaz et al (2018) RGB  Lower-limb 3,992 1080x1920 6 
Khademi and Simon (2019) RGB  Waist 7,284 224x224 3 
Krausz and Hargrove (2015) RGB  Head 5  928x620 2 
Krausz et al (2015) Depth  Chest 170 80x60 2 
Krausz et al (2019) Depth  Waist 4,000 171x224 5 
Laschowski et al (2019b) RGB  Chest 34,254 224x224 3 
Laschowski et al (2020b) RGB  Chest 922,790  1280×720 12 
Massalin et al (2018) Depth  Lower-limb 402,403  320x240 5 
Novo-Torres et al (2019) RGB  Head 40,743  128x128 2 
Varol and Massalin (2016) Depth  Lower-limb 22,932  320x240 5 
Zhang et al (2019b; 2019c) Depth  Lower-limb 7,500  224x171 5 
Zhang et al (2019d) Depth  Waist 4,016  2048-point cloud 3 
Zhang et al (2020) Depth  Lower-limb 7,500  100x100 5 
Zhong et al (2020) RGB  Head and lower-limb 327,000  1240x1080 6 
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Table 2. Previous environment recognition systems that used heuristics, statistical pattern recognition, or support 
vector machines for image classification of walking environments. Note that each classifier was developed and 
tested on different image datasets (see Table 1). The computation times are reported per image. 

Reference Feature Extractor and 
Classifier 

Computing Devices Test Accuracy 
(%) 

Computation 
Time (ms) 

Da Silva et al (2020) Local binary pattern and 
random forest 

NVIDIA Jetson TX2 90.0 200 

Diaz et al (2018) SURF features and bag-of-
words model 

Intel Core i7-2600 
CPU (3.40GHz) 

86.0 N/A 

Krausz and Hargrove 
(2015) 

Hough transform with Gabor 
filter or canny edge detector 

Intel Core i5 N/A 8000 

Krausz et al (2015) Heuristic thresholding and 
edge detector 

Intel Core i5 98.8 200 

Krausz et al (2019) Regions-of-interest and linear 
discriminate analysis 

Intel Core i7-8750H 
(2.2GHz) 

N/A N/A 

Massalin et al (2018) Cubic kernel support vector 
machine 

Intel Core i7-2640M 
(2.8GHz) 

94.1 14.9 

Varol and Massalin 
(2016) 

Support vector machine Intel Core i7-2640M 
(2.8GHz) 

99.0 14.9  
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Table 3. Previous environment recognition systems that used convolutional neural networks for image classification 
of walking environments. Note that each network was trained and tested on different image datasets (see Table 1). 
The computing hardware were all developed and manufactured by NVIDIA. The number of operations is expressed 
in multiply-accumulates. The inference times are reported per image.   

Reference Operations 
(billions) 

Parameters 
(millions) 

Computing Devices Test 
Accuracy (%) 

Inference 
Time (ms)  

Khademi and Simon (2019) 7.7 27 Titan X 99.6 50 
Laschowski et al (2019b) 1.2850 4.73 TITAN Xp 94.9 0.9 
Novo-Torres et al (2019) 0.0011 1.13  Geforce GTX 965M 90.0 5.5 
Zhang et al (2019b) 0.0130 0.22 GeForce GTX 1050 Ti 96.8 3.1 
Zhang et al (2019c) 0.0130 0.22 Quadro P400 98.9 3.0 
Zhang et al (2019d) 0.0215 0.05  GeForce GTX 1050 Ti 98.0 2.0 
Zhang et al (2020) 0.0130 0.22 Quadro P400 96.0 3.0 
Zhong et al (2020)† 0.0544 2.20  Jetson TX2 95.4 12.7 

 
†used MobileNetV2 for feature extraction and a Bayesian neural network (gated recurrent unit) for the environment 
classification.    
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Table 4. The benchmarked CNN architectures and their environment classification performances during inference 
on the ExoNet database. The test accuracies, parameters, and computing operations are expressed in percentages 
(0-100%), millions of parameters (M), and billions of multiply-accumulates (GMACs), respectively. Training and 
inference were both performed on a Google Cloud TPU. The EfficientNetB0 network achieved the highest test 
accuracy, VGG16 the fastest inference time, and MobileNetV2 the best NetScore and least number of parameters 
and computing operations (highlighted below).     

CNN 
Architecture 

Operations 
(GMACs) 

Parameters (M) Test Accuracy 
(%) 

Inference Time 
(ms) 

NetScore 

EfficientNetB0 0.39 4.06 73.2 2.5 72.6 
InceptionV3 2.84 21.83 71.9 4.1 56.3 
MobileNet 0.57 3.24 71.1 1.6 71.4 
MobileNetV2 0.30 2.27 72.9 2.2 76.2 
VGG16 15.36 14.72 70.1 1.4 50.3 
VGG19 19.52 20.03 69.2 1.6 47.7 
Xception 4.55 20.89 70.4 2.3 54.1 
ResNet50 3.86 23.61 69.5 2.5 54.1 
ResNet101 7.58 42.68 70.1 4.2 48.7 
ResNet152 11.29 58.40 71.6 5.6 46.0 
DenseNet121 2.83 7.05 71.5 4.4 61.2 
DenseNet169 3.36 12.66 70.7 5.7 57.7 
DenseNet201 4.29 18.35 70.2 6.5 54.9 
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Table 5. The multiclass confusion matrix for EfficientNetB0 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.8 0.6 0.3 0.0 0.0 0.0 1.0 4.5 10.6 0.2 2.6 1.4 
W-S 0.2 72.1 9.2 0.0 0.3 0.2 0.0 0.3 15.2 0.1 1.9 0.5 
W-T-O 0.4 21.9 43.2 0.0 0.4 0.2 0.1 0.1 19.2 0.4 8.8 5.5 
I-S 0.0 0.3 0.1 62.1 33.9 1.9 0.0 0.0 0.5 0.6 0.5 0.0 
I-T-W 0.0 2.0 0.7 16.8 69.0 2.8 0.0 0.2 1.5 5.8 0.6 0.6 
I-T-L 1.0 0.5 0.2 2.5 5.7 77.9 2.2 0.2 6.4 1.5 1.2 0.7 
L-S 0.1 0.4 0.0 0.0 0.0 0.1 79.9 0.3 11.9 0.6 6.4 0.2 
L-T-D 5.5 0.4 0.6 0.0 0.3 0.1 1.0 53.3 28.3 2.8 4.3 3.6 
L-T-W 0.3 1.5 0.4 0.0 0.0 0.1 3.7 0.4 86.5 0.3 4.4 2.3 
L-T-I 0.1 1.0 0.2 1.0 3.9 0.4 3.8 0.7 23.3 49.1 12.1 4.4 
L-T-O 0.3 0.6 1.1 0.0 0.1 0.1 13.7 0.5 28.8 0.7 47.5 6.6 
L-T-E 0.3 0.5 0.3 0.0 0.0 0.1 0.8 0.5 14.0 0.6 10.1 72.7 

 

Table 6. The multiclass confusion matrix for InceptionV3 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.3 0.8 0.3 0.0 0.1 0.4 1.1 4.3 11.0 0.2 2.6 1.9 
W-S 0.3 70.6 10.9 0.0 0.2 0.1 0.0 0.2 16.3 0.1 1.0 0.3 
W-T-O 0.7 22.7 38.4 0.0 0.3 0.0 0.2 0.5 21.0 0.5 12.0 3.7 
I-S 0.0 0.8 0.1 66.6 25.9 3.3 0.8 0.0 1.0 1.0 0.3 0.3 
I-T-W 0.1 2.0 0.9 15.1 68.7 3.2 0.0 0.0 2.9 5.3 1.0 0.8 
I-T-L 0.3 1.3 0.2 2.5 3.9 72.4 4.0 0.2 10.3 2.4 1.0 1.5 
L-S 0.2 0.1 0.0 0.0 0.0 0.1 78.6 0.2 12.5 0.3 7.4 0.5 
L-T-D 6.1 0.6 0.4 0.0 0.4 0.1 1.1 53.3 28.2 1.1 5.1 3.6 
L-T-W 0.3 1.9 0.5 0.0 0.1 0.1 4.2 0.5 85.5 0.4 4.3 2.2 
L-T-I 0.0 0.9 0.4 0.5 4.0 0.5 4.4 1.4 24.9 47.6 10.8 4.5 
L-T-O 0.4 0.5 1.1 0.0 0.1 0.0 14.5 0.5 30.7 0.6 46.2 5.3 
L-T-E 0.3 0.5 0.6 0.0 0.1 0.1 0.9 0.4 16.1 0.7 9.7 70.6 

 

Table 7. The multiclass confusion matrix for MobileNet showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.7 0.7 0.5 0.0 0.1 0.2 1.0 3.6 10.8 0.2 3.6 1.6 
W-S 0.1 73.0 9.8 0.0 0.3 0.0 0.1 0.3 14.2 0.2 1.5 0.6 
W-T-O 2.7 24.2 38.4 0.0 0.1 0.1 0.2 0.4 19.8 0.5 10.0 3.4 
I-S 0.3 0.4 0.8 59.4 30.6 3.8 0.6 0.0 1.3 1.7 0.5 0.6 
I-T-W 0.1 2.5 0.4 17.7 66.8 3.0 0.0 0.1 3.3 4.5 1.0 0.8 
I-T-L 0.5 1.2 0.0 3.7 4.5 73.9 3.9 0.2 8.4 1.2 1.3 1.2 
L-S 0.2 0.4 0.0 0.0 0.0 0.1 77.6 0.4 12.3 0.4 8.0 0.5 
L-T-D 6.5 1.0 0.4 0.0 0.1 0.1 0.7 51.8 28.3 1.4 6.3 3.5 
L-T-W 0.4 2.2 0.6 0.0 0.1 0.1 3.9 0.5 83.4 0.5 5.8 2.5 
L-T-I 0.6 1.1 0.5 0.7 4.1 0.4 5.1 1.2 23.8 47.4 11.0 4.1 
L-T-O 0.4 0.4 1.1 0.0 0.0 0.1 13.3 0.6 29.0 0.6 48.6 5.8 
L-T-E 0.4 0.6 0.5 0.0 0.1 0.0 0.9 0.3 14.8 0.8 12.8 68.8 
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Table 8. The multiclass confusion matrix for MobileNetV2 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.3 0.6 0.4 0.0 0.1 0.0 0.9 5.0 9.9 0.2 2.9 1.8 
W-S 0.2 73.4 10.1 0.0 0.3 0.3 0.1 0.4 13.4 0.2 1.2 0.5 
W-T-O 0.6 24.2 41.5 0.0 0.4 0.0 0.0 0.6 18.0 0.6 9.5 4.6 
I-S 0.0 0.4 0.1 64.7 28.9 2.6 0.4 0.0 0.9 1.3 0.1 0.6 
I-T-W 0.0 2.0 0.9 18.5 66.2 3.3 0.0 0.1 2.7 4.9 0.5 1.0 
I-T-L 0.2 0.7 0.0 2.2 7.9 73.6 3.4 0.2 7.9 1.7 1.0 1.3 
L-S 0.1 0.3 0.0 0.0 0.0 0.1 79.2 0.1 11.9 0.2 7.7 0.4 
L-T-D 5.5 0.7 0.4 0.0 0.0 0.1 1.0 53.8 28.2 1.1 5.5 3.7 
L-T-W 0.3 1.9 0.5 0.0 0.0 0.1 3.9 0.4 86.5 0.3 4.1 2.0 
L-T-I 0.2 1.2 0.1 0.1 3.9 0.4 4.1 1.0 26.1 48.4 9.5 4.9 
L-T-O 0.3 0.4 1.2 0.0 0.0 0.1 13.9 0.6 29.5 0.4 47.9 5.6 
L-T-E 0.4 0.5 0.6 0.0 0.1 0.1 0.9 0.3 15.3 0.6 10.7 70.7 

 

Table 9. The multiclass confusion matrix for VGG16 showing the image classification accuracies (%) during inference 
on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 75.5 0.6 0.6 0.0 0.0 0.2 1.1 5.3 9.9 0.0 3.5 3.3 
W-S 0.2 66.1 8.0 0.0 0.1 0.2 0.2 0.1 22.3 0.1 1.7 1.0 
W-T-O 0.3 23.6 34.2 0.1 0.1 0.2 0.1 0.2 23.5 0.8 10.1 6.7 
I-S 0.0 0.4 0.6 59.2 30.1 3.3 1.5 0.0 1.7 0.9 0.5 1.8 
I-T-W 0.1 1.8 1.0 15.1 66.5 1.9 0.0 0.1 5.0 5.4 1.4 1.8 
I-T-L 0.5 0.0 0.2 4.5 8.1 64.8 3.9 0.0 13.1 1.9 1.5 1.5 
L-S 0.1 0.3 0.0 0.0 0.0 0.0 77.0 0.1 14.8 0.3 7.1 0.2 
L-T-D 7.3 0.8 0.7 0.0 0.2 0.0 1.0 43.8 33.3 0.6 7.8 4.5 
L-T-W 0.3 1.8 0.4 0.0 0.0 0.1 3.8 0.4 86.9 0.2 4.5 1.7 
L-T-I 0.7 1.0 0.3 0.7 5.2 0.6 5.6 1.0 29.9 37.2 12.4 5.4 
L-T-O 0.3 0.3 0.9 0.1 0.0 0.0 14.7 0.4 35.2 0.5 41.7 5.8 
L-T-E 0.6 0.6 0.5 0.0 0.0 0.0 1.0 0.3 19.6 0.3 10.0 67.0 

 

Table 10. The multiclass confusion matrix for VGG19 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 73.9 0.5 0.4 0.0 0.1 0.1 1.2 4.4 12.0 0.2 3.6 3.7 
W-S 0.4 65.0 7.3 0.0 0.3 0.2 1.0 0.3 21.9 0.3 2.0 1.1 
W-T-O 1.1 24.5 31.0 0.1 0.3 0.7 0.1 1.4 24.2 0.8 8.7 7.3 
I-S 0.0 0.5 0.0 73.0 19.7 3.1 0.5 0.0 1.4 0.8 0.5 0.5 
I-T-W 0.1 1.1 1.1 20.7 61.7 2.4 0.1 0.1 5.1 5.3 1.1 1.2 
I-T-L 0.3 1.2 0.2 5.2 5.7 66.3 4.5 0.0 12.0 1.9 1.2 1.5 
L-S 0.0 0.5 0.0 0.0 0.0 0.1 76.8 0.0 13.5 0.4 8.5 0.2 
L-T-D 6.4 0.5 0.8 0.0 0.1 0.0 1.6 41.2 35.9 0.4 8.2 4.9 
L-T-W 0.4 1.8 0.4 0.0 0.0 0.1 4.0 0.4 86.1 0.2 4.7 1.8 
L-T-I 0.4 1.6 0.2 0.5 5.1 0.5 5.9 0.3 28.6 37.6 13.5 5.8 
L-T-O 0.5 0.3 0.9 0.0 0.0 0.1 15.6 0.5 34.5 0.3 41.5 5.7 
L-T-E 0.4 0.7 0.4 0.0 0.0 0.1 1.0 0.3 21.2 0.5 10.9 64.5 
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Table 11. The multiclass confusion matrix for Xception showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.4 0.8 0.4 0.0 0.1 0.2 0.9 3.1 10.2 0.2 3.1 2.7 
W-S 0.3 68.1 10.7 0.0 0.1 0.0 0.0 0.2 17.7 0.3 1.2 1.2 
W-T-O 0.3 23.1 39.0 0.1 0.5 0.2 0.1 0.6 18.6 0.7 7.6 9.3 
I-S 0.1 0.9 0.3 57.9 31.6 3.7 0.5 0.0 1.9 1.0 1.3 0.8 
I-T-W 0.1 2.2 1.0 14.9 67.7 2.1 0.0 0.5 4.2 5.3 1.2 0.8 
I-T-L 0.2 0.5 1.2 2.7 5.6 73.4 3.2 0.3 8.6 1.7 1.9 0.8 
L-S 0.1 0.2 0.0 0.0 0.0 0.2 71.7 0.1 13.9 0.4 12.7 0.6 
L-T-D 6.7 0.9 0.6 0.0 0.1 0.0 0.7 50.3 28.1 2.8 6.7 3.0 
L-T-W 0.4 1.8 0.5 0.0 0.0 0.1 3.5 0.5 83.1 0.5 6.9 2.6 
L-T-I 0.2 1.8 0.4 0.4 3.7 0.5 4.0 1.6 22.9 46.2 13.2 5.0 
L-T-O 0.6 0.3 1.4 0.0 0.0 0.1 12.8 0.5 28.5 0.7 48.7 6.4 
L-T-E 0.3 0.6 0.5 0.0 0.1 0.1 0.8 0.4 14.7 0.6 11.8 70.1 

 

Table 12. The multiclass confusion matrix for ResNet50 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 70.8 0.4 0.3 0.0 0.0 0.2 1.2 13.1 9.1 0.2 2.9 1.8 
W-S 0.0 63.4 9.1 0.0 0.2 0.2 0.0 8.6 15.7 0.2 1.8 0.8 
W-T-O 0.4 22.3 38.5 0.0 0.7 0.1 0.3 3.4 18.0 0.4 8.2 7.7 
I-S 0.1 1.2 0.3 67.9 23.8 2.3 0.8 0.0 1.8 0.6 0.9 0.4 
I-T-W 0.0 1.6 0.5 17.7 65.7 2.5 0.0 1.2 2.6 5.9 0.9 1.3 
I-T-L 0.8 1.0 0.3 2.9 4.7 72.6 4.2 1.0 9.4 1.7 0.5 0.8 
L-S 0.1 0.2 0.0 0.0 0.0 0.1 77.6 0.6 12.6 0.4 8.1 0.4 
L-T-D 5.7 0.3 0.9 0.0 0.0 0.0 0.7 57.5 24.2 1.7 5.1 3.9 
L-T-W 0.4 1.6 0.5 0.0 0.0 0.1 3.1 5.2 80.4 0.5 5.7 2.5 
L-T-I 0.6 2.0 0.1 0.3 4.1 0.3 4.3 3.6 20.7 48.7 11.0 4.3 
L-T-O 0.2 0.4 0.9 0.0 0.0 0.0 13.2 1.7 28.5 0.8 48.2 5.9 
L-T-E 0.6 0.7 0.5 0.0 0.0 0.1 0.8 1.4 14.8 0.8 10.1 70.3 

 

Table 13. The multiclass confusion matrix for ResNet101 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.7 0.5 0.2 0.0 0.1 0.3 1.1 4.5 9.7 0.1 3.5 2.3 
W-S 0.4 66.6 10.1 0.0 0.2 0.2 0.1 0.3 18.3 0.1 2.2 1.5 
W-T-O 0.3 24.5 41.8 0.0 0.4 0.1 0.0 0.4 15.6 0.6 7.5 9.0 
I-S 0.1 0.5 0.1 63.1 28.7 2.2 0.5 0.0 1.5 1.3 1.3 0.6 
I-T-W 0.1 1.8 0.8 20.1 63.2 3.5 0.0 0.2 2.4 5.1 0.6 2.2 
I-T-L 0.5 1.0 0.2 3.5 3.9 58.2 2.7 0.2 10.6 1.9 2.0 15.3 
L-S 0.1 0.4 0.0 0.0 0.0 0.1 75.0 0.1 12.8 0.6 8.9 2.0 
L-T-D 7.3 0.7 0.6 0.0 0.1 0.0 1.0 53.1 26.2 1.8 5.8 3.5 
L-T-W 0.3 1.7 0.5 0.0 0.0 0.1 3.5 0.6 81.5 0.4 6.5 4.9 
L-T-I 0.2 1.8 0.2 0.4 3.4 0.2 4.1 1.6 21.9 47.9 12.1 6.2 
L-T-O 0.5 0.4 1.0 0.0 0.0 0.1 12.5 0.6 27.8 0.7 48.6 8.0 
L-T-E 0.8 0.6 0.6 0.0 0.1 0.1 0.7 0.3 13.6 0.6 11.1 71.5 
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Table 14. The multiclass confusion matrix for ResNet152 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.1 0.6 0.6 0.0 0.1 0.1 1.0 4.2 10.4 0.2 3.4 2.3 
W-S 0.6 60.5 10.9 0.0 0.1 0.3 0.0 0.7 25.0 0.3 1.1 0.6 
W-T-O 0.4 20.3 42.3 0.0 0.2 0.0 0.0 0.4 23.7 0.6 8.2 4.1 
I-S 0.1 0.9 0.1 62.5 27.9 3.3 1.0 0.0 1.8 1.7 0.5 0.1 
I-T-W 0.1 1.8 0.8 18.6 64.8 2.6 0.3 0.5 2.9 5.4 1.2 1.2 
I-T-L 0.2 1.0 0.3 2.5 5.2 72.2 3.9 0.2 9.9 1.9 1.7 1.0 
L-S 0.1 0.3 0.0 0.0 0.0 0.1 78.5 0.3 12.7 0.3 7.4 0.4 
L-T-D 5.8 0.5 0.4 0.0 0.2 0.1 0.9 54.5 26.2 1.8 6.4 3.2 
L-T-W 0.3 1.5 0.6 0.0 0.0 0.1 3.8 0.5 85.4 0.5 5.0 2.3 
L-T-I 0.1 0.9 0.1 0.4 3.8 0.7 4.7 1.5 23.5 46.7 12.6 5.1 
L-T-O 0.4 0.4 0.9 0.0 0.1 0.0 14.0 0.8 29.9 0.5 46.9 6.0 
L-T-E 0.4 0.5 0.4 0.0 0.0 0.1 0.7 0.7 15.6 0.7 9.9 70.9 

 

Table 15. The multiclass confusion matrix for DenseNet121 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 79.2 0.5 0.1 0.0 0.2 0.3 1.1 4.1 9.0 0.3 3.1 2.2 
W-S 0.2 66.4 8.8 0.0 0.3 0.1 0.0 0.4 21.5 0.3 1.4 0.6 
W-T-O 0.5 21.1 35.2 0.0 0.4 0.0 1.0 0.2 24.1 0.8 11.1 5.7 
I-S 0.1 0.3 0.6 60.8 29.2 2.3 0.5 0.0 2.3 0.9 1.8 1.2 
I-T-W 0.2 1.8 0.4 20.3 64.9 3.1 0.0 0.1 2.8 4.6 0.8 1.1 
I-T-L 0.2 0.7 0.3 3.0 4.9 74.6 3.2 0.3 8.6 1.9 1.3 1.0 
L-S 0.1 0.1 0.0 0.0 0.0 0.2 78.3 0.3 11.9 0.2 8.3 0.7 
L-T-D 6.0 0.7 0.4 0.0 0.2 0.1 0.8 53.0 27.2 2.4 5.7 3.4 
L-T-W 0.4 1.6 0.5 0.0 0.0 0.1 3.9 0.5 84.4 0.5 5.8 2.2 
L-T-I 0.1 1.2 0.3 0.7 4.1 0.7 4.6 1.1 23.6 48.8 10.7 4.1 
L-T-O 0.5 0.4 0.8 0.0 0.0 0.1 13.8 0.6 29.3 0.6 48.6 5.2 
L-T-E 0.7 0.6 0.4 0.0 0.1 0.2 0.7 0.4 15.8 0.8 10.7 69.6 

 

Table 16. The multiclass confusion matrix for DenseNet169 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 75.0 0.5 0.1 0.0 0.1 0.1 0.8 4.0 13.7 0.1 3.3 2.2 
W-S 0.3 68.9 8.8 0.0 0.1 0.2 0.0 0.2 18.5 0.2 1.8 1.1 
W-T-O 0.3 24.1 36.9 0.0 0.2 0.1 0.6 0.4 19.6 0.4 7.1 10.4 
I-S 0.0 0.8 0.1 58.5 32.8 2.4 0.4 0.1 2.3 1.4 1.0 0.1 
I-T-W 0.2 2.0 0.9 17.8 64.1 3.9 0.0 0.1 5.5 3.9 1.0 0.8 
I-T-L 0.3 0.5 0.0 2.9 5.9 72.9 3.0 0.2 9.8 1.9 1.9 0.8 
L-S 0.2 0.3 0.0 0.0 0.0 0.2 78.1 0.2 12.6 0.3 7.6 0.5 
L-T-D 7.0 0.9 0.6 0.0 0.2 0.1 0.8 50.8 28.5 2.0 5.7 3.5 
L-T-W 0.4 1.8 0.5 0.0 0.1 0.1 3.6 0.6 84.3 0.4 5.4 2.9 
L-T-I 0.2 1.7 0.1 0.3 4.8 0.2 3.6 1.8 24.3 45.9 12.6 4.4 
L-T-O 0.5 0.3 0.9 0.0 0.0 0.1 13.6 0.7 30.1 0.5 46.9 6.3 
L-T-E 0.6 0.6 0.5 0.0 0.0 0.1 0.7 0.5 18.0 0.6 10.2 68.2 
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Table 17. The multiclass confusion matrix for DenseNet201 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 75.6 0.9 0.2 0.0 0.0 0.4 0.7 5.1 10.0 0.1 4.0 2.8 
W-S 0.3 67.9 12.1 0.0 0.2 0.1 0.0 0.3 16.2 0.6 1.7 0.5 
W-T-O 2.4 23.6 37.8 0.0 0.4 0.2 0.0 1.5 19.9 0.4 8.3 5.5 
I-S 0.1 0.0 0.3 59.4 33.7 2.7 0.1 0.1 1.5 1.2 0.9 0.0 
I-T-W 0.2 1.9 1.0 14.2 68.9 3.0 0.1 0.1 2.8 5.6 1.2 1.0 
I-T-L 0.2 0.5 0.2 4.0 5.7 72.2 2.2 0.2 10.3 2.0 1.3 1.2 
L-S 0.0 0.2 0.0 0.0 0.0 0.1 76.0 0.2 13.4 0.6 8.9 0.6 
L-T-D 6.4 0.7 0.8 0.0 0.2 0.1 1.2 51.4 27.0 2.7 5.0 4.6 
L-T-W 0.4 1.8 0.9 0.0 0.0 0.1 3.5 0.6 82.3 0.5 7.0 2.8 
L-T-I 0.7 1.5 0.4 0.5 4.5 0.4 5.1 1.3 23.9 47.2 10.8 3.7 
L-T-O 0.5 0.4 1.4 0.0 0.0 0.1 12.6 0.8 29.6 0.8 47.4 6.4 
L-T-E 0.8 0.6 0.4 0.0 0.1 0.1 0.9 0.6 13.5 0.7 12.0 70.4 

 

 


