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Abstract 
The ‘inverse problem’ of mass spectrometric molecular identification (‘given a mass spectrum, 
calculate the molecule whence it came’) is largely unsolved, and is especially acute in metabolomics 
where many small molecules remain unidentified. This is largely because the number of 
experimentally available electrospray mass spectra of small molecules is quite limited. However, the 
forward problem (‘calculate a small molecule’s likely fragmentation and hence at least some of its 
mass spectrum from its structure alone’) is much more tractable, because the strengths of different 
chemical bonds are roughly known. This kind of molecular identification problem may be cast as a 
language translation problem in which the source language is a list of high-resolution mass spectral 
peaks and the ‘translation’ a representation (for instance in SMILES) of the molecule. It is thus 
suitable for attack using the deep neural networks known as transformers. We here present 
MassGenie, a method that uses a transformer-based deep neural network, trained on ~6 million 
chemical structures with augmented SMILES encoding and their paired molecular fragments as 
generated in silico, explicitly including the protonated molecular ion. This architecture (containing 
some 400 million elements) is used to predict the structure of a molecule from the various fragments 
that may be expected to be observed when some of its bonds are broken. Despite being given 
essentially no detailed nor explicit rules about molecular fragmentation methods, isotope patterns, 
rearrangements, neutral losses, and the like, MassGenie learns the effective properties of the mass 
spectral fragment and valency space, and can generate candidate molecular structures that are very 
close or identical to those of the ‘true’ molecules. We also use VAE-Sim, a previously published 
variational autoencoder, to generate candidate molecules that are ‘similar’ to the top hit. In addition 
to using the ‘top hits’ directly, we can produce a rank order of these by ‘round-tripping’ candidate 
molecules and comparing them with the true molecules, where known. As a proof of principle, we 
confine ourselves to positive electrospray mass spectra from molecules with a molecular mass of 
500Da or lower. The transformer method, applied here for the first time to mass spectral 
interpretation, works extremely effectively both for mass spectra generated in silico and on 
experimentally obtained mass spectra from pure compounds. The ability to create and to ‘learn’ 
millions of fragmentation patterns in silico, and therefrom generate candidate structures (that do not 
have to be in existing libraries) directly, thus opens up entirely the field of de novo small molecule 
structure prediction from experimental mass spectra.   
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Introduction 
The measurement of small molecules within biological matrices, commonly referred to as 
metabolomics 1,2, is an important part of modern post-genomics. Spectrometric methods are key to 
their identification. For the deconvolution of matrices such as human serum, chromatography 
methods coupled to mass spectrometry are pre-eminent 3,4. In mass spectrometry (MS), molecules 
are ionised and enter a gas phase, commonly using electrospray methods, and the masses and 
intensities of the fragments – the mass spectrum – contains the diagnostic information that in 
principle represents a fingerprint for identifying the target molecule of interest. The molecular ion and 
its fragments may themselves be further fragmented (tandem-MS) using different energies to 
increase the discriminating power. Identification is currently largely performed by comparing the 
peaks in the mass spectra obtained with those in a library of mass spectra from known molecules, 
and the identities may be confirmed by running authentic chemical standards, if available.  

The problem with all of the above is that the number of small molecules of potential interest 
(‘chemical space’) is vast 5 (maybe 1060 6,7) whereas the number of synthesised and purchasable 
molecules as recorded at the ZINC database 8 (http://zinc15.docking.org/), are just some 109 and 
6.106, respectively (even most of the simplest heterocyclic scaffolds have never been made 9). Those 
molecules with available, experimentally determined, high-resolution mass spectra are in the low 
tens or hundreds of thousands. Consequently, the likelihood that any molecule detected in a 
metabolomics experiment is actually in a library (or even close to a molecule that is 10) is quite small, 
and most are not 11-13. Experimentally, commonly just 10% of molecules can be identified from what 
are reproducible spectral features in complex matrices such as serum (e.g. 14-18), despite the 
existence of many heuristics 19-22. Solving the mass spectral molecular identification problem is thus 
seen widely as the key unsolved problem of metabolomics  4,11,17,23-36. It was also seen as a classical 
problem in the early development of ‘artificial intelligence’ 37-40. 

It is possible to compute (and hence to generate) all reasonable molecules that obey valence rules 
and that contain just C, H, O, N, S and halogens, which for those with C-atoms up to 17 amount to 
some 1.66 . 1011 molecules 41. However, much of the problem of navigating chemical space in search 
of molecules that might match a given mass spectrum comes from the fact that chemical space is 
quasi-continuous but molecules are discrete 42. As part of the revolution in deep learning 43,44, de 
novo generative methods have come to the fore (e.g. 42,45-55). These admit the in silico creation of 
vectors in a high-dimensional ‘latent’ space (‘encoding’) and their translation from and into 
meaningful molecular entities (‘decoding’). Although the mapping is not at all simple, small 
movements in this latent space from a starting point do lead to molecules that are structurally related 
to those at their starting points 42,56.  

By contrast to the ‘inverse problem’ that we are seeking to solve (where we have a mass spectrum 
and seek to find the molecule that generated it), the ‘forward problem’ of mass spectrometry is 
considerably more tractable (especially for high-energy electron impact mass spectra 57). Given a 
known chemical structure, it is possible to fragment the weakest bonds in silico and thereby generate 
a reasonably accurate ‘mass spectrum’ of the fragments so generated (e.g. 17,58-66). Importantly, the 
advent of high-mass-resolution spectra means that each mass or fragment can be contributed by 
only a relatively small number of (biologically) feasible molecular formulae. Even fewer can come 
from different, overlapping fragments. Experimentally, we shall assume that the analyst has available 
a mass spectrum that contains at least 10 fragmentation peaks (probably obtained using different 
fragmentation energies) including the protonated molecular ion, and we here confine ourselves to 
analysing positively charged electrospray spectra.  

Part of the recent revolution in deep learning 43,44 recognises that in order to ‘learn’ a domain it is 
necessary to provide the learning system with far more examples than were historically common, 
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but that the features of (even unlabelled) images 67 or text 68,69 can then be learned effectively. 
Transformers 70,71 are seen as currently the most successful deep learning strategy for ‘sequence-
to-sequence’-type problems such as language translation 72-74. Obviously SMILES strings constitute 
a language and while it may be less obvious that mass spectra do so, they too can be seen to 
represent a sequence of elements, in this case high-resolution peaks. The ‘spectrum-to-structure’ 
problem may thus be cast as a language translation problem. In particular, much as how human 
infants learn from their surroundings, it has been established in the transformer type of architecture 
70 that the initial ‘pre-training’ can if necessary be carried out in an entirely unsupervised manner, 
with ‘fine-tuning’ being sufficient to learn the domain of interest 68,71,72,75,76. We recognise that this is 
also possible for the space of small molecules, where the features of interest are their (mass spectral) 
fragments. However, in this case we may in fact generate matched pairs of spectra and molecular 
structures from the encoding (as their SMILES strings) of the relevant molecules, and treat this as a 
supervised learning problem.  

We thus considered that one might fruitfully combine these two main elements (molecular generation 
and molecular fragmentation) with an objective function based on the closeness of the predicted 
mass spectrum to the experimental one that one is trying to fit. This would allow us to ‘navigate 
chemical space intelligently’ 52 so as to provide the user with a set of molecules (ideally one) that 
generates the something close to the observed mass spectrum and hence allows identification of a 
candidate molecule. We here implement this approach, that we refer to as MassGenie, for learning 
positive electrospray ionisation mass spectra as input and the molecules that might generate them 
(as output). MassGenie offers an entirely novel and very promising approach and solution to the 
problem of small molecule identification from mass spectra in metabolomics and related fields. We 
believe that it represents the first use of transformers in molecular identification from (mass) spectra.  

Methods  
Small molecule datasets used 
We first create and combine two datasets, that we refer to as ZINC 6M and ZINC 56M. The ZINC 
6M dataset originally was a mixture of 1381 marketed drugs 77, 158,809 natural products 78, 1112 
recon2 metabolites 77, 150 fluorophores, and molecules from a subset of the ZINC15 database 
(subset1 contained 2,494,455 and subset2 (“2D-clean-drug-like-valid-instock”) contained 6,202,415 
molecules. After canonicalization of the SMILES and the removal of duplicates we ended with 
4,774,254 unique SMILES. We filtered any duplicates as well as structures for which the m/z of the 
protonated molecular ion exceeds 500. This is because comparatively few molecules had peak 
(mass) values higher than 500 and including them would have led to a drastic increase in the input 
dimensionality of our model, constraining the adjustment of other hyperparameters such as batch 
size, model size, etc away from their optimal values. From this, we obtained ~4.7M molecules 
encoded as SMILES. These will be given in published Supplementary Information. Despite these 
large numbers, some atoms are under-represented. For instance, we did not feel that there were 
sufficient S-containing molecules to give us confidence with the experimental mass spectra, although 
the system performed well with those generated in silico.  
 
 

Data 
source 

Recon 
2 

Natural 
products 

Marketed 
drugs 

Fluorophores ZINC15-
subset1 

ZINC15-
subset2 

Total 

Original 
smiles 
count 

1,112 158,809 1381 143 249,455 6,202,415 6,613,315 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449969
http://creativecommons.org/licenses/by/4.0/


6 
 

Canonical 
smiles 
count 

1,056 148,971 1357 115 247,804 4,425,891 4,825,194 
(4,774,258-
unique) 

 
 
 
For ZINC 56M, we randomly sampled 56M SMILES from a set of ~794M within ZINC15 tagged as 
“2D-clean-druglike-annotated”. After canonicalization and duplicate removal, we obtained ~53M 
SMILES and again from these sampled randomly ~3.2M structures and applied the same procedure. 
In this purposely chosen subset of ZINC, the number of molecules with molecular ion peak values 
more than 500 were much lower (21,454); there were also far fewer duplicates. We then combine 
both datasets. The combined dataset thus had ~7.9M SMILES strings augmented to be in triplicate, 
of which 100,000 were reserved as a validation set (these happened to include cytosine, see later). 
 
In addition, for fine-tuning, we made use of 201,858 molecules from the GNPS dataset (obtained 
from https://gnps-external.ucsd.edu/gnpslibrary/ALL_GNPS.json). The dataset originally had 439,996 
data samples. We then filtered the dataset for fine tuning based on the following: first, we drop the 
rows containing “N/A” values. Then we filter out the samples that do not have “positive” ion mode. 
This left us with 271,497 samples in the dataset. After this, we applied each of the three filters that 
we applied in the training set, i.e. the removal of samples with m/z values exceeding 500, of samples 
with SMILES string length more than 99, and of the samples where the number of m/z peaks is more 
than 100. After this, we finally obtain a refined trainable dataset of 201,858 molecules. However, not 
all of these 201,858 molecules were used for training as 10,000 samples were held out as another 
potential test set.  
 
We also produced a second completely independent test set of over 1000 separate molecules from 
ZINC 56M, fragmented as below, that were tested single-blind. Finally, we utilised experimental 
mass spectra generated as part of our current metabolomics studies 16,79 

In silico fragmentation method 
 
To fragment molecules in silico, a bespoke implementation of MetFrag 60,61 was developed, allowing 
for the generation of theoretical fragmentation spectra which were tailored to approximate those 
found in experimental mass spectra libraries. Like MetFrag, our implementation (FragGenie, 
available at https://github.com/neilswainston/FragGenie) utilises the Chemistry Development Kit 80 
to represent small molecules as a matrix of atoms and bonds. Each bond is broken serially with each 
bond break resulting in either two fragments, or a single fragment in the case of ring-opening breaks. 
This process continues recursively, with each fragment being subsequently fragmented further until 
a specified recursion depth or a minimum fragment mass is achieved. A number of adduct groups 
may then be applied (e.g., protonation and sodiation) with the resulting collection of fragment m/z 
values providing a theoretical fragmentation spectrum for a given small molecule. (In addition, and 
largely for the purposes of debugging, chemical formulae and a list of bonds broken may also be 
generated for each individual fragment.) Such a naïve approach of breaking all bonds recursively 
quickly generates an excessive number of potential fragments. As such, the method was tuned 
against existing fragmentation spectra in the MoNA database (https://mona.fiehnlab.ucdavis.edu) in 
order to limit the nature of bond breaks to those which are most often found in measured spectra. 
While the fragmentation method of FragGenie can be filtered to include or exclude any specified 
bond type, for this work fragmentation was limited to single, non-aromatic bonds, protonated 
adducts, and a fragmentation recursion depth of 3.  
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Note that throughout we are in effect using only individual (not tandem) mass spectra, though these 
may be constructed in silico from experimental data by combining mass spectra generated at 
different fragmentation energies (e.g. by changing cone voltages in an electrospray instrument or by 
varying the pressure of collision gases). We also assumed that ‘real’ (experimental) mass spectra 
would contain a known, protonated molecular ion (reflecting a positive electrospray experiment) of a 
mass of sufficient accuracy to provide a molecular formula. Thus, we do not directly implement 
tandem spectra: ‘fragments of fragments’ are seen simply as having the molecular ion of the largest 
peak and may be treated accordingly in a similar manner to that described for the original molecule. 
This strategy necessarily misses fragments that undergo rearrangements and unknown mass 
losses, etc. 

 
The fragmentation method used in our program does not seek to predict intensities directly, but 
merely the presence or absence of a peak with a certain high-resolution mass (m/z). We next apply 
a novel data augmentation procedure to make the model learn to prioritise the input peaks, to 
encourage the learning of peaks whose presence tended more strongly to suggest the corresponding 
SMILES. We observe from the MetFrag algorithm that certain types of bonds are broken in the first 
step. These are the ones that correspond to the highest intensity when compared with the peak list 
obtained from a real mass spectrometer. Also, these peaks have the same mass accuracy both 
theoretically as well as in the real mass spectrometer. Intuitively, this list of peaks always has (and 
is taken to have) the molecular ion. Subsequently, in the 2nd step, peaks with comparatively lower 
ranges of intensity are obtained and also with slightly higher noise in them when compared with the 
real peaks from the mass spectrometer. The pattern is repeated once more.  
 

Thus, for each SMILES molecule, we generate three data samples or molecule peak pairs, one for 
each step of bond breaking up to three. This technically leads to a 3-fold increase in our overall data. 
However, in our experiments we only consider samples with a maximum input length of 100. 
Therefore, any SMILES molecule-FragGenie peaks pair, where the length of the list of peaks is more 
than 100, is dropped from the dataset. This leaves us with the ~21M SMILES that we use for training 
our model.  
 

Throughout we assume that we have high-resolution mass spectral data with a precision of better 
than 5ppm, as is nowadays common (and is easily achieved in our own Orbitrap instruments 16). The 
present paper utilises only ES+ data. For the input mass spectral data we applied a binning 
procedure. Data were filtered such that the peaks have an upper bound of m/z 500. This effectively 
produces a fixed precision of 0.01. Even for a mass of 500, a precision of 5ppm equates to a ∆mass 
of only 0.0025, so these bins are adequate. 

Thus, we consider the binning range from 0 to 50,000 and to categorize the peak into these peaks 
we multiply the peaks by 100 so what we get is essentially its bin number. Afterwards, the number 
of bins is projected as the dimensionality of the input, and the category value for every peak which 
we get from carrying out the above procedure reflects the index which is set in its input vector.  

The input data consist of the list of values of peaks in floating point numbers. We constrained the 
number of peaks to be less than or equal to 100. Note that we do not use abundance data, because 
they depend entirely on the strength of the collisions; instead, we assume a series of experiments 
using collisions (or other molecular deconstruction near the source) sufficient to provide at least 10 
peaks from the molecule of interest.  
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For the output data, we first split the SMILES into a list of individual atom types (C, N, O, P, etc) and 
other characters such as “[“,  “]”, “(“, “)”, “=”, “-”, etc. The total vocabulary size was 69 including the 
4 special tokens <sos> (start of sequence), <eos> (end of sequence), <unk> (unknown), and <pad> 
(padding) and this defines the output dimensionality of our transformer model as now described fully.  

The transformer model  
We here used the standard transformer model 70 and cast the problem as a peaks-to-SMILES 
translation problem (Figure 1A). Our transformer encoder, written in PyTorch, is composed of 12 
transformer encoder layers plus 12 transformer decoder layers. The output dimensionality of all the 
sub-layers, as well as the embedding layers in both encoder and decoder, was set to 1024. Besides 
this, each Multi-Head attention layer of our transformer model was formed of 16 attention heads in 
total. We used dropout 81 heavily; its value for the complete transformer model was set to 20%. 
Lastly, the dimensionality of the feed-forward layer present inside all of the transformer encoder and 
decoder layers, and applied to every position individually, was set at 4096. Effectively, we allow the 
model to see the entire input sequence containing peaks and impose a target attention mask in the 
decoder stack to prevent it from being exposed to the subsequent positions. Altogether, our model 
consisted of ~400M trainable parameters.  

As indicated, we use the transformer model, which is originally a language translation model, to 
‘translate’ MS2 peak lists into SMILES. When used for language translation problems, and when 
given an input sentence, such a model, tends to predict multiple sentences that could be the 
corresponding translation of the input sentence. Some of the predicted candidate sentences even 
have a very similar meaning. Hence, when we apply the transformer model to our problem, we evoke 
a similar kind of behaviour (albeit in a different domain or context): our model predicts different 
SMILES strings each time when we run the model on the particular list of peaks. All of these are 
considered to be the candidate predictions of the molecules. Now, from our experiments and 
observations, what we have witnessed is when the model is pretty ‘confident’ about its predictions, 
it does predict the same output multiple times. However, the unique predictions are considerably 
smaller than the number of times it was made to predict. Also, there is typically a very high similarity 
between the candidate predictions. By contrast, when the model is unsure or cannot decipher the 
patterns properly, the model gives a set of unique predictions that is almost equal in size to the 
number of times the model was run for predictions. Also, the candidate predictions tend to have a 
considerable amount of dissimilarity between them. This admits, qualitatively, a measure of the 
certainty in the prediction from a transformer model. We also use the information about whether the 
predictions have the correct molecular formula.  

Training settings 
We first trained a model with in silico fragments only. By applying the data augmentation described 
above, we used a total of ~21M data samples, from which we reserve 100,000 samples for validation 
and utilize the rest for training. The data were batched as 896 samples per batch. We adopt the 
same optimizer setup as implemented in the original paper 70, namely the Adam optimizer with β1 = 
0.9, β2 = 0.98 and ε = 10-9, but with the following slight changes. First, we double the warmup steps 
to 8000. Secondly, we apply scaling (as in 82), to the overall learning rate, dependent upon the batch 
size considered for training. We use the open-source PyTorch library to construct and train the 
complete model for the problem. We trained our model on an NVIDIA DGX A100 system; this 
required approximately one day of training to reach its best validation loss. This is about 30-fold 
quicker than a 4-GPU (V100) machine that we have used previously 56 for a different transformer-
based deep learning problem.  
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Testing the results 
As with any mass spectral prediction program, the user anticipates being presented with a list of 
candidate predicted molecules, if possible in a rank order, and this is what we supply. It is then, of 
course, up to the user to validate the predictions, most persuasively 83 by running the standard under 
the same conditions that generated the original mass spectrum. We employ two procedures to 
analyse the performance achieved by the trained model. The first procedure (“transformer search”) 
uses solely the transformer. When queried with a testing input list of peaks, we run the model 100 
times to predict a list of output SMILES from the list, and filter this to produce a non-redundant set 
of predicted SMILES, also in some cases filtering to remove any molecules with the incorrect 
molecular formula (from the predicted molecular ion). We also have access to round tripping 
procedures, using our fragmentation system to regenerate the theoretical list of MS peaks 
corresponding to each of the non-redundant predicted SMILES. This allows us to compare the 
SMILES based on the similarity between the theoretically generated list of peaks and the original 
query list of testing peaks.   

In a second procedure (“VAE search”), we use predictions from the transformer to search the local 
latent space in an updated version of our trained variational autoencoder 56. We take the top-1 
predicted molecule and produce a new molecule by moving a small Euclidean distance away. This 
is done by taking randomly 10,000 samples within a annular fixed radius from the predicted 
molecule’s position in the 100-dimensional latent space 56. We also varied the radius 50 times with 
a fixed size of 10-2. This can generate many molecules beyond those on which the variational 
autoencoder was trained 42,56.  Out of those 500,000 samples typically ~0.1% are valid samples (due 
to the effectively infinite size of the VAE latent space compared to the finite number of locally valid 
molecules). This takes approximately 4 min, whereupon a set of molecules with the correct mass ion 
is chosen. 

Experimental mass spectra were generated from pooled human serum or from chemical standards 
using an Orbitrap mass spectrometer and the methods described in 16,79 with standard settings, and 
were visualised using Compound Discoverer (Thermo). 

Testing our system using ‘real’ (experimental) mass spectral peaks is somewhat different from 
testing it on the peaks generated in silico, for a number of reasons. First, we do not know exactly 
which peaks are more ‘important’ or even which may be true peaks, and which are erroneous due 
to contaminants. However, empirically, we do recognise that the higher intensity mass peaks tend 
more usually to be correct ones; as the intensity decreases, the noise in the peaks starts to increase 
and they eventually become erroneous (i.e. they do not come from the target molecule of interest). 
Based on this, we initiate a variable k, firstly with an initial value of 1. Then, we sample the top k 
intensity peaks. We sort them so that the peaks are always in an ascending order of m/z. We run 
the model for N=300 times and obtain a list of predictions. Since we already know the molecular 
formula from the exact mass of the molecular ion, the predicted list of SMILES molecules is filtered 
as required to match the known chemical formula. We do multiple iterations of this process, 
increasing the value of k by one. The number of iterations equals the total number of peaks in the 
test sample. Finally, we output the final list of candidate predictions. Because of the relative paucity 
of S- and P-containing molecules in our training set, we confined our analysis of experimental spectra 
to those containing solely C, H, O and N. 

Results 
The first task was to train the deep transformer network described in Methods with paired in silico 
mass spectra as inputs and molecular structures as outputs. The network so generated (the code 
will be made available via the Supplementary Information) had some 400M nodes, and was trained 
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over a period of ~ 1 day. We used a validation set of 100,000 molecules and use the performance 
(validation loss) achieved on that set as a metric to ascertain that we use the best version of the 
trained model for the testing. After every epoch, we run the model on the validation set and record 
the performance (validation loss) on it. And if the best validation loss so far is found, we record the 
weights of the model for that epoch. We repeat this process after every epoch until a significant 
number of epochs have passed without seeing any improved validation loss. The transformer 
architecture is given in Fig 1A, while the overall procedure including the two ‘round tripping’ strategies 
is given in Fig 1B. Figure 1C and 1D illustrate the strategy as applied to FragGenie-generated peaks 
and to experimental mass spectra.  

 

A
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Figure 1. The overall strategy behind MassGenie. A. The overall architecture and structure of the 
transformer used in MassGenie, our deep learning system for identifying molecules from their mass 
fragments (spectra). B. The three basic strategies available to us for relating mass spectral peak 
lists to the molecules whence they might have come. (1) The transformer outputs only a single 
molecule. (2) We can take a series of candidate molecules, generate candidate mass spectra in 
silico using FragGenie, and compare them with the experimental mass spectra, using cosine 
similarity to rank order the candidates. (3) We can use VAE-Sim to generate further candidate 
molecules that are ‘close’ in chemical space (and possess the correct molecular formula) and rank 
those as in (2). This is done for both FragGenie-generated spectra (C) and experimental mass 
spectra (D). 

 

By way of example, the following peak list was generated by FragGenie from the molecule shown 
on the left of Fig 2, while the candidate predictions are given on the right-hand side of that Figure. 

[60.02059, 66.02125, 70.00248, 81.03214, 81.04474, 96.05563, 109.99178, 112.04313, 
116.018036, 125.002686, 127.05403, 127.91178, 131.02895, 131.04152, 134.03624, 
135.01643, 137.9867, 146.05243, 149.04715, 150.02734, 150.03992, 152.9976, 
153.98161, 165.05083, 168.99251, 201.92743, 205.04015, 216.93832, 229.0846, 
229.92235, 233.03505, 236.89629, 239.06648, 244.93324, 245.91727, 249.02995, 
251.90718, 255.03694, 259.01187, 260.9282, 264.8912, 267.0614, 274.03534, 
279.08142, 279.9021, 283.03186, 283.05634, 287.00677, 295.05185, 296.9758, 
299.02676, 302.03024, 303.00168, 316.92114, 324.97076, 331.94464, 340.96567, 
340.9657, 344.9161, 346.97266, 350.94757, 359.9396, 360.91104, 362.94308, 
365.97107, 366.918, 374.9676, 378.9425, 381.9415, 385.9164, 386.98758, 390.93802, 
390.9625, 390.96252, 393.966, 394.91293, 394.93744, 400.9399, 402.958, 406.93292, 
406.93295, 409.93643, 410.90787, 413.91135, 428.93484, 444.92978, 459.95325] 
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As seen (Figure 2), while the model was run a hundred times, it predicted only 18 unique molecules, 
and each of them is a very close isomer. The closest one has a Tanimoto similarity of 0.95 to the 
true molecule when encoded with the TYPICAL fingerprint strategy 78 as described next. 

 

Figure 2. Illustration of the means by which MassGenie can predict a series of candidate molecules. 
In this case, the ‘true’ molecule is shown on the left, and 18 candidate molecules (from 100 runs) 
shown on the right. It is clear that all are close isomers, containing a methoxybenzoate moiety linked 
via a secondary amine to a pyrazole ring with a trifluoromethyl substituent. 

 

We ran a test set of 1350 separate molecules through the network using a single-blind strategy 
(mass peak lists of molecules not in the training or validation sets were provided by SS and were 
then tested by ADS). The concept of molecular similarity is quite elusive 84,85, and the usual means 
of assessing it (an encoding of properties or molecular fingerprints followed by a similarity metric 
such as that of Jaccard or Tanimoto 86) depends strongly on the encoding 78, and is to some degree 
in the eye of the beholder. These comparisons are normally determined pairwise, though the 
parametrisation can be done using large cohorts of molecules 56. For present purposes, we 
estimated similarity on the basis of what we refer to as the TYPICAL similarity 78; this uses a set of 
encodings from rdkit (www.rdkit.org) (we used rdkit, atom pair, topological torsion, MACCS, Morgan 
and Pattern) followed by the Jaccard metric, and takes the values of whichever returns the largest 
(this was almost invariably the Pattern encoding). 

Armed with the network’s estimates of the molecular structures and the then-disclosed identities, we 
used the above TYPICAL strategy 78 to assess the Tanimoto similarity (TS) between the network’s 
best estimate and the true molecule. Of these, 1117 (82.7%) were precisely correct, 1338 had a TS 
exceeding 0.9 (99.1%) and only 2 (0.15%) had values of TS below 0.8. The data are given in 
Supplementary Table 1, and the structural closeness of some of the molecules with a TS of 0.9 is 
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indicated in Figure 3. It is clear that a TS of greater than 0.9 does implies a molecule very close in 
structure to the correct molecule. Those shown give a clear indication of both the difficulty and the 
success of the task as they are indeed significantly complex structures. (Note that in this case 233 
of the molecules contained S, of which 203 (91%) were nonetheless divined correctly.) 

 

Figure 3. Analysis of a test set of predictions of the molecules behind 1350 in silico-fragmented mass 
spectral peaks. The peak lists were passed through the transformer after it had been trained and 
fine-tuned as described in methods. The analysis was done single-blind and the results fed back. 
The ‘closeness’ between the molecule estimated and the true molecule is given as the highest 
Tanimoto similarity based on six encodings. Four estimated molecules with a TS of ~0.9 are 
illustrated, together (at left) with the ‘true’ molecules. It is again obvious that they are extremely close 
structurally. 

 

In a few cases, MassGenie failed to produce a molecule with the correct molecular formula. In this 
case, we were able to encode its best estimates in the latent space described in our VAE-Sim paper 
56, and move around the latent space until we found the closest molecule with the correct molecular 
formula. We ran 50 of these. Figure 4 illustrates the results for 10 molecules from those whose TS 
in Figure 3 was between 0.9 and 0.95, raising the average TS from 0.92 to 0.96, and producing 
structures that were clearly closer to the true one. The VAE-Sim strategy is thus a very useful adjunct 
to the direct Transformer approach.  

Analysis of 1350 in silico mass spectra

Tanimoto similarity of best hit

Row number
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Figure 4. Local candidate structures generated by VAE-Sim. Based on 10 molecules taken from Fig 
3, where the Tanimoto similarity between the best hit and the true molecule was in the range 0.9-
0.95. VAE-Sim increases the number of candidates, in many cases improving their closeness to the 
true molecule.  

 

Fig 5A further illustrates the use of VAE-Sim in cases where there is a mass difference between the 
known molecular ion and MassGenie’s predictions, both in terms of the rank order of cases where 
the mass difference is smallest (orange) or the Tanimoto similarity is greatest (blue). Fig 5B illustrates 
three examples in which VAE-Sim can effectively ‘recover’ the correct molecule by searching locally 
to the transformer’s top hits that just have the wrong mass. 

The number of fragments typically generated by FragGenie commonly exceeds those available in 
real electrospray mass spectra such as those available via MoNA 21,87 or GNPS 21,87 (and they are 
not identical in different databases). This said, generative deep learning methods of this type are 
sometimes capable of reconstructing whole entities (words or images) from partial, heavily masked 
inputs 88, so we considered that it might be reasonable that a transformer trained solely on in silico 
fragments might nevertheless be able to make predictions from experimentally obtained mass 

Use of VAE-Sim for exploring local 
candidate structures

Molecule
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spectra. We first used both purified standards of known structure and molecules assessed during 
experimental LC-MS(-MS) runs where spurious peaks can appear because of imperfect separations.  

 

MassGenie performanceA
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Figure 5. Local search where mass predictions are inaccurate.  A. All examples from Fig 3 in which 
the transformer predicted molecules with slightly incorrect masses. VAE-Sim was used to search 
locally and generate further candidate structures that were round-tripped using FragGenie to 
produce mass spectra that could again be ranked in terms of TS to the known, true molecule given 
either the optimal mass difference or the optimal TS. B. Three examples showing the ground truth, 
the transformer’s best estimate, and the best (and accurate) prediction after the candidate pool of 
molecules was enhanced using VAE-Sim. 

Our present LC-MS/MS method of the pooled human serum used 16, based on that in 3, shows 
3009/3478 reproducible metabolites in ES+/ES- mode, respectively, that appear in at least 50% of 
replicates and for which we have tandem mass spectra. Of these only 391/213 have confirmed 
entries in the mzcloud library (https://www.mzcloud.org/). Since the space of known and purchasable 
molecules far exceeds those for which we have experimental mass spectra, it is possible to assess 
those for which the proposed spectra are of purchasable compounds. It could thus be observed that 
experimental spectra of known compounds in serum often contained many spurious peaks not 
present in the standards. Consequently, we also used known standards that were run 
experimentally. 

This experiment was again done single-blind, by which IR and MWM provided peak lists and 
knowledge of the molecular ions for molecules whose structures they had confirmed by running 
authentic standards or by other means. These are shown in Table 1, along with the performance of 
MassGenie. As with the interpretation of FragGenie peak lists, we obtained multiple candidates from 
each analysis. In practice, many of them possessed different SMILES representations but were 
actually of the same molecule. We therefore converted all the SMILES variants into a single 
canonical SMILES with its structure and assessed the most common. Figure 6 gives an example. 
As with FragGenie, the table thus uses as its top candidate the structures that were most frequently  
proposed. In some cases, MassGenie did not propose a structure with the correct mass ion.  

Some transformer -based 
predictions recovered through 

VAE-Sim

Ground truth MassGenie A�er VAE -Sim

B
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Compound 

Formula 

Monoisotopic 
mass M+H Matrix 

Number 
of peaks/ 
fragments 

SMILES 

Result   Comment 
(predicted by MS 

software and 
correct by 
standard) 

* Canonical  
* No isotopic or chiral markings 

Lauryl-l-carnitine C19H37NO4 343.2723 344.2801 STD in water 11 CCCCCCCCCCCC(=O)OC(C[N+](C)(C)C)CC(=O)[O-] Part of options 
Part of the options (3 

out of 28) in 
ChemSpider 

Stearoyl-l-carnitine C25H49NO4 427.3662 428.374 STD in water 7 CCCCCCCCCCCCCCCCCC(=O)OC(C[N+](C)(C)C)CC(=O)[O-]  Part of options 
Part of the options (2 

out of 2) in 
ChemSpider 

Nicotinamide C6H6N2O 122.048012 123.055 Serum 8 OC(=N)c1cccnc1 Matched (single 
option) 

Correct (based on 
Pubchem - 

ChemSpider has an 
incorrect structure) 

Glutamine C5H10N2O3 146.069138 147.076 Serum 6 NC(=O)CCC(C(=O)O)N Part of options Part of the options (3 
out of 15) 

3-Nitro-L-Tyrosine C9H10N2O5 226.058975 277.066 STD in water 13 OC(=O)C(Cc1ccc(c(c1)[N+](=O)[O-])O)N  No prediction  No predictions 

Asparagine C4H8N2O3 132.053497 133.06 STD in water 5 NC(=O)CC(C(=O)O)N Part of options 
proposed 

ureidopropionic acid; 
no asparagine 

Glycylglycine C4H8N2O3 132.053497 133.06 STD in water 3 NCC(=NCC(=O)O)O  Part of options 

Offers asparagine, 
ureido propionic acid 

and glycylglycine 
between (10) 

Lactose C12H22O11 342.1162115 343.1232 STD in water 9 OCC1OC(O)C(C(C1OC1OC(CO)C(C(C1O)O)O)O)O  41/54  Identified it is a sugar 

Cortisol C21H30O5 362.2093241 363.2161 STD in water 14 OCC(=O)C1(O)CCC2C1(C)CC(O)C1C2CCC2=CC(=O)CCC12C  2 out of 4 Most common is 
correct 

Corticosterone C21H30O4 346.2144094 347.2216 STD in water 10 OCC(=O)C1CCC2C1(C)CC(O)C1C2CCC2=CC(=O)CCC12C  3 out of 8 Most common is 
correct 

Cortisone C21H28O5 360.193674 361.2011 STD in water 16 OCC(=O)C1(O)CCC2C1(C)CC(=O)C1C2CCC2=CC(=O)CCC12C 2 out of 3 Most common is 
correct 

Protirelina C16H22N6O4 362.170254 363.1767 STD in water 10 O=C1CCC(N1)C(=O)NC(C(=O)N1CCCC1C(=O)N)Cc1[nH]cnc1  

No prediction 
with the correct 

formula 

  

Cortisol-21-acetate C23H32O6 404.21989 405.2262 STD in water 12 CC(=O)OCC(=O)C1(O)CCC2C1(C)CC(O)C1C2CCC2=CC(=O)CCC12C    

Rosmarinate C18H16O8 360.0845175 361.092 STD in water 11 O=C(OC(C(=O)O)Cc1ccc(c(c1)O)O)C=Cc1ccc(c(c1)O)O   

Deoxycorticosterone 
acetate C23H32O4 372.23006 373.2369 STD in water 15 CC(=O)OCC(=O)C1CCC2C1(C)CCC1C2CCC2=CC(=O)CCC12C    

Cytosine C4H5N3O 111.04326 112.0505 Serum 5 Nc1ccnc(=O)[nH]1 Part of options 1 out of 17 options 
Non-blind test 
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Table 1 (above). Predictions by MassGenie of molecular structures from experimental positive 
electrospray mass spectra, Molecules were provided single-blind to MassGeneie and the ranked 
outputs are recorded. 11 of the 16 molecules could be predicted. 

 

Figure 6. Illustration of the predictive power of MassGenie when presented with an experimental 
peak list (363.21631, 121.06477, 105.06985, 97.0648, 91.05423, 327.19522, 119.08553, 
309.18469, 109.06478, 145.10121, 93.06989, 131.08549, 123.08039, 79.0542,143.08563) of the 
true molecule cortisol, along with its canonicalized best proposals. In this case 2/4 are correct (and 
to a chemist’s eye far more biologically plausible). 

 

Overall, MassGenie performs very creditably, and where it does not one can begin to understand 
why. First, the experimental spectra often contain spurious peaks due to impurities, whereas those 
generated by FragGenie do not. Secondly, the number of experimental peaks is often really too low 
to allow a realistic chance of predicting a molecule much beyond those in the training set. Thirdly, 
there are obvious cases (e.g. long acyl chains) where FragGenie will produce a run of molecules 
differing by 14(.01565) mass units due to the serial loss of -CH2- groups, but the real electrospray 
mass spectra simply do not mirror this. This said, the fact that MassGenie, augmented where 
appropriate with VAE-Sim, can produce candidate molecules at all, including those that are not in 
any library, illustrates the massive power of generative methods of this type in attacking and 
potentially solving the enormous ‘mass-spectrum-to-structure’ problem of metabolomics and small 
molecule analytics.  

Discussion 
A great power of modern methods of deep learning is that they do not need to be given explicit rules 
(though they or their human controllers may certainly benefit from them). The crucial point here, 
though, is that they are generative, i.e. in our case that they ‘automatically’ generate molecules in 

Predicted structures from experimental peak lists of true target cortisol

Predictions and target

Row number
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the form of SMILES strings; simple filters can allow the removal of invalid ones or those outside the 
appropriate mass range. VAE-Sim can be used to add to the list. Although future strategies will be 
able to incorporate the extensive existing knowledge of mass spectrometrists (e.g. 19,20,89), the 
remarkable ability of our system to generate reasonably (and in a great many cases exactly) accurate 
molecules from candidate mass spectra, without any explicit knowledge of rules for the fragmentation 
of existing molecules and fragments, must be seen as striking. Note too that we are not directly using 
MSn information based on parent ions beyond the protonated molecular ion at all. In contrast to 
methods designed to predict the presence of substructures alone, our system seeks to generate the 
entire molecule of interest, and can do so. 

A 10x10 array of binary (black/white) pixels can take 2100 (~1030) forms 10, but few of these represent 
recognisable or meaningful images. The existence of recognisable ‘features’ that may be extracted 
and combined to create meaningful images is what lies at the heart of the kinds of deep learning 
systems applied in modern, generative image processing 90. In a similar vein, although the number 
of possible molecules is large, the number of meaningful (and chemically admissible) fragments or 
substructures from which they are built is far smaller 91. Equivalently, an infinity of sentences may be 
constructed from a far smaller number of words, but only a subset of such sentences are meaningful 
and syntactically or semantically sound 92,93.  To this end, we do effectively cast the ‘mass-spectrum-
to-structure’ problem as being equivalent to the kind of sequence-to-sequence language translation 
problem at which transformers excel, and we here apply them to this problem for the first time. Of 
the modern, generative methods of deep learning, transformers seem to be especially suited to these 
kinds of ‘language translation’ problems, and (for what we believe is the first time in this domain) this 
is what we have implemented here. 

Modern methods in machine learning also recognise that it is possible to train deep networks to 
extract such features even from unlabelled image or textual inputs. In essence, our system relies 
similarly upon the use of generative methods with which we can embed molecules in a latent space 
from which they can be (re)generated. We can regress such latent spaces on any properties of 
interest. Commonly these latent spaces are used to predict the properties, but here we go in the 
other direction, where we use in silico-generated mass spectra to ‘predict’ the molecules from which 
they came. The key point is that this is now possible because we can generate them by the million 
(taking several hours per million on a V100- (not A100-) containing computer, depending on the 
depth of fragmentation requested). Implicitly, what these deep learning methods do is a form of 
statistical pattern recognition that effectively learns the rules of language and what letters are likely 
to be associated with what other letters and in what way. In our case, the ability to generate 
molecules from mass spectral peaks, i.e. fragments or substructures, shows that the transformer 
implicitly learns the rules of valency and which fragments may properly be ‘bolted together’ and how. 
This approach is in strong contrast (and in the opposite direction) to the generation of experimental 
mass spectra that (i) require access to known standards, (ii) are highly instrument-dependent, (iii) 
are time-consuming and expensive to acquire, and (iv) are consequently in comparatively short 
supply. 

In the present work, we acquired a large number of molecules encoded as their SMILES strings, and 
used a gentler (and tuneable) modification of MetFrag 60,61 that we call FragGenie to provide 
candidate peak lists and paired molecules whence they came. Although we anticipate the strategy 
to be generic, since this was a proof of concept we confined ourselves to ES+ spectra, and molecules 
with MW less than 500 and with SMILES encodings of fewer than 100 characters’ length. Its ability 
to predict unseen molecules from FragGenie lists was exceptional, with more than 99% being seen 
(after the single-blind code was broken) as having a Tanimoto similarity (using a suitable fingerprint 
encoding) of more than 0.9. 
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Of course, the real ‘proof of the pudding’ is how our predictions perform when experimental mass 
spectra are the inputs. In this case, some of the mass spectra contained noise peaks that the 
FragGenie spectra did not, and these meant that some molecules could not be learned; clearly the 
test data must bear a reasonable similarity to the training data if the system is to be able to generalise 
effectively.  

Recently, Skinnider et al. 54 applied a recurrent neural network-based generative model to attack a 
similar problem to that studied here, although they used a billion candidate structures and confined 
themselves to a test domain of some 2000 psychoactive substances. Although the approaches are 
not directly comparable, relatively few of their initial structures were accurate, although assessing 
them against the ‘structural priors’ in the billion molecules raised this to some 50%. Importantly, they 
recognised the value of constraining their candidate structures to those that generated the correct 
molecular ion, and they also showed the value of generative models for this problem.  

Although we think that our strategy represents an excellent start, we should point out that this 
success did require what for an academic biology laboratory is a substantial computing resource – 
the DGX A100 8-GPU system we used allowed us to train a 400-million node network, which would 
in fact have represented a world record for the largest published deep learning network less than 
three years ago 72. (This said, the current record, writing in June 2021, is more than three and almost 
four orders of magnitude greater 68,72,94.) It is clear that the effectiveness of such networks will 
continue to increase, since how this potency scales with the size of the training dataset and of the 
network is broadly predictable 94-98). We also recognise that MassGenie can be improved much 
further. First, although we have trained our system on millions of molecules, what is learned does 
tend to scale with the amount of material on which it is trained 99. Indeed, there are already ~11 
billion molecules in the ZINC database, and (as has already been done by Reymond and colleagues 
41) we can generate as many more (in both type and number) as we like in silico; using these in 
further training, probably with larger encoding networks, will require more computer power, but this 
is evidently going to become available (as noted above, e.g. in the training of GPT-3 68 and others 
100). Secondly, the rules we have used in the in silico fragmentation are extremely crude and 
rudimentary; they can certainly bear refining or replacing with some of the more knowledge-based 
in silico fragmentation methods available in commercial software (which would have to have an API 
to admit the generation of large numbers of SMILES-spectrum pairs, as here). Thirdly, we have not 
used any knowledge of isotope patterns and the like, relying solely on exact masses to discriminate 
the likely atoms in a fragment. Fourthly, we have used SMILES strings as our molecular encoding; 
a move to graphical representations 101-106 is likely to prove beneficial. Fifthly, we have yet to apply 
equivalent strategies to negative ionisation spectra and to larger molecules, and to a far greater 
number of molecules containing P and S. Sixthly, by using canonical SMILES we ignore – and thus 
cannot discriminate – any stereoisomerism. Finally, we did not really explore at all the many flavours 
of deep network being developed to learn, store and transform information 107,108. Although this is a 
very fast-moving field, those generative methods based on transformers 70,109-111, as we use in the 
spectrum-to-structure problem for the first time here, do presently seem particularly promising. In 
line with the title of the original transformer paper 70, we might conclude by commenting that “accurate 
fragmentation is all you need”.   
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