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Abstract 

As the global elderly population grows, it is socioeconomically and medically critical to 

have diverse and effective means of mitigating the impact of aging on human health. Previous 

studies showed that adenovirus-associated virus (AAV) vector induced overexpression of certain 

proteins can suppress or reverse the effects of aging in animal models. Here, we sought to 

determine whether the high-capacity cytomegalovirus vector can be an effective and safe gene 

delivery method for two such-protective factors: telomerase reverse transcriptase (TERT) and 

follistatin (FST). We found that the mouse cytomegalovirus (MCMV) carrying exogenous TERT 

or FST (MCMVTERT or MCMVFST) extended median lifespan by 41.4% and 32.5%, respectively. 

This is the first report of CMV being used successfully as both an intranasal and injectable gene 

therapy system to extend longevity. Treatment significantly improved glucose tolerance, physical 

performance, and prevented loss of body mass and alopecia. Telomere shortening seen with 

aging was ameliorated by TERT, and mitochondrial structure deterioration was halted in both 

treatments. Intranasal and injectable preparations performed equally well in safely and efficiently 

delivering gene therapy to multiple organs, with long-lasting benefits and without carcinogenicity 

or unwanted side effects. Translating this research to humans could have significant benefits 

associated with increased health span.  

 

Introduction 

How to achieve healthy longevity has remained a challenging subject in biomedical 

science. It has been well established that aging is associated with a reduction in telomere repeat 

elements at the ends of chromosomes (1), which in part results from insufficient telomerase 

activity.  Importantly, the biological functions of the telomerase complex rely on telomerase 

reverse transcriptase (TERT) (2). TERT plays a major role in telomerase activation, and 

telomerase lengthens the telomere DNA (2, 3). Because telomerase supports cell proliferation 

and division by reducing the erosion of chromosomal ends (4) in mitotic cells, animals deficient in 
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TERT have shorter telomeres and shorter life spans(5, 6). Recent studies on animal models have 

shown the therapeutic efficacy of TERT in increasing healthy longevity and reversing the aging 

process (7-9). Telomere shortening also increases the risk of heart disease by a mechanism that 

remains unclear (10). The follistatin (FST) gene encodes a monomeric secretory protein that is 

expressed in nearly all mammalian tissues. In muscle cells, FST functions as a negative regulator 

of myostatin, a myogenesis inhibitory signal protein (11). FST overexpression is known to 

increase skeletal muscle mass in transgenic mice by 194-327%(12) by neutralizing the effects of 

various TGF-β ligands involved in muscle fiber break-down, including myostatin and activin 

inhibition complex (13). FST- knockout mice have smaller and fewer muscle fibers, and show 

retarded growth, skeletal defects, reduced body mass, and die in a few hours after birth, 

suggesting an important role of FST in skeletal muscle development (11, 14). These findings 

strongly implicate the therapeutic potential of FST in the treatment of muscular dystrophy and 

muscle loss caused by aging or microgravity. Thus, TERT and FST are among prime candidates 

for gene therapy aimed to improve healthy life spans.  

As more longevity-supporting factors are discovered, it is of interest to determine potential 

large capacity vectors for delivering multiple genes simultaneously. Unlike AAV, lentiviruses or 

other viral vectors used for gene delivery, cytomegaloviruses have a large genome size and 

unique ability to incorporate multiple genes. Cytomegaloviruses also do not integrate their DNA 

into the host genome during the infection cycle, thus mitigating the risk of insertional mutagenesis. 

They also do not elicit symptomatic immune reactions in most healthy hosts (15). Notably, the 

CMV vector does not invoke genome instability and has not been identified to cause malignancies 

(16, 17). Human CMV (HCMV) has been proven a safe delivery vector for expressing therapeutic 

proteins in human clinical trials (16). MCMV and HCMV are similar in many aspects, including 

viral pathogenesis, homology, viral protein function, viral gene expression and viral replication. 

Using mouse cytomegalovirus (MCMV) as a viral vector, we examined the therapeutic potential 

of TERT and FST gene therapy to offset biological aging in a mouse model, and demonstrated 
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significant lifespan increase, as well as positive metabolic and physical performance effects. 

Further studies may elucidate the full CMV cargo capacity and effectiveness. Translational studies 

are required to determine whether our findings can be replicated in human subjects. 

Materials and methods 

Construction of MCMV with a luciferase marker. A firefly luciferase expression cassette was 

inserted into MCMV genome by replacing a nonessential gene ie2 using the BACmid Sm3fr 

(Smith strain) (18). The seamless BAC system using galK as a selection marker (19, 20) was 

utilized to construct the luciferase expressing MCMVLuc. First, the ie2 gene was replaced with 

the galK gene by PCR using primers Fw: 

ccccctccggggcgagtcttttacaggctacaacgactgtccgatgaataCCTGTTGACAATTAATCATCGGCA and 

Rv: catcccgggagggccagcgtagtctccgttgctgggttcggccgagggtTCAGCACTGTCCTGCTCCTT; then, 

the galK gene was replaced by a luciferase expression cassette which was amplified by PCR 

using primers Fw: 

ccccctccggggcgagtcttttacaggctacaacgactgtccgatgaataGATATACGCGTTGACATTGA and Rv: 

catcccgggagggccagcgtagtctccgttgctgggttcggccgagggatTCAGACAATGCGATGCAATTTC. The 

BAC DNA was transfected into NIH/3T3 cells to generate recombinant virus. The resultant 

MCMV is named as MCMVLuc. (referred to as WT in this study) and its growth kinetics and 

luciferase expression were analyzed using standard methods (21).  Replication was observed 

and measured in live animals using the In Vivo Imaging System (IVIS). 

Construction and characterization of recombinant MCMV vectors. A BAC engineering 

method was used to generate recombinant MCMVTERT and MCMVFST containing mouse 

telomerase reverse transcriptase (TERT) and mouse follistatin (FST) expression cassettes, 

respectively, as described previously (22). The TERT and FST expression cassettes containing 

a FLAG-tag at the C-terminus were cloned from the plasmids, MR226892 and MR225488 

(Origene). The TERT and FST expression cassettes were inserted between the M106 and M107 

locus of MCMVLuc (WT) genome without any deletion to generate MCMVTERT and MCMVFST 
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viruses. Expression was controlled by the HCMV major IE promoter. Virus preparation and growth 

curve analysis were performed as described previously (23, 24). For the western blot analysis, 

NIH/3T3 cells were infected with MCMVTERT and MCMVFST and western blot was performed using 

mouse anti-FLAG antibody. 

Measurement of telomere length. The heart, brain, liver, kidney, lung, and muscle were 

harvested from MCMVTERT, MCMVFST, WT, and untreated mice at the age of 24 months. An 8-

month-old mouse was used as a control. The tissues were homogenized, and genomic DNA was 

isolated using Sigma genomic DNA isolation kit (GeneElute genomic DNA isolation kit). The real-

time PCR was performed in the CFX96 real-time PCR system (Bio-Rad), as described previously 

(25, 26), using specific primers for telomere, forward, and reverse telomeric primers are 5′CGG 

TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT 3′and 5′GGC TTG CCT TAC 

CCT TAC CCT TAC CCT TAC CCT TAC CCT 3’ respectively (25). A single copy conserved gene, 

the acidic ribosomal phosphoprotein (36B4) gene, was used as an internal control. Forward and 

reverse primers for 36B4 were 5’ACT GGT CTA GGA CCCGAG AAG 3’and 5′TCA ATG 

GTG CCT CTG GAG ATT 3’respectively (25). The relative telomere length was calculated byΔ

CT value as described previously (26). 

Measurement of TERT and FST expression in different tissue. Eleven-month-old C57BL/6J 

female mice (3 per group) were treated with WT, MCMVTERT and MCMVFST. The heart, brain, lung, 

liver, muscle, and kidneys were isolated 6 days post-inoculation. RNA was extracted using 

RNeasy® Mini Kit (Qiagen). Approximately, 1.0µg of total RNA was used to prepare cDNA using 

Titanium RT-PCR kit (TaKaRa). The real-time PCR was performed on the cDNA using mouse 

TERT and FST primers as described previously (27, 28). β-actin was used as an internal control 

(29).  

Determination of TERT and FST protein levels in the sera. Preliminary TERT protein 

expression kinetics was performed using mock, WT and MCMVTERT treated 8-month-old 
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C57BL/6J mice via both IN and IP routes. Blood samples were collected at day 0, 3, 5, 7, 9, 12, 

15, 20, 25 and 30 post inoculation, and sera were prepared using ELISA kits MBS1601022 and 

MBS1996306 respectively (MyBioSource). For the longevity study, blood was collected from 24-

month-old treated mice from each group, and sera were analyzed 4 days post treatment to 

determine the level of mouse TERT and FST in blood sera.  

Bodyweight and body hair analyses. The bodyweights and body hair loss of all mice in each 

group were measured and recorded twice a month until mice died. Representative photographs 

of coat and fur characteristics were taken during the 6th months of treatment. 

Activity test and beam coordination test. Three 24-month-old mice from each group were used 

in these tests. For the beaker escape test (24, 30), mice were placed individually in a 1L glass 

beaker and the number of times each mouse tried to climb on the wall of the beaker was recorded. 

For the beam coordination test (31), mice were trained to traverse a 4-foot-long and 1-cm-wide 

beam for two consecutive days, then tested on the third day. The time required by each mouse 

to cross the beam was measured.  

Glucose tolerance and glycosylated hemoglobin A1c (HbA1c) test. Three 22-month-old mice 

from each group were subjected for a glucose tolerance test as described previously (32). Briefly, 

the mice were starved for 15 hours, then injected intraperitoneally with 50mg glucose. Blood 

samples were collected at 0, 15, 30, 60, 120, 180, 240, 300, 360, 420 and 480 minutes, and the 

blood glucose levels were immediately determined using OneTouch Ultra glucose meter. For the 

measurement of HbA1c, 100µl blood samples were collected from three 23-month-old mice in 

each group. The blood samples were allowed to clot at RT, and sera were prepared. The sera 

were analyzed by the ELISA kit (80310, Crystal Chem).  

Transmission electron microscopy (TEM). Two mice from each treated group (one from IP, 

one from IN) were sacrificed at 24 months.  The heart and skeletal muscle were isolated for EM 

analysis. The tissue samples were fixed in EM buffer (Electron Microscopic Sciences). TEM and 

mitochondrial analysis were performed as described previously (33).  
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Statistical analyses. The data was analyzed by unpaired t-test using R environment (version 

3.4.5) with ggplot software and a p-value <0.05 was considered significant. The survival curve of 

mice in each group was determined by Kaplan-Meier survival curve. 

 

Results 

Construction of MCMVTERT and MCMVFST 

We developed an MCMV vector that expresses luciferase as a reporter gene (MCMVLuc) 

to easily monitor MCMV infection and cellular replication in cell culture and in a mouse model. 

MCMVLuc replicated as well as its parental virus, and we used it throughout this study as empty 

viral vector control or wild-type MCMV virus inoculation (WT) (21). 

We constructed recombinant MCMV vectors expressing FLAG-tagged genes TERT and 

FST genes (MCMVTERT and MCMVFST) and demonstrated  that they replicated as productively as 

MCMVLuc (WT) in mouse fibroblast cells  and in vivo (Fig. 1A-D). 

TERT protein expression delivered Intraperitoneally (IP) or intranasally (IN) peaked at 7 

days, and then gradually decreased, reaching the basal level at around day 25 (Fig. 1E), 

confirming the vector’s ability to deliver exogenous proteins in vivo. This was further confirmed by 

the analysis of TERT and FST mRNAs and proteins in blood and tissues harvested from treated 

animals, as described below. 

Significant lifespan extension 

Seven groups of eight aged female C57BL/6J mice received mock (IP), WT-IN, WT-IP, 

MCMVTERT-IN, MCMVTERT-IP, MCMVFST-IN, and MCMVFST -IP, respectively, for six consecutive 

months, at doses of 1x105 PFU. Treatment started in 18-month-old mice, equivalent to 

approximately 56-years-old in humans (Fig. 2B) (34). One mouse per group was sacrificed at 24 

months for tissue analyses, while the remaining subjects were monitored for physical and 

physiological changes until their natural death.  
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Mock and WT controls died at 26.7, 26.5, and 26.4 months (median), consistent with 

previous reports on lifespan of female C57BL/6J mice (35, 36). The median age at death in 

MCMVFST treated groups was 35.1 months (32.5% increase), while MCMVTERT treated mice lived 

37.5 months (41.4% increase) (Fig. 2A and B, Supplementary Table 1S). This result exceeds the 

longevity achieved with a single dose of AVV9-TERT in the same animal model (13-24% when 

delivered in a single dose at 2 and 1 year old mice, respectively) (7). Interestingly, CMV therapy 

was equally effective regardless of route of inoculation, although the mechanism of dissemination 

differs, suggesting that expression of the therapeutic load is not substantially affected by the 

vector’s interaction with the immune system (37) (38).  

Systemic TERT and FST expression 

The amounts of TERT (Fig. 2C) or FST (Fig. 2D) proteins in blood increased daily in the 

first four days post-inoculation, while endogenous protein levels remained largely unchanged in 

the control groups. The levels of mRNAs of TERT and FST in brain, heart, kidney, liver, lung, and 

skeletal muscle from MCMVTERT or MCMVFST mice were 1.9 to 7.8 fold greater than WT treated 

controls in all tested organs (Fig. 2E, Supplementary Materials). The variations of the mRNA 

levels of TERT or FST in different tissues may be due to the different tropism of CMV and the 

post-transcriptional modification of TERT and FST. The relative telomere length in heart, liver, 

kidney, brain, lung, and muscle in 24-month-old MCMVTERT treated mice was 6-fold greater than 

in control mice of the same age, and only ~8% shorter than an 8-month-old control (Fig. 2F) (25, 

26, 39). (40). Antemortem daily observations did not reveal defects such as paralysis, body 

dysfunctions, or blindness. Visual histological analyses (not shown) revealed no malignancy or 

gross pathologies of the brain, liver, kidney, heart, muscle, bone, and lungs, in concordance with 

previous studies (9). 

The relative telomere length in heart, liver, kidney, brain, lung, and muscle in 24-month-

old MCMVTERT treated mice was 6-fold longer than in control mice of the same age and only ~8% 

shorter than an 8-month-old control (Fig. 2F) (25, 26, 39). (40). Antemortem daily observations 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.26.449305doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.26.449305
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

did not reveal defects such as paralysis, body dysfunctions, or blindness. Visual histological 

analyses (not shown) revealed no malignancy or gross pathologies of the brain, liver, kidney, 

heart, muscle, bone, and lungs, in concordance with previous studies (9). 

Hair and weight loss prevention 

Bodyweight peaked at 23-months for all treatment groups except for MCMVFST mice, 

whose weights continued to increase until 27-months and were ~33% heavier than the age-

matched mock and WT controls. MCMVTERT treatment also showed less weight loss over time 

compared to the mock and WT groups (Fig. 3B). Administration of MCMVTERT and MCMVFST was 

interrupted after mice reached 29 months of age when all mice in the control groups died (Fig. 

3B, red arrow) but was resumed at 32 months (Fig. 3B, green arrow). When the treatment was 

stopped, the weights of MCMVTERT and MCMVFST groups declined, but the rate of weight loss 

decreased immediately upon therapy re-initiation. Future studies would be of interest to determine 

whether an uninterrupted monthly administration has a different outcome in longevity extension. 

Improved activity and motor coordination 

MCMVTERT treated animals were ~40% more active than control mice in attempts to 

escape in a beaker test (30). Although MCMVFST treated mice were bulkier and could not 

outperform the control mice in climbing attempts, they paced faster on the bottom of the beaker 

(Fig. 3C). Additionally, mice treated with MCMVTERT or MCMVFST completed a beam-crossing 

coordination test (31) in ~7.5s and 12.5s, respectively, as opposed to the controls (~43s), 

demonstrating superior coordination (Fig. 3D).  

Increased glucose tolerance 

Glucose tolerance is known to decrease with aging. Here, we used a glucose tolerance 

test in fasted mice from each treatment group (Fig. 3E) (41). The average peak glucose 

concentration was ~33% lower for TERT and ~28% lower for FST treatments than for controls. 

Moreover, blood sugar levels reached baseline one hour post-administration in MCMVTERT and 

MCMVFST treated mice, in contrast to ~7 hours for control mice. In addition, the level of glycated 
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hemoglobin (A1C) in treated mice was 4.5% and 4.7%, versus mock (7.9%) or WT (8.8%) (Fig. 

3F). TERT and FST treatments were equally effective in blood glucose processing. 

Mitochondrial integrity in muscle 

Mitochondria provide the essential metabolic support for an organism, and therefore play 

a central role in both lifespan determination and cardiovascular aging (42, 43). Here, we sacrificed 

24-month-old mice from Mock, WT, MCMVTERT and MCMVFST treated groups, and sectioned heart 

and skeletal muscle tissues in order to examine subcellular structures of cardiomyocytes and 

skeletal muscle cells by electron microscopy. The number of mitochondria with connected cristae 

and mitochondrial area in the aged cardiomyocyte (Fig. 4A), as well as within cells of skeletal 

muscle (Fig. 4B) of MCMVTERT or MCMVFST treated mice were comparable to 6-month-old mouse 

controls, and substantially better than in age-matched control mouse tissues. These results 

suggest that MCMVTERT and MCMVFST preserved mitochondrial structure and sustained 

mitochondrial biogenesis. 

DISCUSSION 

Aging is often accompanied by the development of chronic conditions. The socioeconomic 

burden imposed by the diseases of aging could be lessened by maintaining a healthy aged 

population. We explored here a novel approach to achieve healthy aging, and show for the first 

time that CMV can be used as monthly inhaled gene therapy for delivering the exogenous genes 

TERT or FST safely and effectively. Interestingly, CMV therapy was equally effective regardless 

of route of inoculation, despite the fact that the mechanism of dissemination differs, which 

suggests that expression of the therapeutic load might not be substantially affected by the vector’s 

interaction with the immune system. Our results are congruent with other studies, which 

demonstrated that the olfactory route is a preferred natural route of CMV entry in murine models 

(37). Because herpesviruses are ubiquitous and acquired early, it has been proposed that a 

mutualistic relationship has developed between the co-evolving host and virus, where the latter 

even offers some immunomodulatory and homeostatic advantages to the hosts when in 
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equilibrium (44). CMV’s large genome accommodates nearly 75% dispensable genes, many 

involved in immune evasion mechanisms that protect it from aggressive viral clearance responses 

regardless of route of entry. Olfactory infection spreads through dendritic cells, which migrate to 

lymph nodes and then extravasate into the bloodstream, whereas IP inoculation is expected to 

engage a wider range of myeloid progenitor cells, which in turn dictates viral dissemination and 

immune response outcomes (38).  

FST treated mice showed an increase in body mass, as expected based on previous 

publications (45). We confirmed visually that skeletal muscle mass was indeed larger than that of 

controls at necropsy (data not shown). The increased robustness may explain the improved motor 

control in executing the beam test. However, it was unexpected that CMV-based FST gene 

therapy alone would increase longevity to the extent observed. Although it is known that FST has 

a concentration-dependent inhibiting effect on the myostatin-driven rate of muscle breakdown, 

which contributes to increasing frailty in aging individuals, the overall effect of increasing longevity 

warrants further inquiry. We anticipate that sarcopenia, muscular dystrophy, or even special 

circumstances causing muscle atrophy, such as low gravity exposure during space travel (46)., 

could be mitigated with a CMV-based FST gene delivery method.   

Another surprising finding was the equivalent effectiveness of both treatment regimens in 

blood glucose control, because the cellular mechanisms activated by TERT and FST which 

ultimately result in glucose control are different. FST has a systemic role in upregulating factors 

controlling mitochondrial biogenesis, energy metabolism, cellular respiration and thermogenesis, 

inducing browning of white adipose tissue (47). The FST interference with the TGF-beta signaling 

pathway resulted in the efficient regulation of glucose homeostasis we observed. On the other 

hand, TERT seems to act at the level of pancreatic beta cells by upregulating insulin secretion 

rather than effecting glucose uptake (48). Nonetheless, telomerase is known to interact with 

various cellular inflammatory pathways to reduce oxidative stress, and has been detected in 

mitochondria, where it protects mitochondria from oxidative damage, which explains the systemic 
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benefits and increased longevity (49). Furthermore, FST and TERT have shown positive effects 

in neurological diseases, and the fact that our treatment showed that brain FST and TERT levels 

increase significantly over baseline supports its use for treatment of these conditions (50, 51). It 

would be of great interest to understand the compounded effect the two therapies might have 

when delivered simultaneously.  

Finally, our therapeutic regimen appeared to require monthly administration in order to 

have continuous effects, which may be advantageous when treatment indications do not require 

permanent expression of therapeutic load, but rather episodic or during specific circumstances, 

to achieve a reduced risk of long-term consequences in case of adverse reactions, should any 

occur.  

In summary, our study justifies further efforts to investigate the use of CMV TERT and 

FST vectors against aging-related chronic inflammatory conditions, type 2 diabetes, sarcopenia, 

dementia, lung, kidney, and heart diseases responsible for decreased quality of life and premature 

death.  
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Figures 

  

 

 

Fig. 1. Construction and verification of MCMVTERT and MCMVFST. (A) TERT-3’ FST-3’ FLAG 

constructs. (B) Expression of TERT (131 kDa) or FST (41 kDa) proteins in MCMVTERT or MCMVFST 

treated NIH/3T3 cells. (C) Plaque formation unit (PFU) assay growth curve of MCMVLUC (WT), 

MCMVTERT, and MCMVFST in NIH/3T3. (D) Luciferase signal in vivo 3 days after IP inoculations 

with mock, WT, MCMVTERT, and MCMVFST. (E) Detection of TERT by ELISA in serum of MCMVTERT 

treated 8-month-old mice over one month. Each data point represents the average value of TERT 

in three mice.. Error bars represent the standard deviations. 
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Fig. 2. MCMVTERT and MCMVFST significantly extend lifespan. (A) Survivorship curve 

comparison, 8 mice per group. (B) C57BL/6J mice and human age equivalence at the start of 

experimental treatment (black arrow; adapted from Fox JG et al. (34)). (C) TERT and (D) FST 

proteins by ELISA in blood cell extracts from 24-month-old mice. . Error bars represent the 

standard deviations. (E) The fold increase of TERT and FST mRNA levels in organs of WT, 

MCMVTERT, and MCMVFST treated mice by qPCR. (F) Relative telomere length in organs of 24-

month-old mice vs an 8-month-old control. 36B4 gene was used for normalization.  
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Fig. 3. MCMVTERT and MCMVFST dramatically improved physical and physiological 

conditions. (A) Hair and body appearance after eight months of treatment. (B) Bi-weekly 

bodyweight averages of surviving mice in each group. Treatment interruption (red arrow) and 

reinitiation (green arrow). (C) Average number of climbing attempts in 3 minutes. (D) Beam 

crossing average execution time. (E) Glucose tolerance test. (F) HbA1c levels in Mock, WT, 

MCMVTERT, and MCMVFST treated mice. Error bars represent the standard deviations.  
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Fig. 4. MCMVTERT and MCMVFST prevent mitochondrial deterioration in mice. (A) and (B) 

Representative EM images from the heart and skeletal muscle of untreated young mice and 24-

month-old mice treated with Mock, WT, MCMVTERT, and MCMVFST (IN groups are shown, scale 

bar=500nm). Quantitative analyses of the number of mitochondria with connected cristae and 

mitochondria area are on the right of A and B. *** P<0.001. 
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Supplementary table 1 

Groups Virus Number of 

Mice 

Route of 

administration 

Last mice 

died 

(Weeks) 

Mice died (months) Median 

age 

(Months) 

Group 1 Mock 8 IP 29.5 24.0, 25.0, 26.2, 26.4, 

27.0, 27.2, 28.1, 29.5 

26.7 

Group 2 WT 8 IP 28.1 23.5, 24.9, 26.1, 26.2, 

26.7, 27.8, 28.0, 28.1  

26.5 

Group 3 WT 8 IN 127.1 23.5, 24.6, 26.1, 26.2, 

26.6, 26.8, 28.1, 29.5 

26.4 

Group 4 MCMVTERT 8 IP 176.9 34.1. 34.3, 36.3, 37.2, 

38.3, 38.4, 39.1, 41.2 

37.8 

Group 5 MCMVTERT 8 IN 174.9 34.3, 35.2, 35.7, 36.4, 

38.1, 38.4, 38.7, 40.5 

37.3 

Group 6 MCMVFST 8 IP 161.9 31.5, 32.5,33.8, 34.0, 

35.9, 36.7, 36.8, 37.6 

35.0 

Group 7 MCMVFST 8 IN 164.3 31.2, 32.1, 33.9, 34.9, 

35.7, 36.9, 37.5, 38.0 

35.3 
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