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ABSTRACT

We are developing a system for long term Semi-Automated Rehabilitation At the Home
(SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-
human methodology used by the SARAH system for automated assessment of upper extremity
stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting
stroke survivor’s movements and generating training task performance assessment scores during
rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with
data-driven techniques. The expert knowledge is more observable in the higher layers of the
hierarchy (task and segment) and therefore more accessible to algorithms incorporating high
level constraints relating to activity structure (i.e. type and order of segments per task). We utilize
an HMM and a Decision Tree model to connect these high level priors to data driven analysis.
The lower layers (RGB images and raw kinematics) need to be addressed primarily through
data driven techniques. We use a transformer based architecture operating on low-level action
features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional
Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these
complimentary algorithms effectively, thus encoding the information from different layers of the
movement hierarchy. Through this combination, we produce a robust segmentation and task
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assessment results on noisy, variable and limited data, which is characteristic of low cost video
capture of rehabilitation at the home. Our proposed approach achieves 85% accuracy in per-
frame labeling, 99% accuracy in segment classification and 93% accuracy in task completion
assessment. Although the methodology proposed in this paper applies to upper extremity
rehabilitation using the SARAH system, it can potentially be used, with minor alterations, to
assist automation in many other movement rehabilitation contexts (i.e. lower extremity training for
neurological accidents).

Keywords: Stroke Rehabilitation, Automation, Cyber-Human Intelligence, HMM, MSTCN++, Transformer, Segmentation, Movement

Assessment

1 INTRODUCTION
As the US and global populations age, we observe an increasing need for effective and accessible
rehabilitation services for survivable debilitating illnesses and injuries, such as stroke and degenerative
arthritis (Haghi M, 2017; Pantelopoulos and Bourbakis, 2010). Effective rehabilitation requires intensive
training and the ability to adapt the training program based on patient progress and therapeutic judgment
(Kleim and Jones, 2008). Intensive and adaptive rehabilitation is challenging to administer in an accessible
and affordable way; high intensity therapy necessitates frequent trips to the clinic (usually supported by
a caregiver), and significant one-on-one time with rehabilitation experts (Lang et al., 2013). Adaptation
requires a standardized, evidence-based approach, coordinated amongst many specialists (Chen et al.,
2011b; Duff et al., 2008; Lehrer et al., 2011). Active participation by the patient is also critical for improving
self-efficacy and program adherence (Picha and Howell, 2017), although, without significant dedicated
effort from a caregiver, in many cases, active participation and adherence are difficult to achieve (Donelan
et al., 2002).

Telemedicine and telehealth are gaining significance as viable approaches for delivering health and
wellness at the home and in the community at scale (Clinic, 2015). Applying existing telemedicine
approaches to physical rehabilitation in the home is not yet possible, owing to the challenges of automating
the observation, assessment, and therapy adaptation process used by expert therapists. For upper extremity
rehabilitation for stroke survivors, which is the focus of this paper, more than 30 low-level movement
features need to be tracked as the patient performs functional tasks in order to precisely and quantitatively
characterize movement impairment (Chen et al., 2011b). High precision sensing and tracking systems
can work well in spacious and supervised clinical environments, but are currently not yet appropriate for
a typical home setting. The use of marker-based tracking systems or complex exoskeletons are simply
too expensive, challenging to use, and obtrusive in the home (Deaver et al., 2019; Hanley et al., 2018;
Reinkensmeyer et al., 2017).

Banks of video camera arrays can seem intrusive in the home and lead patients and/or their families to feel
as if they are under surveillance (Duff et al., 2008). More promisingly, networks of wearable technologies
(e.g. IMUs, smart skins, pressure sensors) can provide useful tracking data for overall movement and
detailed features, but they can also be hard to put on correctly, irritating to wear for long periods of
time, and sometimes require a perceived excessive number of wearables to capture all movement features
correctly (Freedson et al., 1998). A final concern with respect to the patient’s home environment concerns
the physical footprint of any technology introduced into their home. Disturbing the home setting can be
understood negatively, which has the knock-on effect of reducing adoption by stroke survivors and/or other
family members in the home (Axelrod et al., 2009).
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That said, accurate, low-cost capture of movement data is only part of the challenge. Automation
of assessment is also difficult because the processes used by therapists are largely tacit and not well
standardized (Levin et al., 2008). Clinicians are trained to use validated clinical measures (e.g. Fugl-Meyer,
ARAT, and WMFT), utilizing a small range of quantitative scales (0-2, 0-3, and 0-5 respectively) for
assessing performance of functional tasks that map to activities of daily life (Rabadi and Rabadi, 2006;
Wolf et al., 2001). These scales provide standardized rubrics for realizing this assessment and use a uniform
activity space with exact measurements for each subcomponent of the space to assist the standardized
performance of the tasks. The high-level rating of task performance provided by experts through these
measures is difficult to map directly to specific aspects of movement and related detailed kinematics
extracted through computational means. Even expert clinicians cannot simultaneously observe all aspects
of upper extremity pathological movement or compare such observations to a standardized value. There is
considerable evidence showing that individual therapists direct their attention towards different elements
and assess them differently when evaluating performance in situ and real-time, or when later rating videos
of performance (Chen et al., 2011a; Cirstea and Levin, 2007; Nordin et al., 2014; Wolf et al., 2006). The
relation of movement quality to function is therefore difficult to ascertain in a standardized quantitative
manner (Levin et al., 2008; Chen et al., 2011b). This results in approaches for structuring and customizing
therapy that are partly based on subjective experience rather than a standardized quantifiable framework
(Cirstea and Levin, 2007; Levin et al., 2008). In turn, this results in a lack of large-scale data on the
structuring and customization of adaptive therapy, and on the effects of customization and adaptation
choices on functionality in everyday life (Reinkensmeyer et al., 2016). Therefore, full scale automation of
the real-time functions of the therapist at the home is not yet feasible.

In light of these limitations, we are developing the novel Semi-Automated Rehabilitation At the Home
(SARAH) system. The SARAH system comprises two video cameras, a tablet computer, a flexible activity
mat, and eight custom-designed 3D printed objects, as shown in Fig. 2 below. The objects are designed
to support a broad range of perceived affordances (Norman, 2002), meaning they can be gripped, moved,
and manipulated in a wide variety of ways (Kelliher et al., 2019). Each object is unique in terms of size
and color to assist identification of objects by patients, and to enable easier identification and tracking
using computer vision methods. The flexible activity mat is screen-printed with high-contrast guidance
lines indicating to the patient the four primary activity spaces (near and distal ipsilateral and contralateral)
through increasingly colored lines. In addition, four rows of circles on the mat assist the computer vision
system with boundary detection between activity space for consistently analyzing patient activities.

The system can be easily installed on a regular kitchen or living room Table. The two cameras initiate
and record only during training, and they are activated and controlled by the patient using a custom-
designed application on the tablet computer. The system aims to integrate expert knowledge with data
driven algorithms to realize coarse real-time automated assessment of movement of stroke survivors during
therapy at the home (Kelliher et al., 2020). This assessment can drive high-level feedback on results and
performance after execution of each training task, to assist patients with self assessment, and to help them
plan their next attempt(s) of the training task. Daily summaries of the interactive training will be transmitted
to remote therapists to assess overall progress (within and across sessions), adjust the therapy structure, and
provide text or audio based feedback and directions to the patient via the tablet. Continuous and effective
training monitoring accompanied by feedback on the patient’s immediate performance, combined with
expert customization of therapy to their needs and learning styles, increases the likelihood of patients
adopting home-based rehabilitation systems (Picha and Howell, 2017).
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This paper focuses on our hybrid knowledge-based data-driven approach to automated assessment of
human movement in the home. Our approach leverages expert rubrics for standardized rating of overall
task performance to inform automated rating of movement performance based on low cost, limited, noisy,
and variable kinematic data. The assessment process and outcomes need to be compatible with therapist
assessment approaches so as to assist remote therapists in using summaries of the computational assessment
when remotely monitoring progress and structuring therapy at the home.

Our approach has two components: i) making the expert raters process as observable as possible; and ii)
leveraging the expert rating process to inform the structuring and improved performance of computational
algorithms. In previous publications, we have presented in detail our research and development activities
for the first component (Rikakis et al., 2018; Clark and Kelliher, 2021; Kelliher et al., 2020). Inspired
by clinical measures for rating rehabilitation movement, we developed the SARAH system to utilize a
standardized activity space with eight well defined sub-spaces that are drawn as bounding boxes on the
video capture of therapy (see Fig. 6). We designed the SARAH training objects to facilitate generalized
mapping of training tasks to ADLs for the patients, while also facilitating tracking through low-cost video
cameras (Kelliher et al., 2019). We used participatory design processes and custom-designed interactive
video rating tools to help expert therapists reveal and reflect on their rating process and internalized (tacit)
rating schemas (Kelliher et al., 2020).

In order to manage the complexity of real-time movement observation and to make generalizable
observations across different therapy tasks, therapists tend to segment tasks into a few segments that
can be combined in different sequences to generate targeted therapy tasks. Even though most therapists
use intuitive segmentation of movement for observation and assessment, the segment vocabulary is not
standardized. We worked with expert therapists to standardize the segment vocabulary into a state machine
that can produce all 15 tasks of the SARAH system (Kelliher et al., 2020). The segments are: Initiation +
Progression + Termination (IPT), Manipulate and Transport (MTR), Complex Manipulation and Transport
(CMTR), and Release and Return (RR). As an example, a drinking related task can be described by the
following codification: subject reaches out and grasps a cone object (IPT) and brings it to their mouth
(MTR), then returns the object to the original position (MTR), and releases the object and returns the hand
to the rest position (RR).

To make the assessment of segments in real-time manageable, the therapist significantly limits the features
observed per segment. This limitation is achieved by using their own experience to develop a probabilistic
filtering of irrelevant low-level features for a segment (i.e. digit positioning is likely not that relevant to
movement initiation), and probabilistic composite observation of relevant features (i.e. a strategy for quick
impressions of shoulder and torso compensation during movement initiation). This process is not well
standardized as the filtering and compositing activities are based on individual experience and training. We
further worked with expert therapists to define a consensus-limited set of composite movement features
that are important when assessing the performance of each segment in our model Kelliher et al. (2020). For
example, the resulting rubric identifies four key features to assess during the Complex Manipulation and
Transport stage: i) appropriate initial finger positioning, ii) appropriate finger motion after positioning, iii)
appropriate limb motion following finger positioning, and iv) limb trajectory with appropriate accuracy. The
rubric also establishes operational definitions of terms used to evaluate movement quality and inform rating.
For example, the word “appropriate” used in the above instructions is defined as “the range, direction, and
timing of the movement component for the task compared to that expected for the less impaired upper
extremity.” Although therapists do not explicitly track and assess raw kinematic features, in previous
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work we proposed computational approaches connecting therapist’s assessment of composite features to
computationally tracked raw kinematics (Venkataraman et al., 2014; Chen et al., 2011b).

2 MATERIALS AND METHODS
2.1 Analysis Framework

Based on the background discussed above, we propose a cyber-human movement assessment hierarchy
for upper extremity rehabilitation. The five layers of the hierarchy (listed top to bottom) are: overall task
rating, segment rating, composite feature assessment, raw kinematics, and raw RGB images (see also Fig.
1). As we move down the hierarchy, the expert knowledge becomes less observable and less standardized.
Computational knowledge works in reverse, with more confidence in the lower levels (raw kinematics
or derivatives) that gradually diminishes moving up in the hierarchy towards complex decision-making
relying on expert experience (e.g., overall task rating). The proposed hierarchy aims to reveal the grammar
(or compositional structure) of therapy, from the signal level to the meaningful activity level (training
tasks). Knowing the composition rules of a complex human activity, whether that is language, sport, or
a board game like chess, facilitates the meaningful computational analysis of the activity in a manner
that is comprehended and leveraged by expert trainers and trainees Simon (1981); Venkataraman et al.
(2016). Although the hierarchy proposed in this paper is established for upper extremity rehabilitation
using the SARAH system, it can potentially be used, with minor alterations, to assist automation in many
other movement rehabilitation contexts (i.e. lower extremity training for neurological accidents). Our
proposed methodology can also transfer to other complex human activity contexts (i.e. training firefighters
or athletes).

In the following sections, we show how we leverage the observable expert knowledge of the higher
levels of the hierarchy to improve the performance of computational algorithms using raw kinematics and
visual features for automated task segmentation, segment classification, and task performance assessment
at the home. As the patient selects the task they want to attempt using the tablet computer, the system
knows the desired sequence of segments for satisfactory performance of the task. The expected topology
of each segment of each task within our standardized activity space is also specified. We can thus utilize
a feature-matching approach to measure the ‘distance’ between the observed sequence of segments by
the system and the expected sequence of states for the performed task to determine whether the task was
successfully performed.

The state-time characteristics of our hierarchy (i.e segment state machine) motivates our use of automated
segmentation though a hidden Markov model (HMM). We also leverage recent advances in machine-
learning models for processing video data. Specifically, we tested the use of transformers (Vaswani et al.,
2017) operating on low-level action features (tracking of individual body joints and object tracking). We
also tested machine learning algorithms that operate on raw RGB images (MS-TCN) (Farha and Gall, 2019).
We chose the MS-TCN algorithm because its classifiers are trained on recognizing human activity based on
kinetics and thus can synergize well with automated assessment of task performance in rehabilitation. All
three types of algorithms required slightly different features for achieving best performance in connecting
the raw data layers to the segment layer (and achieving automated segmentation). In addition, the features
used by the algorithms were different from the composite features used by the human experts. This
established the segments layer as the key integration layer for different assessment approaches, and
reinforced the important role of a generalizable segment vocabulary proposed by expert therapists. Each
approach showed different strengths and weaknesses, therefore we utilized an ensemble approach across
the algorithms to finalize the automated segmentation and segment classification decisions. Automated
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assessment of therapy at the home using the SARAH system will need to be realized through noisy
and variable data because of the low cost infrastructure, the varying environments of installation in the
home, and the significant variation of movement impairment of stroke survivors (Rikakis et al., 2018).
Furthermore, at the early stages of implementation of the SARAH system the data sets will be limited. To
explore the resilience of our methodology we recreated these conditions in a clinic and gathered a limited
data set for testing the algorithms. As we show in detail in the next section, even though the individual data
layers of our cyber-human hierarchy are noisy, the composite automated decisions (successful performance
of individual tasks and sequence of tasks assigned) produced across layers are robust. In future work, we
will explore the expanded use of this approach for detailed automated assessment of elements of movement
quality and the relation of movement quality to functionality.

2.2 Data Collection
We used an earlier version of the SARAH system (Kelliher et al., 2017) to record videos of nine stroke

survivors (seven men and two women) performing the first 12 SARAH tasks. The nine stroke survivors had
different levels of impairment ranging from mild/moderate (Fugl-Meyer score between 30-55) to moderate
impairment (Fugl-Meyer score greater than 55) and had different types of movement challenges. Thus our
overall dataset represents good range of conditions and movement variability. The participants in the study
were asked to attempt each of the first 12 SARAH tasks, repeating each task four times if possible. The
majority of patients could not perform the final two of the 12 SARAH tasks since the last two are the most
difficult. For this reason, in our analysis below, we only use 450 videos of the individual performances of
the first ten tasks by the nine patients.

The movement of the patients in this study was recorded using one consumer grade video camera (we
used the side view camera of the SARAH system to capture the profile of the body and impaired arm as
this is the preferred viewing point of the therapist). The camera placement instructions were relatively
high-level to ensure that they could be implemented quickly and without interfering with the patient’s
therapy session. The research assistant collecting the videos was asked to place the camera on the side of the
impaired limb of the patient. The camera had to be far enough so as to not interfere with the performance
of the tasks and be able to capture the full upper body of the patient. No specific distance, height or viewing
angle were given for camera placement. As expected, this process provided minimal interference and could
be realized very quickly but produced high variability in the captured videos in terms of location of the
patient, activity space in the image, lighting, camera height, and viewing angle.

3 AUTOMATED SEGMENTATION AND SEGMENT CLASSIFICATION
Our segmentation and classification framework is illustrated in Fig. 3. It has three sets of blocks denoted
with different colors in the figure. The first set of blocks are fine-tuned or pre-trained models that we
implement as feature extractor. The second set of blocks include different algorithms such as HMM,
Transformer, MSTCN++, and RBBDT. The third set of blocks are knowledge constrained formulas that
we use as feature extractor for the RBBDT, HMM and also use to predict segment blocks and do task
assessment. The HMM, Transformer, and MSTCN++ blocks generate per-frame state probabilities from
the input video data. We generate the per-frame segment labels by a fusion of the state probabilities. With
the incorporation of the design constrained denoising and the candidates from the RBBDT block (the
decision tree), we calculate segment blocks from the per-frame ensemble predictions. Finally, we calculate
task performance assessment scores using the segment blocks. The following subsections cover the detailed
description of different blocks in the analysis framework.
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3.1 RGB Image Pre-processor
The transformer, the HMM, MSTCN++, and the rule-based decision tree pipelines have a feature extractor

as demonstrated in Fig. 3 that converts the raw RGB frames into suitable input features. The frames capture
the activity space that includes the patients upper body, the objects and the activity mat. All 12 tasks in the
SARAH system involve movement in relation with one or two objects. Therefore, it is imperative to detect
key movement features associated with both the patient’s upper body and the objects.

3.1.1 Patient Skeleton Detection
We use OpenPose (Cao et al., 2019), an open source pose estimation technique, to extract 2D patient

skeletons from videos. OpenPose generates 135 keypoints per-frame that include 25 body keypoints [4(A)],
21 keypoints for both hand [4(B)] and 70 keypoints for the face. These keypoints are the (x, y)-pixel
coordinates of the skeleton joints as shown in Fig. 4(C). In the presence of multiple persons in the captured
frame, we measure the area of the estimated upper body skeleton and consider the person with the largest
area. We find that this simple pre-filtering approach worked in all cases within our test set to gives us the
actual patient’s keypoints. In the SARAH system, the side camera used in this experiment always focuses
on the impaired arm and the non-impaired arm is obscured. Therefore, we exclude the estimated keypoints
from the non-impaired limb in our analysis framework. Since we are only interested in the upper body
keypoints, we only consider keypoints above the lower torso line (keypoints 9, 8, and 12). Also, because of
the non-standardized placement of the camera in this experiment, the face was not always within the frame
and therefore, we excluded the face keypoints from further analysis. After all the exclusions, we use the
two sets of keypoints as indicated in Fig. 4(A). The set of keypoints inside the red circle is for right-hand
impaired patients and the blue one for the left-hand impaired patients. All keypoints are normalised with
respect to the image frame.

3.1.2 Object Detection and Tracking
It was also imperative to obtain high quality object identification and location data for every frame, as

the type of object being used and the relationship between the objects and the keypoints extracted from
the subjects play an important role in determining segment classification. To this effect, we fine-tuned
an object detection algorithm which classifies the objects in the frame, places a bounding box around
the classified object, and provides the object/bounding box location relative to the overall frame. We
considered a Faster-RCNN model (Ren et al., 2015) pre-trained on MS COCO (Lin et al., 2014) dataset for
our experiments. To fine tune this object detection model we first labeled all objects being used across the
12 performed SARAH tasks from a small number of videos using CVAT (), an open-source annotation tool.
In total we had a training set of around 23,253 training images and we validated it on 11,112 images with a
mean IOU score of 0.67. We then used the open source detectron 2 framework (Wu et al., 2019), built on
top of PyTorch (Paszke et al., 2019) to fine-tune the model.

As stated in Section 2.1, there is a high variability in the training data, owing to issues such as use of a
single camera view, non-standardized camera angles, variability in the patient’s movement, unconstrained
ways of grasping the objects, errors in transportation etc. As a consequence, the object detection model
misses certain objects in certain frames due to factors such as occlusions or dropped objects, and sometimes
even misclassifies certain objects due to partial visibility. However, as described in Section 1, the task
being attempted in each captured video is known to the algorithm and each task is associated with specific
objects. We use this knowledge to filter out misclassifications. To further improve the smoothness of the
trajectories of the objects, we use a simple Kalman filter based tracking algorithm SORT (Bewley et al.,
2016). Given the fine-tuned object detection model, the pipeline constructed is as follows. First, we extract
all the frames in the video as images. Second, the trained Faster-RCNN is run on each of the frames thus
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collecting per-frame object data. Third, misclassifications are corrected automatically and the trajectories
of the tracked objects are smoothed.

3.1.3 Denoising Pose Keypoints and Object Locations
The activity space in different videos has high variability. As the camera angle and patient position are

different for each captured session, the ratio of the activity space to the frame resolution changes. Low
camera resolution and low frame-rate (used so as to allow efficient capture of long sessions), variable focus
(cameras were set up by non-experts without standardized instructions) and varied lighting conditions
(typical of therapy sessions happening in different contexts), create challenges for pose-estimation methods
from the raw frames. As a result, the keypoint detection and bounding box estimation accuracy can suffer,
sometimes even completely missing all keypoints and not detecting any bounding box in a frame. To reduce
the missing data problem we first detect the outliers. We calculate the z-score for each sample using,

zscorei =
xi −mean(x)

std(x) + ε
; i = 1, 2, ....., N (1)

where xi is the keypoints or object locations for the ith frame (an ε > 0 is used to guard against pathological
situations). If the z-score value is higher than a threshold, we consider the sample as an outlier. For our
case, using a threshold of 2.5 gives good performance. Then we use spline interpolation to fill the missing
values or replace the outliers.

3.1.4 Normalization of input data
Denoising and normalizing the input data is a vital step in achieving good performance through machine

learning. We experimented with three different techniques to find the best techniques for normalizing both
the patient keypoints data and the object locations- (i) global normalization with respect to the image
frame (ii) normalization with respect to the activity mat area and (iii) normalization using a computed
homography matrix.

Global-Norm: Here, we just divide the raw patient keypoints and object location data with the image
frame’s width and height, thus mapping the data to a [0, 1] range. In practice due to the high amount of
noise in the data, and variability in inter-patient performance, this global normalization fails to achieve
good results and was therefore not applied (see Table 6).

Mat-Norm: Here, we normalize the data with respect to the ratio of the area of the activity mat to the total
image area. This is done by labeling the activity mat in one of the frames per subject per capture session.
For every capture session the camera position is set at the beginning. We could thus precompute the area
of the mat for all recorded tasks of each capture session. This normalization with regards to the mat area
removes a good degree of variability and thus performs better than global normalization.

Homography-Norm: Since the camera angles across subjects and across attempts vary considerably,it is
important to reduce the impact of this variation. To achieve this, we apply a simple homography-based
re-projection of the object and keypoint data. First, a homography matrix is pre-computed that transforms
data from image frame to the coordinate frame defined by the activity mat. This transformation matrix is
then applied to the object and keypoint data. Even though this achieves high invariance, it also removes
discriminative features and thus there is not any observably significant improvement in the performance of
the transformer models.
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3.2 HMM features and algorithmic pipeline
3.2.1 Kinematic Feature Extractor

Using the denoised keypoints and object locations, we calculate 20 kinematic features that, based on our
prior work (Chen et al., 2011b), can be combined to successfully assess functionality and movement quality
in upper extremity stroke rehabilitation. These features can be used to analyze the movement of the object,
the affected limb and torso, and the patterns of human-object interaction. These 20 features are summarized
in Table 1. The variability in stroke survivor movement and the low quality capture resulted in 7 of the 20
features being too noisy to support automated analysis. We therefore only used the 13 less noisy features
for further analysis in the paper. In addition to these 13 features, we also calculate derivatives of some of
the features. The derivatives introduce oscillations unique to segments and by learning those patterns the
efficacy of the HMM in per-frame segmentation improves. A detailed description of the kinematic features
are given in the supplementary section.

3.2.2 Hidden Markov Model with Prior Transitions
A hidden Markov model (HMM) (Rabiner, 1989) consists of a set of states, a transition model, and

an observation model. Denote S = S1, S2, ..., SN as the N states. Evolution between states is modeled
by the transition probability conditioned on the previous state. The transition probability between states
is represented by a matrix, A = aij; where aij = Pr(Sj(t + 1)|Sj(t)). For a given observation, O =
O1, O2, ..., Ok, the emission probability distribution is represented by a matrix B = bj(k); where bj(k) is
the probability of generating observation Ok when the current state is Sj , where k is the total number of
observation symbols.

HMMs have been used in movement quality assessment because of their good performance in detecting
subtle inconsistencies in the movement (Osgouei et al., 2018; Nguyen et al., 2016; Deters and Rybarczyk,
2018). However, the topological structure of the HMM in most cases cannot be automatically determined
due to the highly variant and small dataset (Deters and Rybarczyk, 2018). We therefore use expert
knowledge based design constraints to model the topological structure of the HMM for different exercises.
We have modeled 5 different transition matrices demonstrated in Fig. 5 that are based on the number of
unique segments present in the 12 SARAH tasks. These matrices provide a strong prior as they are modeled
after the therapist’s approach to parsing movement and focusing attention on key composite movement
features per type of segment.

To train the HMM, we first need to define the initialization for each state in the transition
matrix. For example, to initialize an HMM with T4 transition matrix, we need 4 states: S =
{IPT,MTR1,MTR2, R&R}. Each state is initialized with a normal distribution of mean, µ = 0.5
and standard deviation, σ = 0.1. We choose the normal distribution because it produced the lowest
chi-square error after intensive experimentation with different distributions like beta, exponential, gamma,
log-normal, normal, Pearson3, triangular, uniform, and Weibull. The distribution parameters can be
randomly initialized, and we find that the model is not sensitive to random initialization. The training of
the HMM tunes the parameters which are then compactly represented as,

λT,F = (π,AT , BT,F ), where T = 1, 2, 3, 4, 5 and F = 1, 2, ...., F (2)

Here, the subscript T and F refer to different transition matrices and features and π is the initial state
distribution and is defined as π = πi where πi is the probability of state Si being the initial state. Based
on the tasks, π = [1, 0, ...]. Since all the tasks start with the state IPT, the first state probability is always
1 followed by zeros for other states present in the transition matrix. This is another strong design prior
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we leverage, in the form of supervision of the labels with state names. In this case, maximum likelihood
estimation (MLE) estimates the emissions from data partitioned by the labels and the transition matrix is
calculated directly from the adjacency of labels. Then, various transition matrices and their initialization
are further tuned with patient data. As we provide more training data, the final models are expected to
become more generalizable across different types of tasks. Another prior we use for structuring our HMM
relates to the use of distributions of individual kinematic features. Therapists establish through experience
an expected distribution per feature per segment (i.e. Gaussian velocity profile for IPT).Therefore, to learn
the distribution parameters for each of the kinematic features, it is a requisite to train separate HMMs for
each of those features.

We use the open source toolbox Pomegranate (Schreiber, 2018) for the training and estimation of the
state probabilities for each feature. Then, we formulate an objective function on the state probabilities of
the kinematic features to estimate one set of state probabilities. For this purpose we use a mean squared
error based objective function defined as,

Ji =
N∑
j=1

(
p̂ij −

∑F
k=1w

k
i p
k
ij∑F

k=1w
k
i

)2

; j = 1, 2, ....., N ; i = 1, 2, ....., Tmax; k = 1, ...., F (3)

where, p̂ denotes the per-frame categorical labels and p is the predicted state probabilities. N is the total
number of observations in the training set, Tmax is the maximum observable frame number, F represents the
total number of features, and w is the weight for optimization. We optimize the objective function by adding
two constraints on the weights. Firstly, restricting the range of weights w ∈ [0, 1] and secondly, constraining
the weights to unit sum:

∑F
k=1w

k
i = 1. The objective function was minimized using Sequential Least

Square Programming (SLSQP) (Nocedal and Wright, 2006) due to its ease of implementation and because
our objective function naturally is an instance of this type of problem.

3.3 Transformer Pipeline
In addition to HMMs, we also explore deep-learning based transformers Vaswani et al. (2017), which have

attracted a large amount of interest in the natural language processing community due to their strengthes
in modelling long term dependencies while being computationally efficient and avoiding problems such
as vanishing gradients in other deep-learning based time-series approaches like long short-term memory
(LSTM) based approaches. Since our goal is video-segmentation, and per-frame classification, we model
this problem as a Sequence-to-Sequence problem (Sutskever et al., 2014), where the input is a multivariate
time-series determined by body keypoints and object data. Given this data, we output discrete segment
labels for every timestep (frame). The pipeline is as follows: (i) concatenate normalized pre-processed
zero-padded keypoints and object location data to obtain X ∈ RN×F×Tmax where N is the number of
videos, F is the total number of feature and Tmax is the maximum observable frame number including the
zero-padding, (ii) partition the data X into training Xtr, validation Xval, and test Xte sets randomly, with
a constraint that no patient-task pair should be repeated in train and test sets, (iii) train the transformer with
the objective to find a function g that maps Xtr to Y , where Y tr ∈ R1×Ts is the per-frame label vector, by
minimizing cross entropy loss between f(gtr) and Y tr. We train the network with different augmentations
on the input data such as random drift, Gaussian noise etc using (Arundo, 2019) to avoid overfitting.

3.3.1 Transformer Architecture
We adopt the transformer architecture from (Vaswani et al., 2017), with minor modifications to adapt

it for timeseries (Cohen et al., 2020): (i) we replace the embedding layer with a generic layer; and (ii),
we apply a window on the attention map to focus on short-term trends because the segments are short.
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Other hyperparameters are as follows: number of encoder-decoder pairs are set to 2, number of heads as 4,
the dimension of key query and value and an attention window of 100 along with sinusoidal positional
encoding.

3.4 MSTCN++ Pipeline
Temporal convolutional networks (TCNs) (Lea et al., 2017) are shown to outperform methods such

as LSTMs on various time-series modeling problems. Building on the success of TCNs, Farha et al
recently developed MS-TCN (Farha and Gall, 2019) a multi-stage variant, by stacking multiple TCNs.
This multi-stage approach is shown to outperform TCNs for video segmentation. We have thus used
MS-TCN (Farha and Gall, 2019) and its variants MS-TCN++ (Li et al., 2020) for our experiments. While
our transformer and HMM based methods operate on carefully constructed features from keypoints and
objects, our TCN approach can directly use features extracted by a feature-learner approach such as a
pre-trained video classification network, I3D (Carreira and Zisserman, 2017). I3D is trained on the Kinetics
dataset (Kay et al., 2017), which contains videos of human actions, with classes such as single person
actions, person-person actions, and person-object actions. Since the I3D model that has been trained on
this large scale dataset, features extracted though the model can capture representations of complex human
activity, including human-object interaction, thus making the model a fitted choice for composite feature
extraction for our analysis. We train MS-TCN++ on the features from the I3D model on our data with an
objective to minimize the weighted combination of (i) cross entropy loss between the predicted segment
classes and ground truth, and (ii), a penalty for over segmentation. We fix the multiplier to the penalty
term, which is a hyperparameter at 0.15 as mentioned in (Li et al., 2020). We train the network for 300
epochs with an ADAM optimizer (Kingma and Ba, 2015), learning rate of 10−3 and step-wise reduction in
learning rate by a factor of 0.8 for every 30 epochs.

3.5 Weighted Average Ensemble
Finally, we fuse the outputs of the data driven models with the expert knowledge constrained models. The

HMM algorithm uses kinematic features and design priors that are constrained by the expert knowledge.
The predictions from the HMM encode information about the segments and task level of the movement
analysis hierarchy shown in Fig. 1. On the other hand, techniques like Transformer and MSTCN++ use
kinematic and composite features to perform better in the frame level but fail to encode information about
the segments and the tasks. To combine the strengths of each approach, we fuse the analysis outcomes
of the different algorithms at the level of the segment. As discussed in section 2.1, the segment level of
the hierarchy is expected to have the highest level of agreement between expert movement analysis and
computational analysis. We implement this hypothesis by taking a weighted average ensemble of the state
probabilities from each model. If P jn is the probability of jth state of model, n, then the predicted state is
calculated as,

ŷ = argmaxj

(
w1P

j
1 + w2P

j
2 + · · ·+ wnP

j
n∑n

i=1wi

)
, j = 1, 2, ..., 7 (4)

here, wi is the weight for model i and ŷ is predicted states. We have conducted a grid search for each
weight in the range of [0.1, 0.2, 0.3, . . . , 1.0]. Thus for a three model ensemble, we run the evaluation
10× 10× 10 = 1000 times for each combination of weights. We experimented with 4 ensemble schemes
to find the combination that provides the most robust results: (i) HMM and Transformer, (ii) HMM and
MSTCN++ (iii) Transformer and MSTCN++ and (iv)HMM, Transformer, and MSTCN++.
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3.6 Block Based Task Completion Assessment
To perform task completion assessment we need to organize the per-frame segment labels into segment

blocks. We again leverage therapist expertise for grouping segment samples into segment blocks (as
embedded in the SARAH system design), to automatically extract segment blocks and assess the order,
duration, and continuity of the blocks. To calculate segment blocks, we first denoise the ensemble
predictions. The per-frame segment predictions resulting from the ensemble model have two types of noise:
false transitions and missing transitions.

3.6.1 Denoising of Ensemble Predictions
In the SARAH system, the performance of all tasks is realized through a sequence of a small number

of segments. These segments are performed with a defined set of objects, and within a defined activity
space. Further, they are executed at a speed that is constrained by human biomechanics and potentially
constrained by stroke induced impairment. We can filter some of the false predictions through a Gaussian
filter for each transition model that implements these priors. In Fig. 10, we illustrate the per-segment filters
for a 3× 3 transition matrix model. The filters can be mathematically expressed as Gs(µs, σs), where µs
and σs denotes to the mean duration and standard deviation of each segment, s calculated from the training
data. For a test data of length, N , we calculate the posterior distribution and use a 75% confidence cutoff to
get the upper and lower bounds for each segment. We only accept a predicted transition, if it falls within the
bounds. In addition, we pose a 20 frame window constraint on the predictions since all the task segments
in the SARAH system require more than 1 second to complete. Therefore, any transitions within 20 frames
is discarded. This filtering technique reduces the majority of the false predictions.

3.6.2 Rule-Based Binary Decision Tree (RBBDT)
To correct the remaining false predictions and find the missing segment transitions, we use a rule-based

binary decision tree (RBBDT) to encode the process that the experts (therapists) use to segment the
patient movement. As observed during the development of the SARAH system with therapists, instead of
classifying each frame of movement, therapists utilize a few key events to find transition point candidates
between segments. These events are primarily based on three relationships: (i) patient - object interaction,
(ii) patient - activity space relationship, and (iii) object - activity space relation. People execute functional
tasks differently (i.e. the trajectory of raising a glass to our mouths to drink is slightly different for each
person). These differences are much more pronounced for stroke survivors as they have different types of
impairment. Therefore, therapists organize the patient activity space into a few generalizable regions that
are robust to variation. Standardized stroke rehabilitation assessment tests (i.e. WMFT, ARAT) rely on
such generalizable regions and the regions have accordingly been adopted in the design of the SARAH
system (see section 1).

To model relationships between the object(s), patient, and the generalizable activity regions, we recreate
the activity regions as eight bounding boxes on each frame of the video. These bounding boxes are
illustrated in Fig. 6. Our approach is similar to region based object detection (Ren et al., 2015) techniques,
where the bounding boxes are created based on the relationships between different objects and the space.
Our bounding boxes, divide the body into the regions of head, upper and lower torso, since movements
of the impaired arm towards the head (i.e. for feeding) have different functionality than movement of the
impaired limb towards the torso (i.e. dressing). Moving the end point of the impaired upper limb towards
the upper and lower torso presents different challenges for different patients. The tabletop activity space is
divided into an ipsilateral and contralateral area since the engagement of these two spaces requires different
coordination of joints and muscles. The ipsilateral and contralateral areas are further divided into proximal
and distal areas, since different extension patterns of the arm are needed to engage the distal space (see
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Fig. 6). We use these eight bounding boxes to calculate the space-patient, space-object, and patient-object
relationships that appear in Table 2.

We use previously calculated object and end point position and velocity to mark the object and limb end
point stopping time. We can then calculate multiple distance features like limb-bounding box distance,
object-bounding box distance, and limb-object distance. These simple distance features do not exhibit a
simple statistical pattern (e.g. Gaussian) across different patients for each type of segment and are therefore
not easily amenable to training the HMM segmentation algorithm. However, under the RBBDT framing
they did indeed become usable for detecting segments blocks because they encode the features used by
experts to define segment blocks as shown in Table 2.

In our previous work (Venkataraman et al., 2014), we used a standard classification and regression
tree (CART) for modeling therapist decision processes in movement assessment. Data driven tuning of
the parameters of these decision trees is sensitive to noisy data. Since the dataset for this experiment is
small and noisy, we developed an approach for manually tuning the thresholds and split branches, and
selecting the order of features of the RBBDT. Our manually tuning is supported by training data. The
goal of the tuning is to place the features in descending order of observability and error for each type of
transition prediction with the most observable and accurate feature coming first in the decision sequence.
The exercises of the SARAH system have different combinations of segments and variable object locations.
Therefore, the RBBDT based prediction of each segment transition, the transition between two segment
blocks, requires a unique order of features. In the appendix section, we show the order of features used for
each transition of the different SARAH tasks based on the mathematical notation from 2. If a candidate
sample of a feature stream meets the threshold condition, the confidence value of that candidate as a
transition point increases.

Let’s consider the previous example of exercise three and four where the patient transports the object
close to their mouth to simulate drinking action. To get the candidates for the IPT-MTR1 transition, the
highest observable feature is the location of the object and limb as a phase change occurs at the beginning
of MTR1. The next most observable feature is the directionality of the object’s movement in relation to the
bounding boxes. The process for calculating the confidence value of the candidates for the above IPT-MTR1
transition is illustrated in Table 3. In the shown example, RBBDT generates a possible candidate when two
or more conditions are true for the sample. Therefore, we set the confidence threshold to 0.5. It is important
to note, that the RBBDT does not aim for accuracy at the per-frame classification level as this accuracy
is secured through the ensemble model presented above. The RBBDT aims to only find transition points
organizing the data stream into segments blocks that are feasible (could have been performed by a stroke
patient), while minimizing missed transitions and false transitions between blocks.

3.6.3 Task Completion Assessment
For a given task, the segment blocks will inform us about the continuity and order of the segments.

In addition, we can calculate the duration of the completed task. Once we have calculated the segment
blocks and duration for each task, we can compare that calculation to the expected sequence of segments
and duration for each task for a coarse assessment of task completion. The algorithm checks for three
conditions:

• Is the task completed with all the necessary segment blocks?
• Is the order of the segment blocks correct?
• Is the task performed within allowable time?
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If a task satisfies all three conditions, the algorithm gives a score of 3. If the first two are satisfied then it
generates a score of 2. If either of the first two are not satisfied then it generates a score of 1. Finally, a
score of 0 is assigned if the task is not attempted. Although these scores are similar to the scores assigned
by therapists they do not take into account issues of movement quality. Therapists may assign a score of
2 to a task that is completed within the allowable time because of issues of movement quality. Since our
methodology connects different types of movement features to assessment of segment and task execution,
in the future we plan to use actual therapists ratings of patient videos to further train our algorithms so they
can automatically assess task completion and movement quality.

4 EXPERIMENTAL SETTINGS
Our initial dataset consists of 610 captured videos. The experimental dataset includes 404 videos after
exclusion of videos where severe limb impairment caused multiple object dropping or multiple segment
occurrence leading to an incomplete exercise. Including these videos would severely skew the training sets
at this early stage. However, some of these videos were included in the test sets for task completion and
in the future these videos can be included in the training sets too. In our dataset each patient performed
each task multiple times in a single session. Therefore, we design random split experiments based on three
factors: patient ID, session ID and task number. For any task number, the same patient ID with the same
session ID is included in either of the training or test set but not in both. We choose different random seeds
and create 5 random experiments for fairness based on this selection method. The average training and
test size of the 5 splits are 370 and 34, respectively. We implement the deep learning experiments on two
NVIDIA RTX 2080 Ti GPUs. To evaluate the segmentation performance of the experimented models, we
calculate frame-wise accuracy, precision, and recall. The calculation formula for the matrices are given
in the appendix section. For each of the split experiments, we evaluate the matrices independently and
calculate mean and standard deviation of the results for all the algorithms.

5 RESULTS
5.1 HMM Segmentation Results

Table 4, shows the segmentation results using the proposed five-transition-matrix HMM. The average
per-frame accuracy is 77.82%±2.88 meaning around 78% of the frames are labeled correctly. The precision
and recall values are 78.60%± 2.47 and 78.26%± 2.76, respectively. Additionally, we have performed the
following ablation studies to demonstrate the efficacy of the proposed five-transition-matrix HMM.

5.1.1 Number of features
We experimented with the proposed HMM using various numbers of features. The feature selection is an

important factor as the combination of correct features captures the unique patterns of different transitions.
To understand the effect of feature selection, we perform three experiments: (i) 13 kinematic features; (ii)
six kinematic features including four derivatives; and (iii) one composite feature. To get the composite
feature from 13 kinematic features, we experimented with different dimensionality reduction techniques
like PCA, NMF, LDA, and RP (Abdi and Williams, 2010; Choi, 2008; Balakrishnama and Ganapathiraju,
1998; Bingham and Mannila, 2001). Based on the performance, we choose PCA to reduce the dimension of
13 features into one and produce the composite feature. In Fig. 7 (a), we illustrate the comparative results
for the above three experiments. As evident from the illustration, the best performing result was achieved
when a combination of the raw kinematics and the derivatives were used as input to the HMM.

5.1.2 Transition matrix
The proposed HMM model uses five transition matrices. We also experimented with one transition matrix

model to understand the capability of the HMM to learn different variations of segment transitions across
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all types of tasks. A 6× 6 transition matrix is necessary to represent all the segment transitions across all
performed tasks in our data set. In Fig. 7 (c), we show the comparison between the one transition matrix
HMM and the proposed five transition matrix HMM (with each transition matrix calibrated to particular
types of tasks).
5.1.3 Time Dependency

We also experimented with time dependent models and wanted to exploit the duration of segments
to correct the predictions from the HMM. To model time dependency in the HMM predictions, we use
the gamma correction (Turaga et al., 2009) on the predictions of the HMM. We calculate the gamma
probabilities using:

γ(x, α, β) = xα−1β
αe−βx

Γ(α)
(5)

where, α and β is calculated per segment using mean (µ) and standard deviation (σ) of the segments in the
training set. Since the dataset has a very high standard deviation, the gamma function (Γ(α)) results in a
large value and thus Eq. (5) generates probabilities < 0.01. Therefore, the effect on the HMM predictions
are negligible. In Fig. 7 (B), we illustrate the comparison with the proposed 5 transition matrix HMM
model.

5.2 Transformer Segmentation Results
Like the HMM, the transformer was also tested on five random splits. In Table 5, we demonstrate the

segmentation results for the 5 splits. As described in section 3.1.2, we experimented with two types of
normalization technique to remove activity space variance. We present the result for both normalization
techniques in Table 5. We conducted two additional studies to understand the dynamics of our transformer
pipeline by ablating on (i) the number of features used as input; and (ii) the amount of labeled training
data needed. The former ablation study attempts to identify the features that are beneficial, while the latter
answers the reduction in time and cost needed to label the data by hand.
5.2.1 Number of Features

We experimented with different number of keypoints while always using the object features as input
to the transformer based pipeline. We decreased the number of keypoints from 8, 4,2 and then to 1. We
selected the keypoints for each reduction based on our prior work (Baran et al., 2015) that defined the
relative importance of different key points in characterizing upper limb impaired movement. The best
performing result was achieved using just the wrist keypoints and object locations. This conforms to the
observations made in (Baran et al., 2015). The results are given in Table 6.
5.2.2 Amount of Training data

. We experimented with reducing the amount of training data to the transformers to better study the
generalization properties of our pipeline in low data scenarios. This is a practical setting, as the amount of
time required to label the data is very high. However, as transformers contain large number of parameters,
it is important to study the over fitting trends as well. We report average accuracies on the same test data for
fair comparison while changing the size of input training data. As can be seen from the Table 7, if the amount
of data available is too small, unsurprisingly the performance is very poor due to overfitting; however, as
size of available data increase, the performance improves significantly plateauing after sometime. It is
encouraging that even with 25% reduction in training data(404 to 300) the drop in performance is only 2%
thus showing the robustness of the model.

5.3 MSTCN++ Segmentation Results
The results for the five split experiment using the MS-TCN++ is shown in Table 8. This is the best

standalone model in the pipeline as evident from the values. All coordinates were normalized with respect
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to the activity mat area as described in 3.1.3 refered to as Mat-Norm. As can be seen from 8, MS-TCN++
achieves the best performance in terms of per-frame classification error. However, as will be shown in
section 5.5, even though it achieves better classification error, it performs poorly in standalone estimation
of the completion of the task. As MS-TCN++ is a completely data driven model it fails to encode any
design priors or expert knowledge (i.e. expected order of segments). Thus, the few errors that MS-TCN++
makes are highly harmful. As an example, while every task should start with an ‘IPT’ segment, the MS-
TCN++ based model labels the first few frames of some tasks as ‘MTR’ thus affecting the automated task
completion performance. Thus, for higher level automated decisions (assessing completion of segments and
tasks by patients) it is imperative to fuse the MS-TCN++ with other models that encode prior knowledge
such as our implementations of the HMM and transformer based models.

5.4 Ensemble Model Segmentation Results
We experiment with three combinations of model ensembles. In Table 9, we illustrate the results of three

ensemble models. The best performance is achieved when all three models are combined and that finding
is consistent through all the splits. This is rather unsurprising because, the models are all complementary
in nature with MS-TCN++ being completely data driven, while our transformer and HMM based models
encode certain amounts of prior knowledge.

5.5 Task Performance Assessment Scores
In Table 10, we demonstrate the results of the block based segmentation. As evident from the table,

with the incorporation of the proposed denoising and RBBDT, around 99% of the segment blocks can be
labeled correctly. We also calculate task completion accuracy based on the continuity, and order of the
segment blocks and duration of the tasks. A task is completed if it has an appropriate order of segments.
As shown in Fig. 9, with the highest as 100% for split 4 and lowest as 87.5% for split 3, the average task
completion accuracy is 92%. This means 92% of the tasks in the test case that were tagged as completed by
the therapists are also labeled as “completed” by our algorithm. These are the tasks that have a score of
either a 3 or 2. The algorithm generates a score of 2 only when a patient takes longer time to complete the
task correctly. In Fig. 9, we show the percentage of correctly predicted 2s using the segment blocks for
three experiments. For these experiments we varied the range of standard deviation (std). As seen from the
figure, our algorithm predicted maximum 22% of the 2s among the videos that are rated 2s by the therapist.
All these tasks are labeled as completed both by the algorithm and the therapist.

6 DISCUSSION
In this paper, we propose a hierarchical model for automatically segmenting stroke survivor’s movements
and generating task performance assessment scores during rehabilitation training. The hierarchical model
fuses expert knowledge-biased approaches with data-driven techniques. The expert knowledge is more
observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to
algorithms incorporating high level constraints relating to activity structure (i.e. type and order of segments
per task). The lower layers need to be addressed primarily through data driven techniques. By developing
a sequence for combining complimentary algorithms that effectively encode the information from the
different layers, we produce robust segmentation and task assessment results driven by noisy, variable, and
limited data.

The MSTCN++ (Li et al., 2020) is a data driven technique that relies primarily on the RGB data layer
of our hierarchy and on composite kinetic features (the features extracted through the pre-processor) that
are trained through generic videos of human activity. Therefore, the composite features are not fully
observable and are not directly related to upper extremity functional tasks. Furthermore, the algorithm
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cannot incorporate the higher layer constraints resulting from the expert driven design of the system
(segment vocabulary, composite features related to each segment, order of segments per task). As the
algorithm is most sensitive to the lower layers of the hierarchy, it performs the best in terms of per-frame
segment classification, but because it does not incorporate higher layer constraints, is prone to errors in
the order of segments. For example it can classify the beginning frames of a task as belonging to an MTR
segment when all the SARAH tasks start with IPT. Because of the ordering errors the MSTCN cannot be
used in standalone mode for assessing segment completion and task completion, since task completion is
based on assessment of segment completion and segment order.

The Transformer utilizes raw kinematic features of the torso, upper limb, and object. We experimented
with 8, 4, 2 and 1 keypoints from open pose combined with object movement features. We selected
the keypoints representing joints that have been show, in our previous work, to have prominence in
characterizing upper limb impaired movement (Venkataraman et al., 2014, 2016). It can thus be said that
some form of prior expert knowledge is used to constrain the Transformer. The best performing Transformer
was with only the wrist key point and object locations. The object location is an important input feature as
a lot of the segment transitions are dependent on the object achieving specific translations in the activity
space (i.e. movement from bounding box C to bounding box D and back). In prior work, we show that
the object-limb end point (wrist or hand) interaction data can be sufficient for the coarse analysis of task
completion in upper extremity rehabilitation (Venkataraman et al., 2014). We also further proposed that in
these scenarios, the limb could be considered as a dynamic system that can be sufficiently characterized by
the behavior of the end point (Venkataraman et al., 2014). Therefore, through the Transformer we codify
the long term relationship between the object and the patient limb for better predictions of the segment
labels. However, because of the limited and noisy data set, and the limited data points being used for
the Transformer, this model has the worst per-frame classification performance of the three segmentation
algorithms.

The hidden Markov model (HMM) utilizes kinematic features that are prominent in characterizing upper
limb functional movement (Chen et al., 2011b) and also incorporates segment and task layer information
through the customized transition matrices. We experimented with multiple training schemes for the
HMM. The ablation study of the HMM provides three key insights. First, the HMM is sensitive to input
features. The best performance achieved used a six raw kinematic feature HMM model combined with
the first derivatives of four kinematic features. The derivatives have more oscillation compared to the raw
features as shown in Fig. 8 and follow the Gaussian distribution. Second, the proposed HMM requires 5
transition matrix as a prior. The transition probabilities are selected based on the expert knowledge. The
size of the transition matrix depends on the state machine of the exercise. However, we experimented with
one transition matrix model to represent all the exercises and as shown in Fig. 7 (b) The performance is
poor compared to a 5 model HMM since the expert knowledge of segment-task relation is lost. Lastly,
we compared the proposed HMM with a time dependent HMM model but the variance in duration of
performance among stroke survivors with different levels of impairment reduces the performance of the
time dependent HMM. The HMM has limited segment ordering issues as those are constrained by the
transition matrices. However, the reduced sensitivity of the HMM to nuances in the data layer (the HMM
model would perform better if the differences in the data between states was significant) combined with
the variance in the data cause a higher number of frame level misclassifications. We also varied the batch
size to understand the sensitivity of the HMM. In Table 11, the comparative results for different batch sizes
are shown. It is evident that with the increase in data size the performance of the HMM increases. Since
the HMM tunes its transition matrix and distribution parameters based on the training data, the more data
the better the tuning, and we can thus expect to see continuous improvement as we add data in the future.
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For all the splits, the ensemble model with three algorithms performs the best in the frame level
classification. This proves that a fusion of algorithms that have different sensitivities to different layers of
the hierarchy outperforms individual models. Without the HMM, the ensemble model predictions have a
higher misclassification rate and incorrect sequence orders. For example, without the HMM a prediction
can start with MTR or end with IPT. But based on our design prior, we know that all exercises start with IPT
and end with R&R. Since this prior is incorporated into the HMM, the predicted order of segment blocks
are correct and the per-frame segment label prediction accuracy increases. As is evident from Table 9,
without the MSCTN the ensemble model has significant deterioration in the frame level classification.

To automatically assess the completion of a task, we need to assess the completion and order of segment
blocks. This cannot be done solely through the ensemble model as the ensemble model has many false
positive blocks and missed transitions. The connection of the segmentation layer to the task assessment
layer requires an algorithm that is heavily biased by expert knowledge towards behaviors characterizing
transition between segments, as well as the effect of stroke related impairment on these behaviors. The
RBBDT algorithm successfully incorporates key unimpaired and impaired movement priors for segment
block transition points in one integrated decision sequence. For example, a phase transition is expected
for both object and limb end point for a simulated drinking motion (task three) when the object gets close
to the head. However, not all stroke survivors are able to lift the object all the way to their mouth, so the
phase transition can sometimes happen away from the head. Thus the phase transition becomes the first
decision node with the place of the transition in the activity space the second node. The RBBDT is highly
sensitive to transition point features but not sensitive to per-frame data patterns across the whole task. Thus
the RBBDT produces low quality performance in per-frame classification but higher quality performance
in identifying transition candidates. When integrated with the ensemble model, the correct identification of
segment blocks rises above 90%.

To perform the task completion assessment, we use a very simple algorithm relying only on comparison
of the type and order of the segment blocks given by the integrated ensemble and RBBT predictions, with
the expected type and order of segments in tasks established by the expert therapists who designed the
SARAH tasks. By adding this codification of prior task knowledge to our analysis, we are able to correctly
classify completed and uncompleted tasks over 90% of the time. We are also able to classify completed
tasks that took longer than the performance time allowed by the therapist for impaired performance. These
results further enhance the validity of the use of a hierarchical model of automated analysis combining
algorithms with different sensitivities to the different layers of the hierarchy. This includes layers primarily
incorporating observable expert knowledge (higher layers), layers primarily incorporating computer
analyzed data (lower layers) and layers integrating data and expert knowledge (middle layers) (see Fig. 1).

The use of approximately 400 videos for training/testing is enough to overcome the issues of overfitting
that we demonstrate when using 200 or less videos. As we progressed to 300 and then 400 videos, we
show steady improvement for the performance of all the algorithms we were using. It is thus realistic to
assume that as we collect more data, the performance of the hierarchical model will continue to improve at
all layers.

7 CONCLUSION AND FUTURE WORK
Low cost and low intrusion long-term automated rehabilitation at the home is expected to produce low
quality and high variability data. A hierarchical model fusing expert knowledge-biased approaches with
data-driven techniques can produce robust results in segmentation and task completion assessment in
rehabilitation even when utilizing low quality and high variability data. The hierarchical model produces
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over 90% performance in assessment of segment completion and task completion. Even with this limited
information, long term, semi-automated rehabilitation at the home using our SARAH system is feasible.
The system can monitor whether the patient has completed the assigned exercises for the day and whether
exercises were completed correctly and with ease. The system can use this information to provide coarse
feedback to the patient to reward accurate performance or remind the patient of the correct structure of the
task if errors are detected. The system can also make simple decisions including when to encourage the
patient to repeat an exercise (if they are improving but still have more room for improvement, or move
to another simpler or harder exercise (if they have repeated the exercise enough times or are not making
progress on the current exercise).

Our computational hierarchy, since it is based on computational data, realizes the hierarchical analysis in
a bottom up manner (features conditioning segment frames, conditioning segment blocks, conditioning
task completion). Therapists utilize a similar hierarchical analysis in a top down manner (task conditioning
segments, conditioning composite features, conditioning raw features) so as to leverage their heuristics
about functional task performance. Therefore, the SARAH system can send a daily summary of training
results to a remote therapist. Since the computational results will be highly compatible with the therapist
assessment heuristics, the therapist will be able to quickly use this summary to structure the next day’s
therapy and send a message to the patient guiding their training the next day. The therapist will also be able
to select any analysis result and review the corresponding video thus further informing their assessment
and therapy adaptation. The feasibility of low-cost semi-automated rehabilitation at the home using the
SARAH system will allow the collection of many more videos used to further train our algorithms.

Our team also developed an intuitive assessment interface allowing expert therapists to rate videos of
therapy tasks in a top down hierarchical manner, complimenting their assessment approach: rate the overall
task, then the segments, then the composite features per segment, and then return to a final assessment of
the task). As the videos collected through the SARAH system are rated by expert therapists, we can use
this detailed rating (which is highly compatible with our computational approach) to further inform our
segmentation and task assessment algorithms and evolve these algorithms to also automatically analyze
movement quality and the relation of movement quality to functionality. We are currently planing to use
the SARAH system in a pilot study in the homes of stroke survivors in the Spring of 2022.
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FIGURE CAPTIONS AND TABLES

Table 1. List of kinematic features extracted from patient 2D keypoints and object co-ordinates
Patient Features Object Features
limb Location Object Location
limb Velocity Object Velocity
limb Absolute velocity Object Absolute velocity
Distance between limb and Torso Line Distance between two Objects
Pronation and Supination Object Angular Velocity
Relative angle between torso line and limb Distance between Object and limb
Hand Openness Distance between Object and torso line
Torso sway, rotation and lean
Elbow Extension
Jerkiness
Absolute limb angle
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Figure 1. Hierarchical representation of the cyber-human system; (from the bottom) a video frame as an
example of raw visual features, velocity profile as an example of raw kinematic features, composite feature
for task 5 generated using PCA, segment labels, different types of tasks and impairment levels

Figure 2. (a) SARAH system and objects setup; (b) SARAH activity mat.
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Figure 3. Block diagram of the proposed analysis framework. Keypoints and object locations are extracted
from OpenPose and Faster-RCNN followed by a kalman filtering respectively. RBBDT along with the
model ensemble determine the segment blocks from the per-frame segment labels, which are then used to
assess the performance of the subject for the given task.

Figure 4. (A) 25 body keypoints that OpenPose generates following the COCO dataset; the circles indicate
the set of keypoints used in the porposed analysis framework for the right hand imapired patient (red circle)
and the left-hand impaired patient (blue circle) (B) 21 hand keypoints (C) OpenPose extracted upper body
skeleton overlapped on the actual frame (D) Detected bounding box and object label using Faster RCNN
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Figure 5. Different transitions matrix based on expert knowledge; (from left) T1: a 2 × 2 transition matrix
designed for task 1 and 2; T2: a 3 × 3 transition matrix designed for task 6,7, and 10; T3: a 3 × 3 transition
matrix designed for task 9; T4: a 4 × 4 transition matrix designed for task 3,4, and 5; T5: a 5 × 5 transition
matrix designed for task 8

Figure 6. Drawn bounding boxes on the activity space and patients upper body; there are five bounding
boxes on the mat and three on the patients body

Figure 7. (a) Feature ablation study using 13 and 6 kinematic features and 1 composite feature (b)
Comparison between the 5 transition matrix vs 1 transition matrix model HMM (c) Comparison between 5
transition matrix HMM with 5 transition matrix time dependent HMM model
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Figure 8. One of the kinematic features representing the distance between the body and the object (left);
first derivative of the object body distance feature

Figure 9. (A) task completion accuracy for 5 splits using the segment blocks (B) percentage of 2s correctly
predicted for different range of standard deviation

Figure 10. Gaussian windows per segment to filter out false transitions outside the first standard deviation
mark
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Table 2. List of RBBDT features calculated using patient keypoints, object co-ordinates and center of 8
bounding boxes

Index Feature notation Definition
1 dFl distance between upper torso, F and the limb
2 dGl distance between lower torso, G and the limb
3 dEl distance between head, E and the limb
4 dhl Distance between limb and hand bounding box, h
5 dAl, dBl, dCl, dDl distance between limb and bounding box A,B,C, and D
6 dFo distance between upper torso, F and the object
7 dGo distance between lower torso, G and the object
8 dEo distance between head, E and the object
9 dho Distance between object and hand bounding box, h
10 dAo, dBo, dCo, dDo distance between object and bounding box A,B,C, and D
11 dlo distance between limb and object
12 doo distance between two objects
13 d

dt() first derivative of the above features

Table 3. Confidence calculations based on binary decision from the rules
Object phase limb phase bounding box Directionality Confidence, C

0 0 0 0
0 0 1 0.25
0 1 0 0.25
1 0 0 0.25
1 0 1 0.5
1 1 0 0.5
0 1 1 0.5
1 1 1 0.75

Table 4. Per frame segmentation Results using the Hidden Markov Model
Split Index Frame Wise Accuracy Precision Recall
1 75.52 77.94 76.04
2 78.95 79.21 79.08
3 80.75 80.17 80.96
4 74.08 74.69 74.72
5 79.82 81.01 80.49
Mean 77.82 78.60 78.26
STD 2.88 2.47 2.76
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Table 5. Per frame segmentation Results using Transformer with two different type of activity space
normalization

Normalization metrics 1 2 3 4 5 Mean STD

Homography-Norm
ACC 70.07 74.29 75.85 65.34 72.37 71.59 3.67
Precision 65.03 61.68 68.69 58.37 63.20 63.40 3.43
Recall 61.84 61.45 68.08 55.55 60.54 61.49 3.99

Global-Norm
ACC 69.60 78.55 75.29 75.36 76.20 75.00 3.29
Precision 68.62 69.43 72.58 72.40 70.83 70.77 1.76
Recall 65.37 68.88 72.77 69.51 68.73 69.05 2.63

Mat-Norm
ACC 73.43 78.82 78.55 73.67 77.24 76.34 2.34
Precision 70.20 72.35 73.49 66.72 67.74 70.10 2.59
Recall 68.71 70.55 74.19 61.94 66.43 68.36 4.10

Table 6. Ablation results on Transformers using different number of keypoints. Using only wrist keypoint
outperforms the rest.

# keypoints ACC Precision Recall
Mean STD Mean STD Mean STD

1 76.34 2.34 70.10 2.59 68.36 4.10
2 69.65 1.66 55.34 3.67 53.87 4.02
4 71.30 3.20 67.51 4.23 66.14 2.89
8 67.80 2.53 60.19 7.37 56.47 6.15

Table 7. Transformer performance with varying sizes of training data. As expected, more data prevents
overfitting thus explaining the better performance.

# of samples ACC Precision Recall
Mean STD Mean STD Mean STD

100 65.00 1.85 57.23 3.12 55.12 3.05
200 71.97 3.00 64.63 1.79 62.85 2.17
300 75.54 2.57 69.49 2.54 68.11 3.88

404(all data) 76.34 2.34 70.10 2.59 68.36 4.10

Table 8. Per frame Segmentation Result using MSTCN++. This method outperforms HMM and
transformers for the task of per-frame segmentation.

split 1 2 3 4 5 Mean STD
ACC 79.75 85.96 83.26 79.96 80.60 81.91 2.38
Precision 76.84 85.29 82.05 74.30 75.08 78.71 4.25
Recall 77.64 84.04 82.24 74.68 75.51 78.82 3.70

Table 9. Results using different ensembles. (i) Ensemble1: Transformer and HMM, (ii) Ensemble2: HMM
and MS-TCN++ and (iii) Ensemble3: Transformer, HMM and MS-TCN++. We observe that ensemble3
outperforms the rest.

Ensemble1 Ensemble2 Ensemble3
Mean STD Mean STD Mean STD

ACC 81.01 1.99 83.76 2.77 85.08 2.14
Precision 77.28 4.38 81.40 3.92 84.34 2.61

Recall 77.88 4.46 81.57 3.66 84.6 2.68
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Table 10. Segmentation block results.
split Segment wise Accuracy Precision Recall
1 99.33 99 98.5
2 98.48 98.18 97.04
3 98.66 98 97
4 100 100 100
5 98.66 98.5 97.5
Mean 99.03 98.73 98.01
STD 0.56 0.71 1.13

Table 11. Results using different batch sizes for HMM input: (i) Experiment 1: batch size of 1, (ii)
Experiment 2: batch size of 9 and (iii) Experiment 3: all data.

Experiment 1 Experiment 2 Experiment 3
Mean STD Mean STD Mean STD

ACC 55 10.83 73.15 6.8 77.82 2.88
Precision 60.5 10.15 75.02 6.72 78.60 2.47

Recall 57 10.21 75.20 5.83 78.26 2.76
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