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Abstract5

One reason the mammalian visual system is viewed as hierarchical,6

such that successive stages of processing contain ever higher-level infor-7

mation, is because of functional correspondences with deep convolutional8

neural networks (DCNNs). However, these correspondences between brain9

and model activity involve shared, not task-relevant, variance. We pro-10

pose a stricter test of correspondence: If a DCNN layer corresponds to11

a brain region, then replacing model activity with brain activity should12

successfully drive the DCNN’s object recognition decision. Using this ap-13

proach on three datasets, we found all regions along the ventral visual14

stream best corresponded with later model layers, indicating all stages15

of processing contained higher-level information about object category.16

Time course analyses suggest long-range recurrent connections transmit17

object class information from late to early visual areas.18

1 Introduction19

Despite some shortcomings(1 ), deep convolutional neural networks (DCNNs)20

have emerged as the best candidate models for the mammalian visual system.21

These models take photographic stimuli as input and, after traversing multiple22

layers consisting of millions of connection weights, output a class or category23

label. Weights are trained on large datasets consisting of natural images and24

corresponding labels.25

The deep learning revolution in neuroscience began when layers of DCNNs26

were related to regions along the ventral visual stream in an early-to-early and27

late-to-late pattern of correspondence between brain regions and model layers28

(2 –4 ) (fig 1A). This correspondence supported the view that the ventral stream29

is a hierarchy in which ever more complex features and higher-level information30
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are encoded as one moves from early visual areas like V1 or V4 to inferotemporal31

(IT) cortex (5 ).32

However, these correspondences between brain and model activity were based33

on total shared variance as opposed to task-relevant variance (fig 1B). Much of34

cortex-wide neural variance does not relate to the task of interest(6 ) and may35

co-vary with but not drive behaviour. Correspondences established by correla-36

tion alone do not necessitate that model layers and brain regions play the same37

functional role in the overall computation.38

We propose a stronger test for evaluating how brain-like a model is. If, as39

is frequently claimed(2 –4 ), a specific layer in a DCNN corresponds to a brain40

region, then it should be possible to substitute the activations on that layer41

with the corresponding brain activity and drive the DCNN to an appropriate42

output (cf. (7, 8 ), fig 1C). For example, if we take V4 activity from a monkey43

viewing an image of a car and interface that brain activity with an intermediate44

DCNN layer hypothesised to correspond to V4, then the DCNN should respond45

“car” absent any image input. How well the DCNN performs when directly46

interfaced (through a simple linear mapping, see SI 6.5) with the brain provides47

a strong test of how well the interfaced brain region corresponds to that layer48

of the DCNN.49

2 Driving model response with brain activity50

We interfaced a pretrained DCNN(9 ) with data from two human brain imaging51

studies(10, 11 ) and a Macaque monkey study(12 ). All three studies involved52

viewing complex images. For a chosen model layer and brain region, we cal-53

culated a linear mapping from brain to model activity by presenting the same54

images to the model for which we had neural recordings (fig 1C). This simple55

linear mapping is a translation between brain and model activity. We evaluated56

the quality of this translation by considering held-out images and brain data57

that were not used in calculating the linear mapping (see SI 6.4).58

Strikingly, for the two fMRI studies (figs 2A, 2B), the DCNN was most ac-59

curate at classifying novel images when brain activity across regions (both early60

and late along the ventral stream) was interfaced with later model layers. In61

contrast to previous analyses that focused on total variance, we did not find the62

early-to-early and late-to-late pattern of correspondence. Even primary visual63

cortex, V1, best drove the DCNN when interfaced with an advanced layer. For64

comparison, classifiers commonly used to decode information from fMRI data65

through multivariate pattern analaysis (MVPA) were at chance levels (fig 6),66

which highlights the useful constraints captured in the pretrained DCNN. After67

training on a million naturalistic images, the DCNN developed representations68

that paralleled those of the ventral stream, which made decoding object class69

possible by way of a linear mapping from brain activity to an advanced DCNN70

layer. The interpretation is that all brain regions contain advanced object recog-71

nition information, which conflicts with strict hierarchical views of the ventral72

visual stream.73
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To rule out any alternative explanation based on the indirect nature of fMRI74

recordings, we considered a third study consisting of direct multi-unit recording75

of spiking neurons implanted in the ventral visual stream of Macaque mon-76

keys(12 ). These monkeys were shown images that did not readily align with77

the pretrained DCNN’s class labels, so we evaluated neural translation perfor-78

mance by comparing the outputs of the DCNN when its input was a study79

image vs. when a DCNN layer was driven by brain data elicited by the same80

image. For the distance measure, KL divergence, lower values imply a better81

translation between brain and model activity. As in the fMRI studies, both82

relatively early regions (i.e., V4) and late regions (i.e., IT) best translated to83

later DCNN layers (fig 2C).84

Across three diverse studies, we found a remarkably consistent pattern that85

strongly diverged from previous analyses — both early and late regions along the86

ventral visual stream best corresponded (i.e., translated) to late model layers. It87

is not that previous analyses were poorly conducted (see SI fig 5 for a successful88

reanalysis of data(12 ) finding the early-to-early and late-to-late canonical pat-89

tern). Rather, our novel analyses focused on task-relevant analysis, i.e., variance90

that can drive behaviour, provided a different view of the system than standard91

analyses focused on shared variance. Integrating these two views suggests a92

non-hierarchical account of object recognition marked by long-range recurrence93

transmitting higher-level information to the earliest visual areas.94

3 Long-range recurrence as opposed to strict hi-95

erarchy96

One way to reconcile the existing literature based on shared variance with our97

analyses based on task-relevant variance is to propose that long-range connec-98

tions from IT transmit higher-level information to early visual areas. Even99

if most variance in lower-level visual areas is attributable to stimulus-driven,100

bottom-up activity, the majority of task-relevant information could be attributable101

to signals originating from IT (fig 3).102

This view predicts specific patterns of Granger causality between early and103

late areas along the ventral visual stream. Do past values of one time series104

predict future values of the other? In terms of total spiking activity, lower-level105

areas should first cause activity in higher-level areas during the initial feed-106

forward pass in which stimulus-driven activity propagates along the ventral107

visual stream. Later in processing, the causality should become reciprocal as108

top-down connections from IT affect firing rates in lower-level areas, such as V4109

(fig 3, bottom row). In contrast, Granger causality for task-relevant information110

should first be established from IT to V4 (i.e., the top-down signal) and only111

later in processing should recurrent activity lead to causality from V4 to IT112

(fig 3, top row). In this fashion, all areas are effectively “late” after long-range113

recurrent connections transmit information from IT to early visual areas along114

the ventral stream though most variance for these areas would be dominated by115
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lower-level (bottom-up) stimulus information.116

We tested these predictions using the monkey multi-unit spiking data(12 )117

that has the temporal resolution to support the analyses. Images were presented118

one after the other, each visible for 100ms, with a 100ms period between stimuli.119

Figure 4A shows the mean firing rates (10 ms bins) with activity in V4 increasing120

shortly before IT, consistent with stimulus-related activity first occurring in V4.121

Figure 4B revisits our previous analyses (fig 2C) but with spike counts binned122

into 10ms intervals rather than aggregated over the entire trial. Even with only123

10ms of recordings, neural translation from V4 and IT to an advanced DCNN124

network layer minimises KL divergence between model outputs arising from125

image input vs. when driven by brain activity.126

Turning to the key Granger causality analyses, we evaluated whether early127

ventral stream regions become more like late-ventral stream regions over time128

due to recurrence (fig. 3). As processing unfolded, we found mutual causality129

between lower-level (V4) and higher-level (IT) areas for analyses conducted over130

spike counts (fig 4C) and for analyses on the KL divergence times series that131

assessed the ability of brain regions to drive DCNN response (fig 4D).132

Critically, the specific predictions of the long-range recurrence hypothesis133

were supported with V4 first driving IT (V 4 → IT ) for the analysis of spike134

counts but IT first driving V4 (V 4 ← IT ) for the task-relevant information135

analysis using the KL divergence time series (see SI for details). These results136

are consistent with stimulus-driven bottom-up activity proceeding from V4 to137

IT on an initial feed forward pass through the ventral stream with actionable138

information about object recognition first arising in IT. Then, recurrent con-139

nections from IT to V4 make task-relevant information available to V4. As140

this loop is completed and cycles, both areas mutually influence one another141

with the impact of bottom-up stimulus information maintained throughout the142

process.143

4 Discussion144

Computational models can help infer the function of brain regions by linking145

model and brain activity. Mulitlayer models, such as DCNNs, are particularly146

promising in this regard because their layers can be systematically mapped147

to brain regions. Indeed, the deep learning revolution in neuroscience began148

with analyses suggesting an early-to-early, late-to-late pattern of correspondence149

between DCNN layers and brain regions along the ventral visual stream during150

object recognition tasks(2 –4 ).151

However, as we have argued, correspondences based on total shared variance152

should be treated with caution. To complement these approaches, we presented153

a test focused on task-relevant variance that directly interfaced neural recordings154

with a DCNN model. If a brain region corresponds functionally to a model layer,155

then brain activity substituted for model activity at that layer should drive the156

model to the same output as when an image stimulus is presented. Of course,157

models and brains speak different languages, so a translation between brain and158
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model activity must first be learned, which in our case was accomplished by159

a linear transformation. Once the translation function is learned, novel brain160

data and images can be used to evaluate possible brain-model correspondences.161

Our approach, which focuses on task relevant variance within the overall162

computation, as opposed to local shared variance (fig 1), uncovered a pattern163

of correspondences that dramatically differed from the existing literature. We164

found that all brain regions, from the earliest to the latest of visual areas along165

the ventral stream, best corresponded to later model layers. These results indi-166

cate that neural recordings in all regions contain higher-level information about167

object category even when most variance in a region is attributable to lower-level168

stimulus properties (fig 3).169

To resolve this discrepancy between our analyses focused on task-relevant170

variance and those based on shared variance, we evaluated the hypothesis that171

long-range recurrence between higher-level brain regions, such as IT, influenced172

activity in lower-level areas like V4. Analysing both firing rates of cells and173

information-level analyses using our brain-model interface approach, we found174

evidence that recurrent activity renders all areas functionally “late” as process-175

ing unfolds, even when total variance in some early visual regions is largely176

driven by bottom-up stimulus information. In this way, we integrate previ-177

ous findings with our own and highlight how our method can be used to test178

hypotheses about information flow in the brain.179

Our approach, which considers task-relevant variance, may help resolve con-180

flicting interpretations on the function of brain regions. For example, the181

fusiform face area (FFA) responds selectively for faces, but its wider functional182

role in object recognition has been the subject of extensive debate(13 ). Here,183

we show that interfacing FFA into late model layers drives object recognition184

comparably to the lateral occipital complex (fig 2B) on non-face natural images.185

We suspect that the function of a region will only be fully understood by consid-186

ering task-relevant variance across several tasks in light of activity in connected187

brain regions. The tight interface we champion between computational models188

and brain activity should prove useful in evaluating theoretical accounts of how189

the brain solves tasks over time.190

Computational models that perform the tasks end-to-end, from stimulus to191

behaviour, should be particularly useful. In essence, translating between brain192

regions to layers of such models can make clear what role a brain region plays193

within the overall computation. In the case of object recognition, our results194

suggested that recurrent models may be best positioned to explain how the195

nature of information within brain regions changes as the computation unfolds.196

This conclusion is in line with a growing body of modelling work in neu-197

roscience that affirms the value of recurrent computation(14, 15 ). Unlike the198

aforementioned work, we suggest that long-distance recurrent connections that199

link disparate layers should be considered (cf. (16 )). We suspect such models200

will be necessary to capture time course data and the duality found in some201

brain regions, namely how most variance in a brain region can be attributable202

to lower-level stimulus properties while co-mingled with important higher-level,203

task-relevant signals.204
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As deep learning accounts in neuroscience are extended to other domains,205

such as audition (17 ), and language processing (18 ), the lessons learned here206

may apply. Our brain-model interface approach can help evaluate whether the207

brain processes signals across domains in an analogous fashion. By minding the208

distinction between shared and task-relevant variance, the role brain regions209

play within the overall computation may more readily come into focus.210

Our approach may also have practical application in brain machine inter-211

faces (BMI). Recent BMI developments have emphasised the readout of motor212

commands, neural processes taking place close to the periphery. In contrast,213

by leveraging the constraints provided by a pre-trained DCNN, we were able to214

gain traction on the ‘stuff of thought’, categorical and conceptual information215

in IT. Because we learned a general translation from brain to model, our ap-216

proach applied to BMI would allow distant generalisation. For example, we were217

able to extrapolate to novel categories (see SI). For example, a translation from218

brain to model that never trained on horses, but trained on other categories,219

can perform zero-shot generalisation when given brain activity elicited by an220

image of a horse. The interface has the potential to produce a domain-general221

mapping rather than one dependent on specific training data. In the future,222

BMI approaches that address general thought without exhaustive training on223

all key elements and their combinations may be feasible.224
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Figure 1: Deep Convolutional Neural Networks (DCNNs) trained on large nat-
uralistic image datasets(19 ) have emerged as leading models of the mammalian
ventral visual stream. (A) Typically, processing in DCNNs is hierarchical start-
ing with the stimulus and proceeding across successive layers as higher-level
information is extracted, culminating in predicting the class label(9 ). Numer-
ous analyses(2 –4 ) based on shared variance suggest the brain follows related
principles with an early-to-early, late-to-late pattern of correspondence between
the ventral visual stream and DCNN layers. (B) These shared-variance corre-
spondences are evaluated locally, typically involving one brain region and one
model layer, with no recourse to behaviour (i.e., the object recognition deci-
sion). (C) We propose a stronger test of correspondence based on task-relevant
variance. If a model layer and brain region correspond, then model activity
replaced with brain activity should drive the DCNN to an appropriate output
(i.e., decision). The quality of correspondence is evaluated by comparing DCNN
performance when driven by a stimulus image vs. interfaced with brain activity.
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Figure 2: Results from interfacing neural data with a Deep Convolutional Neural
Network (DCNN). Using the method shown in fig 1C, brain activity is directly
inputted to a model layer to assess correspondence between a brain region and
model layer. (A) For this human fMRI study(11 ), all brain areas drive DCNN
object recognition performance to above chance levels. Performance is best
for all brain areas when interfaced with later model layers. (B) The same
pattern of results is found for a second human fMRI study(10 ). (C) In a third
study, KL divergence is used (see main text and SI) to measure the degree
of correspondence for when the DCNN is driven by image input vs. multi-
unit recordings from macaque monkeys(12 ). For KL divergence, lower values
indicate better correspondence. Once again, all regions best correspond to later
network areas. These three analyses indicate that higher-level visual information
is present at all stages along the ventral visual stream.

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.28.450213doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450213
http://creativecommons.org/licenses/by/4.0/


Figure 3: Hypothesised interactions between early (V4) and late (IT) regions
along the ventral visual stream as processing unfolds. We hypothesise how
stimulus and object-class information propagates between V4 and IT over time.
At t0, the forward pass reaches IT from V4, with V4 activity reflecting low-level
stimulus properties but little information about object class. At t1, object-
class information from IT flows back to V4, increasing its task-relevant activity,
which in turn influences IT at t2. Notice that later in processing, V4 reflects
object class information, but most of its activity remains tied to bottom-up
stimulus properties. These hypothesised interactions would reconcile our results
(fig 2) based on task-relevant information with previous results based on shared
variance.
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Figure 4: Analyses of monkey multi-unit recordings(12 ) time locked to stimulus
presentation in 10ms time bins. Each visual stimulus was presented for 100ms
(shaded green) with 100ms before the next (shaded grey). (A) Mean normalized
spike counts for all electrodes for V4 and IT. (B) Task-relevant analysis (lower
values imply closer correspondence with a late DCNN layer) show both V4 and
IT can appropriately drive DCNN response (fig 1B), starting around 70ms after
stimulus onset. (C) Consistent with our long-range recurrence hypothesis (fig
3), Granger Causal Modelling indicates that, while V4 first drives IT in terms
of raw firing rates (V 4 → IT ), (D) IT first drives V4 in terms of task-relevant
information (V 4 ← IT ). These results are consistent with information about
object category information (as assessed by interfacing with a late layer in a
DCNN) first arising in IT and then feeding back to V4. At later time steps,
Granger causality between V4 and IT becomes reciprocal (V 4 ↔ IT ) as the
loop cycles.
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6 Methods and Materials315

6.1 Datasets316

We re-analysed three existing neural datasets. Two, BOLD5000(10 ) and Generic317

Object Decoding(11 ) consist of fMRI from human subjects who viewed images318

taken from Imagenet(19 ), a benchmark large dataset of natural images. We319

restricted the BOLD5000 dataset to only those images drawn from Imagenet320

(2012 ILSVRC) edition and to subject 1-3 who completed the full experiment.321

The analysis of Generic Object Decoding used the data from the ‘training’ por-322

tion of their image presentation experiment, consisting of 1200 images from 150323

categories drawn from the Imagenet Fall 2011 edition. For both datasets, each324

image was presented once, thus each row represents individual trials.325

The third dataset consists of neuron spike counts directly recorded from326

V4 and IT of two macaque monkeys (12 ), in a rapid serial visual presentation327

paradigm where each image is passively viewed for 100ms, with 100ms between328

images. We used the publicly available data processed as detailed in those329

publications. For the neural interfacing analysis of the spiking neural dataset,330

we used spike rates aggregated over multiple presentations of each of 3200 unique331

images, in the interval 70-170ms after stimulus onset, with the electrodes from332

the two subjects concatenated, as in the original analysis (12 ). For the Granger333

causal modelling analysis of the same dataset, we used spike rates at the level334

of the individual trial (i.e., no aggregation) for each 10ms time bin.335

The neural data corresponding with each image was related to layer activa-336

tions of a deep convolutional neural network (DCNN) trained on image classi-337

fication, when processing the same pixel-level data. The three neural datasets338

contain data for various brain regions from ventral stream, including visual areas339

(V1, V2, V3 V4, included as ‘EarlyVis’ in (10 )), areas responsible for process-340

ing shape and conceptual information (LOC, IT) and various downstream areas341

(OPA, PPA, FFA, RSC).342

For details on neuroanatomical placement or functional localisation of each343

region, we refer readers to the original publications. Further details of brain344

regions and dimensionality of the data from each region are presented in sup-345

plementary information table 1.346

6.2 DCNN347

As the base DCNN for all simulations, we used a re-implemented and trained348

version of VGG-16 (9 ) (configuration D) using Keras(20 ) version 2.2.4 and349

TensorFlow version 1.12. This model was selected for its uncomplicated ar-350

chitecture, near-human level classification accuracy on ImageNet, and widely351

reported robust correspondence with primate or human data on various mea-352

sures, including human behavioural (similarity judgements (21 ), human image353

matching (15 )) and neural (15, 22 ). We implemented and trained a version of354

the architecture with 64×64×3 input size, with corresponding changes in spatial355

dimensions for all layers (table 2). For all analyses, images from all datasets were356
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cropped to a square and resized to this resolution. For the monkey multi-unit357

dataset, where images are contained in a circular frame, the central 192 × 192358

portion of the 256× 256 original was cropped and resized, to decrease the pro-359

portion of image taken up by blank space in the corners. While the original360

authors trained their network in a two-stage process, beginning with a subset of361

the layers, the inclusion of batchnorm(23 ) between the convolution operation362

and activation function of each layer enabled training the complete network in a363

single pass. We used the authors setting for weight decay (`2 penalty coefficient364

of 5× 10−4) and a slightly different value for dropout probability (0.4). Model365

architecture details are presented in the supplementary information (table 2).366

6.3 DCNN training367

Our training procedure followed (9 ). The model was trained on ImageNet 2012368

(1000 classes) for analyses of the BOLD5000 and monkey multi-unit datasets.369

For the Generic Object Decoding dataset, the model was trained to convergence370

on ImageNet Fall 2011 (21841 classes), before layer FC3 was replaced and re-371

trained with 150 classes, corresponding with the classes used in our re-analysis372

of (11 ). For ImageNet Fall 2011 we randomly allocated 2% of each class in-373

cluding all images used in (11 ) to an in-house validation set that was not used374

for training. One image used by (11 ) was missing from our image dataset and375

was excluded from all analyses. All images were resampled from their native376

resolution to 64× 64× 3 by rescaling the shortest side of the image to 64 pixels377

and centre-cropping.378

Both versions of the model was trained using mini-batch stochastic gradient379

descent, with a batch size of 64, an initial learning rate of 0.001 and Nesterov380

momentum of 0.90561. The learning rate decayed by a factor of 0.5 when381

validation loss did not improve for 4 epochs, with training terminating after 10382

epochs of no improvement. All layers used Glorot normal initialization. During383

training, images were augmented with random rescaling, horizontal flips and384

translations.385

6.4 Cross-validation386

Classifier-based methods require training classifier parameters, before evaluating387

it on data withheld from the training set. In all analyses, we use the standard388

approach of k-fold cross validation(24 ), in which the dataset is randomly allo-389

cated into k equally-sized partitions, and the analysis is iterated k times, each390

time training on k−1 partitions and evaluating on one. In this way, the classifier391

is evaluated over the entire dataset. For all analyses, except where otherwise392

specified, we use stratified 8-fold cross validation, that is to say dataset items393

are randomly allocated to partitions with the constraint that 1/k of each class394

be allocated to each validation partition. For the spiking neural dataset(12 ),395

each unique image was rendered from one of 64 objects, with varying position396

and orientation. Here, stratification was done at the object level.397
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For the out-of-training-class generalisation analysis, we used leave-one-class-398

out cross validation, where for m classes, the analysis is iterated m times, the399

evaluation set consisting only of the entirety of a single class, on each iteration.400

6.5 Neural Interfacing analysis401

Given a dataset D, consisting of an image matrix Di of shape (n, 64, 64, 3) where402

n is the number of images, and a corresponding neural data matrix Dr, of shape403

(n, d) where d is the number of neural features (electrodes, for multi-unit data,404

or voxels, for fMRI data), consider a DCNN computing a function f on Di,405

mapping D to Pi, an (n,m) matrix of predictions, each row being a probability406

distribution over the m classes the DCNN was originally trained to classify.407

f(Di) = Pi (1)

For an arbitrary intermediate model layer q, we may decompose f into gq and408

g′q, by computing intermediate activations, gq(Di):409

f(Di) ≡ g′q(gq(Di)) = Pi (2)

The neural interface analyses proceeded by applying a linear transform W410

to the centered and column-normalized neural data, Dr and inputting the result411

into DCNN layer q, to compute a matrix of model predictions for the neural412

data, Pr.413

g′q(WDr) = Pr (3)

6.5.1 Linear transformation matrix training414

The transformation matrix W was computed by partitioning image and neu-415

ral datasets Di, Dr into training and evaluation partitions using 8-fold cross-416

validation, and W was learned as a linear mapping from Dr to the layer q417

activations generated by the corresponding images, Di, on the training parti-418

tion:419

gq(Di) = WDr + ε (4)

For each cross-validation fold, the model predictions were computed for the420

evaluation partition. In practice, W was computed as a single-layer linear neural421

network with no bias or activation function, to minimise mean-squared error of422

supervision targets gq(Di) using mini-batch stochastic gradient descent with423

momentum, (batch size 64, momentum of 0.9, l2 regularization of 0.0003, initial424

learning rate of 0.1, decreasing by a factor of 0.5 when validation loss did not425

improve for 4 epochs and terminating after 400 epochs or after validation loss426

did not improve for 20 epochs.) For the analysis of the macaque dataset(12 )427

on the level of the individual trial, prior to performing the GCM model, W was428

computed using the Adadelta optimizer (batch size of 128, initial learning rate429

of 0.04.)430
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We also considered an alternative mode for training W , by first assembling431

the model in the form of equation 3, composed of transformation matrix W432

initialised with small random weights, followed by DCNN layer q onwards, g′q,433

thus mapping end-to-end from neural measures Dr to output. W was then434

trained by back-propagating the categorical cross-entropy error term from the435

softmax output layer, using the supervision target of the ground-truth labels436

for the neural dataset (Dr), with all other weights in the network frozen. This437

method produced a pattern of results that was qualitatively similar, although438

with lower absolute accuracy (SI fig 8).439

6.5.2 Neural Interface Evaluation440

The output of the model, P , is an (n,m) matrix of probability distributions441

over the m output classes the original DCNN was trained on, for each of n442

images in D. We computed this for the original DCNN on the image dataset,443

f(Di) = Pi, and also for the neural dataset for each brain region r and model444

layer q, g′q(WDr) = Pr. The correspondence between r and q was evaluated445

by comparing the model predictions Pr either against the ground-truth classes446

(by computing the overall AUC of the classifier, via the equality between AUC447

and Wilcoxon-Mann-Whitney U) or against model predictions from the image448

dataset, by computing the KL divergence of Pr from Pi for each row n.449

6.6 Shared Neural Variance Analysis450

For comparison, we present an example of a shared neural variance analysis451

using the macaque spiking neuron dataset (12 ) and our re-implemented model.452

Conceptually, in common with the interfacing analysis (section 6.5), the analysis453

evaluates the correspondence between a brain region r and a model layer q.454

Layer q model activations, gq(Di), were compared with a neural dataset obtained455

from the presentation of corresponding images, Dr. To establish our results are456

comparable to those previous, we used the neural predictivity method exactly457

as implemented in the Brainscore benchmark for DCNNs (25 ).458

The dataset was iteratively partitioned using 8-fold cross-validation into459

training/validation partitions. Following the method of (25 ), we used the image460

stimuli from the training partition to generate model activations on each layer.461

We used PCA to calculate the first 1000 principal components of these activa-462

tions, before training a PLS regression model (25 components) to predict, for463

each electrode, the firing rate across the validation partition. The predictivity464

for each electrode was computed as the Pearson correlation coefficient between465

the predicted firing rates across the dataset and the actual recorded values,466

with the overall predictivity given by the correlation coefficient of the median467

electrode.468
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6.7 Simple Classifiers on the Neural Datasets469

To establish performance baselines for the interfaced fMRI datasets, which were470

evaluated in terms of classification performance, we applied various standard471

classifiers to the neural data directly, to predict the image class from the neu-472

ral data from various brain regions. Known as multi-voxel pattern analysis473

(MVPA), evaluating the trained classifier’s ability to predict class labels from474

fMRI or spiking neural data is now a standard approach to quantifying the475

categorical-level information within a brain region (26 ). Nevertheless, in the476

present analyses the number of different classes is unusually large, and the477

number of examples from each class unusually small, (1916 images from 958478

classes(10 ), 1200 images from 150 classes(11 )) for a straightforward MVPA479

analysis on these datasets. We report the AUC of the classifier computed in480

the same way as for the neural interfacing analysis 6.5.2. All classifiers were481

implemented as detailed below using version 0.20.3 of the Scikit-Learn library482

(27 ).483

6.7.1 Multiclass Logistic Regression484

Implemented as LogisticRegression with the ‘multinomial’ option, the lbfgs485

solver and a maximum of 103 iterations.486

6.7.2 Nearest Neighbours Classifier487

Implemented as KNeighboursClassifier. Given the structure of the BOLD5000488

dataset, with only two examples per class (thus, either one or two examples in489

the training partition, test classification of each class on the basis of one correct490

training example) we classified on the basis of the single nearest neighbour under491

a Euclidean distance function.492

6.7.3 Linear Support Vector Machine (SVM)493

Implemented as LinearSVC, using a one-versus-rest multi-class strategy, with a494

maximum of 104 iterations and C parameter of 10−3.495

6.8 Granger Causal Modelling496

In contrast to the previous neural interfacing analysis of the spiking neural497

dataset, which aggregated spike rates over multiple presentations of each image,498

in the interval 70-170ms after stimulus onset, here we trained and evaluated the499

model on data at the individual trial level. We conducted a separate decoding500

analysis for each 10ms time bin, from -20ms (i.e., prior to stimulus onset) to501

270ms, with all time indices referring to the preceding 10ms bin. Training502

linear transformation matrix W is described in section 6.5.1. Prior to the GCM,503

we pre-processed the trial-level relative entropy data to ensure stationarity by,504

first, subtracting the temporal mean and standard deviation from each trial,505
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and second, subtracting the mean signal and dividing by the signal’s standard506

deviation, thus ensuring that each time step has zero mean and unit variance.507

Given two regions, X and Y, separate Granger-Causal models were computed508

for each direction X → Y and X ← Y , where each model takes the form of a509

linear regression, where the univariate outcome:510

KL(DX ||Di)n (5)

the KL divergence of region X with θ, the base model predictions, is predicted511

by the Granger null model (6), or the Granger-causal model (7).512

KL(DX ||Di)n−1, ...,KL(DX ||Di)n−p (6)

513

KL(DX ||Di)n−1,KL(DY ||Di)n−1, ...,KL(DX ||Di)n−p,KL(DY ||Di)n−p (7)

where p, the maximum number of previous time-steps is a hyperparameter514

that is determined using model-selection criteria such as BIC. The appropriate515

model was determined by comparing log-likelihood ratios, given the data, for516

the causal and null models.517
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A Appendix518
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Figure 5: Standard approaches to relating primate ventral stream and DC-
NNs evaluate variance shared between data from each brain region and unit
activations on each DCNN layer. They have been taken as evidence that ear-
lier ventral stream regions (e.g., V4) correspond to earlier DCNN layers and
later regions (e.g., IT) correspond to later DCNN layers. Here, we present a
shared-variance based analyses of directly recorded spiking neural activity(12 )
and VGG-16 using an established method (15 ). Higher correlations reflect more
shared variance between brain region and model layer.

B Supplementary Figures519

C Tables520
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Figure 6: Comparison of the brain-DCNN interface as a neural pattern classifier,
compared with standard linear classifiers typically used in multi-voxel pattern
analysis (MVPA). We present classification performance (AUC) directly on neu-
ral patterns, on the Generic Object Decoding (A) and BOLD5000 (B) datasets,
for simple classifiers (support vector machine with linear kernel, multiclass logis-
tic regression, and a 1-nearest neighbour classifier) with results for interface with
each layer of the DCNN presented for comparison. Performance of the simple
classifiers is generally near chance (0.5), we attribute this to the large number of
image classes (150, 958 respectively) and few available examples (2, 8 per class)
which severely limit the available training data. Because the brain-DCNN in-
terface learns a general mapping between brain region and model, it does not
suffer this limitation, making it an appealing novel approach for MVPA.
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Figure 7: Learning a mapping directly from neural measures to DCNN activa-
tion space produces a general mapping, rather than being dependent on train-
ing examples. The neural interface has an in-built ability to generalise to novel
classes. This is demonstrated by presenting classification performance (AUC)
on the BOLD5000 dataset, by comparing cross-validation (CV) strategies. Error
bars represent 95% confidence intervals across 3 subjects. Stratified 8-fold CV
(the default, used in all other analysis) ensures each training partition contains
at least one example of each class. Leave-one-class-out CV involves the same
number of CV folds as there are classes, each time training on all data except
one class, which is withheld for the validation set. Performance is equivalent
or better (LOC) when generalising to novel classes, which we attribute to more
training data per CV fold. Due to the training time, this analysis was restricted
to layer 5a.
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Figure 8: Alternative ‘backprop mode’ for training the transformation matrix
W mapping from neural space to DCNN activation space. Classification perfor-
mance (AUC) on the BOLD5000 dataset follows a qualitatively similar pattern
to the main analysis (compare figure 2B), albeit with lower absolute accuracy.
The default analysis trains W independently as a regression problem, using
layer activations as supervision targets directly. Instead, this approach uses W
as a weights matrix for a new neural network that takes neural data from a
brain region as input, connected to the latter part of the DCNN, and training
the network using the class labels as supervision targets, with all other DCNN
weights frozen.
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Dataset Generic Object Decoding(11 ) BOLD5000(10 ) Linear Weighted Sums(12 )

Stimuli experiment ‘train’ phase: 1916 images from 3200 greyscale
1200 images from 150 958 categories composite images, 64
categories (ImageNet (ImageNet ILSVRC 2012 objects in 8 categories,)

Fall 2011) non-congruent
background

Task one-back repetition valence judgement passive viewing, RSVP
detection (‘like’, ‘neutral’, ‘dislike’) presentation 100ms/100ms

Subjects 5 human fMRI 3 human fMRI 2 Macaque monkeys
(partial data from (vectors concatenated)

subject 4 excluded) multi-unit recording
Time indices full 9s of image presentation TR3-4 70-170ms
Brain region V1 (1004, 757, 872, 719, 659) EarlyVis (495, 495, 1218) IT (168 = 58 + 110)

(dimensionality V2 (1018, 944, 1031, 855, 891) LOC (342, 888, 1027) V4 (88 = 70 + 18)
per subject) V3 (759, 810, 861, 929, 907) OPA (288, 180, 392)

V4 (740, 544, 754, 704, 860) PPA (331, 370, 273)
LOC (540, 834, 996, 668, 566) RSC (229, 421, 394)
PPA (356, 316, 496, 398, 550)
FFA (568, 435, 928, 725, 929)

Table 1: Neural datasets For further dataset details, such as how regions were
defined, we refer readers to the original publications
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Block Layer Dimensions (h× w × c) Filter Size

Input 64× 64× 3

1 1a 64× 64× 64 3× 3
1b 64× 64× 64 3× 3

max pool 1 2× 2
2 2a 32× 32× 128 3× 3

2b 32× 32× 128 3× 3
max pool 2 2× 2

3 3a 16× 16× 256 3× 3
3b 16× 16× 256 3× 3
3c 16× 16× 256 3× 3

max pool 3 2× 2
4 4a 8× 8× 512 3× 3

4b 8× 8× 512 3× 3
4c 8× 8× 512 3× 3

max pool 4 2× 2
5 5a 4× 4× 512 3× 3

5b 4× 4× 512 3× 3
5c 4× 4× 512 3× 3

max pool 5 2× 2
FC FC1 4096

dropout 1
FC2 4096

dropout 2
FC3 (output) 1000 softmax

Table 2: DCNN Architecture: Layer configuration and dimensions of the
DCNN used for all analyses.
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