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Abstract 
The vagus nerve projects to a well-defined neural circuit via the nucleus tractus 

solitarii (NTS) and its stimulation elicits a wide range of metabolic, neuromodulatory, 

and behavioral effects. Transcutaneous vagus nerve stimulation (tVNS) has been 

established as a promising technique to non-invasively alter brain function. However, 

the precise dynamics elicited by tVNS in humans are still largely unknown. Here, we 

performed fMRI with concurrent right-sided tVNS (vs. sham) following a randomized 

cross-over design (N=40). First, to unravel the temporal profile of tVNS-induced 

changes in the NTS, we compared fMRI time series to canonical profiles for 

stimulation ON and OFF cycles. Model comparisons indicated that NTS time series 

were best fit by block-wise shifts in signal amplitude with stimulation ON and OFF 

estimates being highly correlated. Therefore, we compared stimulation (ON + OFF) 

versus baseline phases and found that tVNS increased fMRI BOLD activation in the 

NTS, but this effect was dependent on sufficient temporal signal-to-noise ratio 

(tSNR) in the mask. Second, to identify the spatiotemporal evolution of tVNS-induced 

changes in the brain, we examined lagged co-activation patterns and phase 

coherence. In contrast to our hypothesis, tVNS did not alter dynamic functional 

connectivity after correction for multiple comparisons. Third, to establish a positive 

control for future research, we measured changes in gastric myoelectrical frequency 

via an electrogastrogram. Again, in contrast to our hypothesis, tVNS induced no 

changes in gastric frequency. Collectively, our study provides evidence that tVNS 

can perturb brain signaling in the NTS, but these effects are dependent on tSNR and 

require precise localization. In light of an absence of acute tVNS-induced effects on 

dynamic functional connectivity and gastric motility, we discuss which steps are 

necessary to advance future research on afferent and efferent effects of tVNS. 
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1. Introduction 
 

To survive, any organism must adjust its motivated behavior, such as food 

seeking, to recuperate its energetic demands. To this end, the brain receives 

feedback from peripheral organs, for example, the gut and the stomach, on the 

current metabolic state of the body (Gribble & Reimann, 2019; Small & 

DiFeliceantonio, 2019). This information is largely transmitted via the vagus nerve, a 

key part of the autonomic nervous system projecting to the nucleus tractus solitarii 

(NTS; de Lartigue, 2016; Howland, 2014). These afferent vagal signals are sufficient 

to limit food intake as decerebrated rats can still terminate their intake in response to 

caloric load (de Lartigue, 2016; Grill & Norgren, 1978). Thus, a close 

correspondence between physiological signals reflecting metabolic need and the 

brain is vital to achieve energy homeostasis. Consequently, metabolic disorders, 

such as obesity, have been linked to disturbances within this circuit (Cork, 2018). 

Whereas there is emerging evidence on the role of vagal afferent signals in the 

control of motivated behavior (Davis et al., 2008; de Lartigue, Ronveaux, & 

Raybould, 2014; Tellez et al., 2013), it is still largely elusive how vagal input shapes 

whole-brain signaling dynamics underlying behavioral control.  

Despite the confined anatomical target of vagal afferents, their stimulation has 

been associated with a variety of neural, neuromodulatory, and behavioral effects. 

For example, it is well established that the NTS relays metabolic information to the 

mid- and forebrain (de Lartigue, 2016; Grill & Hayes, 2012). In humans, implanted 

cervical vagus nerve stimulation has been shown to increase cerebral blood flow in 

the dorsal anterior cingulate cortex and the dorsal striatum (Conway et al., 2012, 

2006). Furthermore, vagal afferents have been shown to modulate dopaminergic 

(Han et al., 2018; Tellez et al., 2013), noradrenergic (Roosevelt, Smith, Clough, 

Jensen, & Browning, 2006), and cholinergic signaling (Hulsey et al., 2016). 

Endogenous stimulation of the vagus nerve is induced by nutrients and also evokes 

dopamine responses in the dorsal striatum tracking caloric value (de Araujo, 

Ferreira, Tellez, Ren, & Yeckel, 2012; Ferreira, Tellez, Ren, Yeckel, & de Araujo, 

2012). Behaviorally, vagal afferent signals modulate appetite (Bodenlos et al., 2007) 

and food intake (de Lartigue et al., 2014; Val-Laillet, Biraben, Randuineau, & 

Malbert, 2010). Nevertheless, behavioral effects extend beyond food, as episodic 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.28.450171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450171
http://creativecommons.org/licenses/by-nc/4.0/


Brain dynamics after tVNS Teckentrup et al. 4 

and spatial memory (Suarez et al., 2018), cognitive flexibility (Klarer, Weber-

Stadlbauer, Arnold, Langhans, & Meyer, 2017), mood (Klarer et al., 2014), and 

reinforcement learning (Kühnel et al., 2020) were found to be affected by vagal 

modulation as well. Taken together, this body of evidence suggests that vagal 

afferent signals play an important neuromodulatory role, although it is not clear yet 

how the effects in the brain can be most effectively induced in humans. 

Recently, non-invasive transcutaneous vagus nerve stimulation (tVNS) has 

become a promising novel technique to modulate vagal afferents along a well-

defined neuroanatomical pathway. tVNS capitalizes on the dense innervation of the 

inner ear by the auricular branch of the vagus nerve (Howland, 2014). Only in the 

past decades, experimental studies have established the feasibility of non-invasive 

electrical vagal stimulation by demonstrating far-field potentials from the brain stem 

after tVNS (Fallgatter et al., 2003). Critically, tVNS does not substantially alter heart 

rate or blood pressure that might confound hemodynamics (Kraus et al., 2007).Thus, 

tVNS can be used concurrently to fMRI. Neuroimaging studies have demonstrated 

increased activation in areas well in line with afferent vagal projections throughout 

the brain stem (i.e., NTS, substantia nigra, dorsal raphe, locus coeruleus, and 

periaqueductal gray; Dietrich et al., 2008; Frangos, Ellrich, & Komisaruk, 2015; 

Yakunina, Kim, & Nam, 2017). Changes in brain activation after tVNS have also 

been found in neuroanatomically connected brain regions (Table 1) suggesting that 

tVNS elicits brain activation changes within an extended NTS circuit. This regulatory 

circuit is vital for energy homeostasis, as Yao et al. (2018) recently demonstrated 

that an implanted closed-loop VNS system effectively reduces food intake and 

delays weight gain in rats. Likewise, non-invasive tVNS has been shown to affect 

gastric motility by causing increased amplitude and decreased frequencies of action 

potentials in human gastric muscle cells (Hong et al., 2018). These tVNS-induced 

changes in stomach movements and brain activation might be directly linked via the 

“gastric network”, a resting-state network synchronized with the gastric rhythm 

(Rebollo, Devauchelle, Béranger, & Tallon-Baudry, 2018). Since the gut-brain circuit 

can be targeted via tVNS, characterizing alterations within this network could provide 

crucial insights into signaling dynamics potentially leading to optimized stimulation 

protocols in humans. 
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Table 1. Prior functional magnetic resonance imaging studies reporting brain 
areas that are neuroanatomically connected to brain stem nuclei and showed 
activation changes after transcutaneous vagus nerve stimulation 

Change in brain activation 
 

Study 

+ NTS 
 
 
 
- NTS 

(Frangos et al., 2015) (S) [mostly ipsilateral] 
(Frangos & Komisaruk, 2017) ( S)  [ipsilateral] 
(Yakunina, Kim, & Nam, 2017) (S) [bilateral] 
(Sclocco et al., 2019) (BL) [bilateral] 
(Frangos & Komisaruk, 2017) ( S)  [contralateral] 
(Kraus et al., 2013) (S) [mostly bilateral] 

+ Parabrachial nuclei 
 

(Frangos et al., 2015) (S) 
(Frangos & Komisaruk, 2017) (BL, S) 

+ Thalamus 
 

(Dietrich et al., 2008) (BL) 
(Kraus et al., 2007) (S) 
(Kraus et al., 2013) (S) 
(Yakunina, Kim, & Nam, 2017) (S) 

+ Hypothalamus 
- Hypothalamus 

(Yakunina, Kim, & Nam, 2017) (S) 
(Frangos et al., 2015) (S) 

- Visual cortex (Frangos & Komisaruk, 2017) (BL) 

+ Amygdala 
- Amygdala 

(Frangos et al., 2015) (S) 
(Kraus et al., 2007) (S) 

+ Caudate (Yakunina, Kim, & Nam, 2017) (S) 
(Badran et al., 2018) (S) 

+ Insula 
 
 

(Dietrich et al., 2008) (BL) 
(Frangos et al., 2015) (BL) 
(Frangos & Komisaruk, 2017) (BL, S) 
(Kraus et al., 2013) (S) 
(Kraus et al., 2007) (S) 

+ Basal ganglia (Frangos & Komisaruk, 2017) (BL, S) 
(Yakunina, Kim, & Nam, 2017) (S) 

- Temporal gyrus (Kraus et al., 2013) (S); (Kraus et al., 2007) (S) 

- Hippocampus (Kraus et al., 2007) (S) 
(Frangos et al., 2015) (S) 
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(Frangos & Komisaruk, 2017) (BL, S) 

- Parahippocampal gyrus (Kraus et al., 2007) (S) 
(Kraus et al., 2013) (S) 

+ Nucleus accumbens 
- Nucleus accumbens 

(Frangos et al., 2015) (S) 
(Dietrich et al., 2008) (BL) 

+ Paracentral lobule (Frangos et al., 2015) (S) 

+ Postcentral gyrus (Dietrich et al., 2008) (BL) 

+ Precentral gyrus (Kraus et al., 2007) (S) 

+ Primary sensory cortex (Frangos & Komisaruk, 2017) (BL) 

+ Cingulate gyrus 
 

(Badran et al., 2018) (S) 
(Dietrich et al., 2008) (BL) 

+ Frontal cortex 
 

(Badran et al., 2018) (S) 
(Dietrich et al., 2008) (BL) 
(Frangos & Komisaruk, 2017) (BL, S) 

- Posterior cingulate cortex (Kraus et al., 2013) (S) 

(+) Increase, (-) Decrease, (BL) compared to baseline, (S) compared to sham 
stimulation 
 

To develop targeted clinical applications in humans, detailed insights into 

circuit-level brain dynamics are decisive (Berényi, Belluscio, Mao, & Buzsáki, 2012; 

Dayan, Censor, Buch, Sandrini, & Cohen, 2013; Kringelbach, Green, & Aziz, 2011; 

Muldoon et al., 2016; Saenger et al., 2017), and tVNS provides an experimental 

means to causally alter signaling cascades in a homeostatic network. Arguably, 

causal manipulation of brain signaling can be achieved with other stimulation 

techniques, such as transcranial magnetic stimulation (TMS), transcranial direct 

current stimulation (tDCS) or deep brain stimulation (DBS) as well. While TMS uses 

electromagnetic induction to de- or hyperpolarize cortical neurons (Walsh & Pascual-

Leone, 2003), tDCS can be used to temporarily shift the resting membrane potential 

of cortical neurons (Utz, Dimova, Oppenländer, & Kerkhoff, 2010). Both techniques, 

though, can only be used to modulate cortical areas close to the skull and lack the 
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anatomical specificity of tVNS (Beam, Borckardt, Reeves, & George, 2009; George 

& Aston-Jones, 2010; Horvath, Forte, & Carter, 2015; Klooster et al., 2016). 

Moreover, the efficacy of tDCS with conventional settings is still controversially 

debated in the literature (Boayue et al., 2019; Horvath et al., 2015; Opitz et al., 2016) 

and there is currently no positive outcome control available for tDCS. In contrast, for 

TMS, induced motor events in the abductor pollicis brevis can be used as positive 

control for depolarization within the motor cortex (Mogg et al. 2007, Pridmore et al. 

1998). Higher anatomical specificity is provided by DBS, which allows stimulation of 

neural tissue deep in the brain (Kringelbach, Jenkinson, Owen, & Aziz, 2007). To 

verify the position of the electrodes, electrophysiological measures can be used 

during surgery (Milosevic et al., 2018; Neumann et al., 2019; Vitek, Delong, Starr, 

Hariz, & Metman, 2011). In combination with lead externalization after surgery, these 

measures can be used as positive control (Neumann et al., 2019; Rosa et al., 2017; 

Voges, Müller, Bogerts, Münte, & Heinze, 2013). However, due to the invasive 

nature of DBS, research is restricted to therapeutic applications precluding use in 

healthy participants (Cusin, Soskin, & Dougherty, 2012). Taken together, in contrast 

to other brain stimulation techniques, tVNS may provide a non-invasive way to 

perturb a well-defined brain circuit to investigate causally induced signaling cascades 

in the brain, but a positive control is still missing.   

 

Hypotheses 

tVNS might serve as a non-invasive and spatially well-defined technique to 

perturb neural circuits related to metabolism. Thus, the overarching goal of this study 

is to characterize changes in brain dynamics induced by tVNS that are currently not 

well understood in humans. Consequently, we used model comparisons to 

determine potential temporal profiles of brain activation induced by tVNS. 

Furthermore, we aimed to unravel the spatiotemporal progression of tVNS effects by 

employing complementary connectivity indices that track changes elicited by the 

stimulation in space and time. 

 

1. Temporal evolution of the tVNS effect (main objective) 

We expected tVNS to increase activation in the brain stem, particularly in the 

NTS. We hypothesized that tVNS either leads to 1) a ramping increase, 2) an initial 
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impulse function followed by a linear decrease, or 3) a block-wise change in 

amplitude. This temporal prediction was based on the default stimulation protocol of 

the NEMOS tVNS device, consisting of 30s ON and OFF cycles. We tested for the 

temporal profile of the tVNS effect by generating synthetic fMRI time series by 

convolving the three-by-three candidate activation “models” with the canonical 

hemodynamic response function. Then, we fit hierarchical linear models accounting 

for random effects of participants to predict the fMRI time-series extracted from the 

NTS region of interest (ROI). To identify the best fitting model of the temporal profile 

at the first level, we used model comparisons. Moreover, since the impact of 

participant variables modulating the effects at the second level is still largely elusive, 

we finally compared two versions of the winning temporal model: One with only order 

of stimulation conditions as a control variable at the second level, and one with BMI 

and sex as additional control variables. 

 

2. Spatiotemporal profile of the tVNS effect (secondary objective) 

Since tVNS effects are not spatially confined, we hypothesized that the tVNS-

induced change in activation causes a cascade propagating downstream (Table 1). 

To unravel the pathway of this signaling cascade, we tested for regions that show a 

time-lagged activity which is associated with the primary tVNS effect as assessed 

within the NTS by Hypothesis 1. To this end, we used complementary connectivity 

measures that provide point estimates (i.e., for each TR) to avoid averaging over 

multiple sequential scans. On the one hand, we tested for lagged tVNS effects based 

on signal amplitude by performing incremental calculations of co-activation patterns 

(CAPs) with increasing lag. On the other hand, we calculated dynamic phase-

coherence to determine changes in frequency that are orthogonal to changes in 

amplitude. In other words, dynamic phase-coherence capitalizes on phase similarity 

within normalized (i.e., free of differences in amplitude) time courses of brain signal. 

 

3. tVNS-induced effects on myoelectrical frequency (positive control outcome) 

Based on recent findings, we expected that tVNS reduces gastric frequency 

(positive control). Thus, to validate successful acute stimulation of the vagal 

pathway, we measured an electrogastrogram (EGG) and modeled changes in gastric 

frequency for tVNS versus sham using linear mixed-effects models.  
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To summarize, although non-invasive tVNS has gained considerable traction 

in recent years, the dynamics of afferent effects on brain function are still largely 

unknown. Likewise, an independent positive control to verify tVNS has not been 

established so far. Thus, we applied tVNS versus sham stimulation in 40 healthy 

participants using a single-blind randomized cross-over design. First, to uncover the 

temporal profile of the stimulation effect in the target region NTS, we concurrently 

measured brain function using fMRI at rest. Second, to uncover the spatio-temporal 

progression of the stimulation effect, we analyzed time-shifted connectivity maps 

originating from the NTS. Third, we concurrently acquired the gastric myoelectric 

frequency via an electrogastrogram to evaluate successful stimulation of the NTS 

based on efferent modulation of the gut. After improving the SNR of the mask to 

achieve good coverage of the NTS signal, we found a significant increase in activity 

with low-to-moderate levels of smoothing, but not in models using unsmoothed time 

series. In contrast to our hypotheses, we found no effect of tVNS on dynamic 

functional connectivity (FC) or gastric frequency. 

 

2. Methods 

2.1 Participants 

In total, we recruited 45 healthy participants via public announcement, 

including posts on the email lists of the University of Tübingen and University 

Hospital Tübingen, social media and flyers. Five participants had to be excluded 

from the final sample. Three of these participants left the study by request before 

both sessions had been completed. One participant was excluded due to motion 

parameters exceeding the preregistered threshold (> 50% of the total number of 

volumes exceeding a framewise displacement of 0.5 mm) in the resting-state fMRI 

measurement. One participant was excluded because the stimulation failed to start 

precisely at the beginning of the stimulation phase of the resting-state fMRI 

measurement. This yielded the final sample of 40 healthy participants (22 female, 

Mage = 25.5 years ± 6.6; MBMI = 24.0 kg/m² ± 3.1). All participants completed a phone 

screening prior to taking part in the study. To be eligible, the following criteria had to 
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be met: 1) 18-50 years of age; 2) BMI range of 18.5-30 kg/m²; 3) no lifetime history 

of brain injury, cardiovascular diseases, schizophrenia, bipolar disorder, epilepsy, 

diabetes or asthma; 4) no implants (e.g. pacemaker, cochlear implant, cerebral 

shunt; except dental prostheses); 5) within the last 12 months: no severe substance 

abuse disorder, anxiety disorder (except specific phobia), obsessive compulsive 

disorder, trauma- and stressor-related disorder, somatic symptom disorder or eating 

disorder; 6) no open wounds or impaired skin at electrode site; 7) not pregnant or 

nursing; 8) be eligible for MR research (i.e., no non-removable metal parts, such as 

piercings, no tattoos above the neck or larger than 14 cm, no claustrophobia, noise 

tolerability). All participants provided written informed consent prior to the first 

session. The protocol has been approved by the ethics committee of the medical 

faculty of the University of Tübingen and the University Hospital Tübingen (reference 

number 235/2017BO1). 

 

2.2 Power analysis 

To provide accurate within-subject estimates of tVNS-induced effects, we 

aimed to investigate 40 participants. To determine an adequate sample size for the 

main objective, we ran simulations using the intended design1. We based our 

simulation on block-wise stimulation-induced brain activation, a candidate model 

which mirrors the NEMOS protocol. Accordingly, we first generated design 

regressors and convolved them with the canonical hemodynamic response function 

provided in SPM12 (spm_volterra, TR = 1 s to simplify calculations; see 2.5.3 

Statistical analysis, temporal evolution of the tVNS effect). We then simulated BOLD 

time series for tVNS and sham conditions, respectively, using known parameter 

values. To generate the tVNS BOLD time series, we randomly drew N “beta” values 

from a normal distribution (M = 0.2, SD = 0.12), where N was the number of 

participants. Next, we multiplied this beta with the design regressors for each 

participant. Lastly, we added random measurement noise by sampling from a normal 

distribution (M = 0, SD = 1). As sham stimulation should lead to less pronounced 

activation in the ROI, we reasoned that the average beta would be smaller. To 

                                                 
1 Scripts used to run the simulations described in this section can be downloaded here: 
https://osf.io/v8ngb/ 
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account for the nested repeated measures design (i.e., correlations of stimulation 

effects among participants), beta values for the sham conditions were generated by 

multiplying each tVNS beta with a beta parameter controlling the reliability of the 

measurement (betareliability = 1.15) and subsequently subtracting 0.11 from the result. 

We then added noise drawn randomly from a normal distribution (M = 0, SD = 0.1). 

Lastly, we recovered “observed” beta values by estimating them from simulated 

BOLD time series for tVNS and sham based on the design regressors (regress 

function as implemented in MATLAB R2017a (The Mathworks Inc., Natick, MA, 

USA)). To calculate the effect size Cohen’s dz, we estimated the mean differences 

between betas (tVNS-sham) and the SD of the differences and calculated the ratio. 

To get the sampling distribution, we repeated this procedure 1000 times. 

Accordingly, a sample size of N = 40 allowed us to recover large within-subject 

effects (median latent Cohen’s dz ~1.00 vs. recovered dz ~0.79 given a correlation of 

r = .57 between sessions corresponding to moderate test-retest reliability (Fröhner, 

Teckentrup, Smolka, & Kroemer, 2019)). Thus, for this basic within-subject 

comparison, the power exceeded 99% and provided excellent precision of the effect-

size estimate, 95% CI [0.45, 1.17], which is important for the model comparisons to 

be conclusive. 

 

2.3 Experimental procedure 

Our study (randomized single-blind cross-over design) consisted of 2 

sessions following the same standardized protocol (Figure 1). Thus, participants 

received tVNS in one of the sessions, and sham stimulation in the other session with 

order being determined in advance. We used the function randperm as implemented 

in Matlab 2018a to generate a shuffled vector of zeros and ones coding for the 

stimulation condition in the first experimental session with the second session being 

the complementary condition of the cross-over design (the exported Excel table, 

locked prior to study commencement, can be accessed on OSF: 

https://osf.io/uqtke/). 

Participants were asked to enter the experimental session neither hungry nor 

full and to refrain from consuming food or caloric beverages 1 h prior to each 
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session. They were further asked to eat approximately 1.5 h prior to the beginning of 

each session to ensure comparable delays to the last meal. At the beginning of each 

session, anthropometric measures were taken, including body weight, height, and 

waist and hip circumference (World Health Organization, 2011). Participants also 

provided information about their last intake of food and drinks and, if applicable, their 

menstrual cycle and oral contraceptive use. Thereafter, we acquired ratings of 

hunger, fullness, thirst, and mood based on items of the PANAS (Watson, Clark, & 

Tellegen, 1988), according to our previously established procedure for tVNS testing 

(Kühnel et al., 2020). 

After participants completed state ratings, the stimulation site was cleaned 

with ethanol and the stimulating electrodes were placed on the cymba conchae for 

tVNS and on the earlobe for sham stimulation as described in Frangos et al. (2015). 

Medical white tape was used to durably attach the electrodes to the desired location. 

Then, we tested if the electrodes had sufficient skin contact by briefly activating the 

stimulator. Before participants entered the scanner, EGG and ECG electrodes were 

positioned. Furthermore, to reduce artifacts due to head motion, we cleaned the 

participant’s forehead with ethanol and applied a strip of medical tape from one side 

of the magnetic resonance head coil to the other via the forehead which serves as a 

tactile feedback if the participant moves (Krause et al., 2019). Once participants 

were positioned inside the scanner, the EGG baseline measurement started. Then, 

we determined the stimulation intensity with the electrodes being placed at the sham 

or tVNS site, respectively, at the beginning of each session based on the individual 

pain threshold (corresponding to mild pricking). After defining this threshold, the 

electrode remained in place, but was not active until participants entered the 

stimulation phase. 

During the MR measurement, we first ran a localizer (1 minute) and acquired 

the T1-weighted anatomical scan (6 minutes). During this anatomical scan, 

participants completed training rounds for the tasks. Task fMRI was measured within 

the study, but this data is not a measure of interest for the current report. After 

acquiring fieldmaps (2 minutes), we showed instructions for the following resting-

state fMRI (rs-fMRI) measurement on a screen inside the scanner room, asking the 

participant to lie still, to think of nothing in particular, and to stay awake. Then, the rs-

fMRI baseline was measured (10 minutes). While rs-fMRI scans were running, we 
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showed a 10-minute version of the Inscapes animation (without audio) to improve 

compliance while minimizing cognitive load and motion (Vanderwal, Kelly, Eilbott, 

Mayes, & Castellanos, 2015). After 10 minutes of baseline rs-fMRI, stimulation was 

turned on. Then, 10 minutes of rs-fMRI were collected during active stimulation 

(tVNS or sham). To ensure precise estimates of myoelectric activity, EGG 

measurement started before rs-fMRI (after positioning) and continued thereafter 

while the stimulation was still on. 

Thereafter, we continued with two reward processing tasks with concurrent 

active stimulation (60 minutes). These tasks are no measure of interest for the 

current report. Afterwards, the stimulation was turned off, the EGG recording was 

stopped and the participant was taken out of the scanner. After a short break, 

participants completed the state ratings for a second time (~5 minutes). At the end of 

each session, participants received the rewards they earned based on their task 

performance (extra monetary payment and snacks) and a baseline compensation for 

participation in the study (either 56 € or partial course credit) at the end of the 

second session. 
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Figure 1. Schematic summary of the experiment. A: Placement of the electrode for transcutaneous 
vagus nerve stimulation (tVNS) and sham condition. B: Depiction of the targeted pathway and the 
methods used to investigate afferent and efferent effects of tVNS. C: Procedure for the study. 
Visualization was generated using R (https://www.r-project.org/) and gganatogram (Maag, 2018). 

 

2.4 tVNS device 

Stimulation was applied transcutaneously to the auricular branch of the vagus 

nerve using Cerbomed NEMOS (Erlangen, Germany), a non-invasive, stimulation 

device (Kreuzer et al., 2012; Van Leusden, Sellaro, & Colzato, 2015). NEMOS has 

been established as a therapeutic tool (Bauer et al., 2016) and is compatible with 

concurrent fMRI measurements (Frangos et al., 2015). Given the current use of this 

device in therapeutic contexts, investigating the effects of the stimulation protocol on 

brain dynamics is of high relevance.  

With NEMOS, electrical stimulation was applied to the right ear via a titanium 

electrode placed at the cymba conchae (tVNS) or the same electrode turned upside 

down and placed at the earlobe (sham), following the protocol of (Frangos et al., 

2015; Figure 1). The stimulation protocol of NEMOS is preset with a biphasic 

impulse frequency of 25 Hz with alternating intervals of 30 s stimulation ON and 30 s 
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OFF. We adjusted the individual stimulation intensity based on subjective pain 

thresholds using VAS ratings at the beginning of each session (for details, see 

Kühnel et al. (2020)). In short, we initialized the stimulation at 1 mA and increased 

stepwise in 0.5 mA units. Participants rated the current sensation (“How intensely do 

you feel pain induced by the stimulation?”) ranging from 0 (“no sensation”) to 10 

(“strongest sensation imaginable”) until they settle around 5 (“mild pricking”). 

To safely apply the stimulation inside the MR scanner, the stimulator was 

placed in the control room. Only the earpiece with the electrodes was located in the 

scanner room and connected to the stimulator via a cable routed through an RF filter 

plate. 

 

2.5 Magnetic resonance imaging 

2.5.1 Data acquisition 

Structural and functional MRI data were acquired on a Siemens 3 Tesla 

PRISMA magnetic resonance imaging scanner equipped with a 64-channel RF head 

receiver coil. We report details of the imaging sequences following the COBIDAS 

consortium guidelines (Nichols et al., 2016). Structural T1-weighted images were 

measured using an MP-RAGE sequence with 176 sagittal slices covering the whole 

brain, flip angle = 9°, matrix size = 256 × 256 and voxel size = 1 × 1 × 1 mm³. 

Fieldmaps were acquired using a Siemens gradient echo fieldmap sequence with 

short echo time (TE) = 5.19 ms and long TE = 7.65 ms (TE difference = 2.46 ms). 

fMRI data (10 minutes pre-stimulation baseline and 10 minutes concurrent 

stimulation) were acquired as T2*-weighted gradient echo echo-planar images 

(EPIs) using a multiband factor of 4, 68 axial slices with an interleaved slice order 

covering the whole brain including brain stem, repetition time (TR) = 1.4 s, TE = 30 

ms, flip angle = 65°, 110 × 110 matrix, field of view = 220 × 220 mm² and voxel size 

= 2 × 2 × 2 mm³. Additionally, peripheral physiological recordings of the respiratory 

cycle using the Siemens respiratory belt were planned. Due to the preregistered 

placement of EGG and ECG electrodes, however, there was not enough space on 

the body to place the belt without affecting EGG recordings. As the respiratory cycle 
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can also be extracted from electrodes placed on the abdomen (Sayadi, Weiss, 

Merchant, Puppala, & Armoundas, 2014), we used the EGG measurements to infer 

the respiratory cycle instead. 

2.5.2 Preprocessing 

rs-fMRI data was preprocessed using the standardized fMRIPrep pipeline 

(https://github.com/poldracklab/fmriprep) v20.1.1 (Esteban et al., 2019) 

[RRID:SCR_016216] based on Nipype (Gorgolewski et al., 2011) 

[RRID:SCR_002502] and Nilearn (Abraham et al., 2014) [RRID:SCR_001362].  

Using this pipeline, each T1-weighted (T1w) volume was corrected for 

intensity non-uniformity using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) 

and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template). 

Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1 (Dale, 

Fischl, & Sereno, 1999) [RRID:SCR_001847], and the brain mask estimated before 

was refined with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein et 

al., 2017) [RRID:SCR_002438]. Spatial normalization to the ICBM 152 Nonlinear 

Asymmetrical template version 2009c (Fonov, Evans, McKinstry, Almli, & Collins, 

2009) [RRID:SCR_008796] was performed through nonlinear registration with the 

antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, & Gee, 2008) 

[RRID:SCR_004757], using brain-extracted versions of both T1w volume and 

template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 

and gray-matter (GM) was performed on the brain-extracted T1w using FAST 

(Zhang, Brady, & Smith, 2001) [FSL v5.0.9, RRID:SCR_002823]. 

Functional data were slice-time corrected using 3dTshift from AFNI v16.2.07 

(Cox, 1996) [RRID:SCR_005927] and motion corrected using MCFLIRT (Jenkinson, 

Bannister, Brady, & Smith, 2002) [FSL v5.0.9]. Distortion correction was performed 

using fieldmaps processed with FUGUE (Jenkinson, 2003) [FSL v5.0.9]. This was 

followed by co-registration to the corresponding T1w using boundary-based 

registration (Greve & Fischl, 2009) with 9 degrees of freedom, using bbregister 

[FreeSurfer v6.0.1]. Motion correcting transformations, field distortion correcting 

warp, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were 
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concatenated and applied in a single step using antsApplyTransforms [ANTs v2.1.0] 

based on Lanczos interpolation. 

Physiological noise regressors were extracted by calculating the average 

signal inside the anatomically-derived CSF and WM masks across time using 

Nilearn. Framewise displacement (Power et al., 2014) was calculated for each 

functional run using the implementation of Nipype. Following the recommendation of 

Power et al. (2014), we calculated the number of volumes per run which exceed a 

framewise displacement threshold of 0.5 mm. If more than 50% of the total number 

of volumes exceed this threshold or less than 5 minutes of data below this threshold 

remain, the respective subject was excluded from further analyses. As our main 

hypothesis and the accompanying power analysis depend on the imaging data, 

excluded participants were replaced with new participants until a full set of 40 

imaging datasets with two sessions (tVNS and sham) passing quality control was 

reached. 

Spatial smoothing can lead to excessive false positives in smaller brain areas 

such as the NTS (Frangos et al., 2015; Frangos & Komisaruk, 2017) and increases 

the risk to mix in signals from outside the respective brain region (Bielczyk, Llera, 

Buitelaar, Glennon, & Beckmann, 2017). Thus, we initially planned to smooth the 

whole-brain voxel-based maps with a 6 mm FWHM kernel and keep the unsmoothed 

data in parallel to extract unsmoothed seed time series from the NTS. However, 

models to estimate the canonical profiles for stimulation ON- and OFF-cycles based 

on unsmoothed data showed great instability and did not converge, suggesting that 

unsmoothed data is not suitable for the modelling approach we had preregistered. 

Several studies using multivariate pattern analysis have shown that applying spatial 

smoothing using a small smoothing kernel improves classification accuracy, even 

though the technique is intended to capitalize on unique spatial information (Gardumi 

et al., 2016; Mandelkow, de Zwart, & Duyn, 2017). The increase in accuracy is 

hypothesized to be due to an increase in signal-to-noise ratio (SNR) as reproducible 

neural contributions to the BOLD signal are spatially autocorrelated and smooth and, 

thus, can be inferior to noise signal when spatial smoothing is not applied. 

Importantly, this increase in accuracy also holds true for small regions of interest 

(Mandelkow et al., 2017). Hence, we smoothed the whole-brain voxel-based maps 

with a 6 mm FWHM kernel as planned. Due to the small size of our ROI, we also 
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evaluated an NTS time series after smoothing the data with a smaller 4 mm FWHM 

kernel. Given our voxel size of 2 mm, this was based on recommendations that the 

minimum FWHM should be twice the size of the voxel (Mikl et al., 2008; Worsley & 

Friston, 1995). NTS time series extracted from smoothed data showed a Pearson 

correlation of r = .996 indicating negligible differences. Hence, estimating the Time 

(pre, post) × Stimulation (sham, tVNS) interaction after smoothing with a 6 mm 

FWHM kernel showed comparable results to the 4 mm FWHM kernel model. In line 

with our preregistered methods, we also report results from mixed-effects models 

based on unsmoothed NTS time series. 

Respiratory cycle data from the EGG electrodes was preprocessed using 

BrainVision Analyzer (Brain Products, Germany), FieldTrip (Oostenveld, Fries, Maris, 

& Schoffelen, 2011) and the PhysIO toolbox (Kasper et al., 2017). In brief, the EGG 

recordings were read into BrainVision Analyzer and the Scanner Artifact Correction 

was applied to remove gradient artifacts from the data before submitting exported 

time series to FieldTrip. As the typical respiratory rate in humans is around 0.3 Hz, 

the data were downsampled to 50 Hz and bandpass-filtered between 0.1 and 0.6 Hz. 

The respiratory time series were then read into the PhysIO toolbox and respiratory 

phase and respiratory volume per time were calculated. By convolution of the 

respiratory volume per time with the respiration response function (Birn, Smith, 

Jones, & Bandettini, 2008), the toolbox then generated a nuisance regressor for 

noise correction. We included this regressor in our MR time series analyses, as 

respiration influences the activity of the NTS and may affect tVNS-induced brain 

responses as well (Sclocco et al., 2019).  

2.5.3 Statistical analysis 

To assess the effect of tVNS on brain dynamics, we investigated the 

spatiotemporal evolution of brain activation induced by the preset NEMOS 

stimulation protocol (alternating between ON and OFF every 30 seconds). We then 

tracked the tVNS-induced activation across the brain using FC measures based on 

complementary amplitude and frequency information.  
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Hypothesis 1: Temporal evolution of the stimulation effect (main objective) 

First, we aimed to model acute effects of tVNS on brain activation based on 

the three likely temporal activation profiles following stimulation (Figure 3). We 

reasoned that tVNS either leads to 1) a linear increase in signal amplitude from 0 at 

t0 s to 1 at t30 s (ramping), 2) an impulse function with a subsequent linear decrease 

in signal amplitude from 1 at t0 s to 0 at t30 s (decay), or 3) a block-wise shift in 

signal amplitude to 1 from t0 s to t30 s. In the design matrix, the baseline period 

preceding the stimulation period was modeled with a constant amplitude of 0. To 

estimate the stimulation effect on BOLD responses, we generated two design 

regressors by separately convolving ON and OFF phases of the stimulation 

(including baseline) with the canonical hemodynamic response function in SPM12. 

This yielded a set of nine models (Figure 3; three hypothesized design regressors 

per phase (ON vs. OFF). As we expected tVNS to initially increase brain activation in 

the NTS, we extracted the mean BOLD time series of the NTS ROI from the 

acquired rs-fMRI data. To investigate the possible lateralization of the stimulation 

effect, we extracted two time series from the NTS, one for each hemisphere. We 

tested if the right and left NTS-based time courses lead to the same winning model. 

Based on the result of this model comparison, we averaged the NTS time courses 

over the bilateral ROI mask. Based on a recent publication using a high-resolution 

MT-weighted sequence at 7T to compile a mask of the NTS (Priovoulos, Poser, 

Ivanov, Verhey, & Jacobs, 2019), we adapted this mask for usage in functional 

imaging by enlarging it using the dilation option of FSL Maths [FSL v5.0.9] based on 

a 9 × 9 × 9 kernel box. However, based on this inflated mask, our statistical models 

did not converge robustly. Comparing the coordinates provided in Priovoulos et al. 

(2019) and the coordinates of the provided mask we inflated, we noticed a 

discrepancy suggesting that the inflated mask mostly captures CSF signal, leading to 

insufficiently low temporal SNR (tSNR) and poor alignment with the likely position of 

the NTS in the EPI images across participants. Thus, we constructed a modified 

mask using WFU PickAtlas (version 3.0.5b), consisting of five box shapes following 

the coordinates stated in Priovoulos et al. (2019). The first box (dimensions: [3 3 2]) 

was placed at the MNI coordinates [5 -40 -46], the second box (dimensions: [3 3 2]) 

placed at the MNI coordinates [5 -41 -49]. The third box (dimensions: [3 3 2]) was 

placed at the MNI coordinates [3 -42 -52], the fourth box (dimensions: [2 3 2]) placed 

at the MNI coordinates [2 -43 -55], and the fifth box (dimensions: [2 3 1]) was placed 
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at the MNI coordinates [2 -44 -58]. Importantly, our modified mask more closely 

captures the shape and coordinates reported by Priovoulos et al. (2019, Figure 2A) 

and with time series data extracted from our modified mask, the tSNR improved for 

all 40 participants (Figure 2B, mean tSNR map has been uploaded to NeuroVault for 

inspection: https://neurovault.org/collections/CHANQVEU/). The notion that low 

tSNR in the original, inflated NTS mask led to the convergence problems in our 

models is further supported by running the analyses with time series extracted from 

a restricted version of the original, inflated mask which only contained the 25% 

voxels with the highest tSNR. Models based on this restricted version of the inflated 

mask converged and led to results comparable to those with our modified mask (see 

Supporting Information - tVNS-induced effects on resting-state fMRI BOLD). We 

added our modified NTS mask to OSF: https://osf.io/e3gyq/ 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.28.450171doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450171
http://creativecommons.org/licenses/by-nc/4.0/


Brain dynamics after tVNS Teckentrup et al. 21 

 

Figure 2. Comparison of the original, inflated NTS mask from Priovoulos et al. (2019, red) and our 
modified NTS mask (blue) constructed using WFU PickAtlas according to the MNI coordinates 
reported in Priovoulos et al. (2019). A: Comparing the positioning of the new modified NTS mask and 
the original, inflated mask (upper panel) with the distribution of peak individual voxel intensity along 
the rostral-caudal axis in MNI space (lower panel) reported by Priovoulos et al. (2019) shows that the 
modified NTS mask better captures the shape and coordinates (lower panel figure adapted from 
Priovoulos et al. (2019)). B: Temporal signal-to-noise ratio (tSNR) in the modified NTS mask 
compared to the original, inflated NTS mask is higher for all 40 participants included in the study 
(mean [95% CI] paired t-test: 36.46 [31.84, 41.08], t = 15.96, p < .001; the modified NTS mask is 
available on OSF: https://osf.io/e3gyq/). 

 

To identify the best model of tVNS-induced brain activation, time series 

generated from the convolved design regressors were compared to the extracted 

time series. As in previous studies (Kroemer et al., 2014, 2016), we used full mixed-

effects models, here implemented using the fitlme function in MATLAB, to predict the 

extracted NTS time series by a set of nine candidate models. Candidate models 

were composed by combining the potential design regressors. As nuisance 

regressors, we further included the PhysIO computed respiratory confound 

regressor, the six realignment parameters, the continuous log-transformed 

framewise displacement vector, and the WM and CSF regressors as calculated by 

fMRIPrep. On the participant (second) level of the hierarchy, we modeled random 

intercepts and slopes for each participant for the ON and OFF stimulation 

regressors. This enabled us to estimate deviations of each individual from the 
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average group effect (fixed effect). As nuisance regressors, we included the mean 

framewise displacement2 and order of the conditions (tVNS first/sham first; default 

confound model). The best fitting model over all participants was then identified via 

model selection based on deviance (i.e., model residuals) of the fMRI time series at 

first level. Given that all candidate models had the same complexity (i.e., number of 

free parameters), the best fitting model has the lowest deviance from the NTS time 

series across the sample. To facilitate comparisons, we calculated the Bayesian 

information criterion (BIC) with 

BIC = Deviance + k * ln(n)      (1)  

(where k is the number of model parameters and n is the sample size) and the 

differences in BIC between the best fitting model and other candidates (Kass & 

Raftery, 1995). A ΔBIC > 10 was considered as strong evidence in favor of the 

model. If several models fell within this range, this would indicate that the differences 

between the temporal profiles is negligible. To gain further insights regarding the 

temporal evolution of the stimulation effect, we additionally inspected and plotted the 

residuals of the winning model. 

Subsequently, we tested an extended confound model as an alternative that 

might account for additional variance at the participant level. This extended confound 

model included BMI and sex as these variables might affect the estimation of tVNS 

effects. We reasoned that the range of age would likely be limited in our sample so 

that it does not need to be included. Since more nuisance predictors lead to models 

with higher complexity, we compared the log-likelihood of nested models (default 

confounds vs. extended confounds) and used the ΔBIC to select the best model for 

group inferences. tVNS-induced effects were assessed by comparing the model 

estimates of ON and OFF slopes for tVNS vs. sham sessions. After inspecting the 

residuals on the participant level, we found a very high correlation between random 

effects of the slope estimation which suggests that the ON and OFF slopes are 

statistically inseparable (r > .9). Thus, we investigated tVNS-induced effects by 

contrasting the stimulation and baseline phases of tVNS vs. sham sessions instead. 

Lastly, to avoid missing a more appropriate temporal model, we used a 

“model-free” analysis of the temporal profile of the NTS BOLD time series. We 

                                                 
2 see https://neurostars.org/t/confounds-from-fmriprep-which-one-would-you-use-for-glm/326 
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hypothesized that during the tVNS session, the power in higher frequency bands 

should be increased. We separately estimated the power spectral density of the NTS 

BOLD time series for each session during baseline (tVNS vs. sham session) and 

stimulation (tVNS vs. sham session). For statistical analysis, we tested for an 

interaction between time (pre vs. post stimulation) and stimulation (tVNS vs. sham) 

on the first level. Again, on the second level of the hierarchy, we modeled random 

intercepts and slopes for each participant. 

 

 

Figure 3. Summary of the key hypotheses and the corresponding analyses. First, we estimated the 
temporal profile of the tVNS effect for ON and OFF stimulation phases. Second, we mapped the 
spatiotemporal progression of the tVNS effect using complementary methods that capture functional 
connectivity. Third, we tested if tVNS induces reliable effects on myoelectrical frequency, which may 
serve as a positive control of NTS activation via tVNS in future studies. 
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Hypothesis 2: Spatiotemporal pathway of the tVNS effect 

Next, we studied the spatiotemporal dynamics of tVNS-induced brain 

activation via the NTS across the brain over time. We investigated connectivity 

between the NTS and other functionally connected ROIs in the brain. To define 

ROIs, we used an extended version of the Harvard-Oxford atlas (Desikan et al., 

2006), which includes the Reinforcement Learning Atlas (https://osf.io/jkzwp/) for 

extended coverage of subcortical nuclei and the AAL cerebellum ROIs (Tzourio-

Mazoyer et al., 2002). Since recent studies have highlighted multiple limitations of 

sliding windows to estimate dynamics of FC (Hindriks et al., 2016; Preti, Bolton, & 

Van De Ville, 2017; Tagliazucchi, Siniatchkin, Laufs, & Chialvo, 2016), we used two 

techniques that allowed us to recover these dynamics without integration over 

multiple TRs. Critically, these methods are complementary and have been previously 

shown to recover whole-brain FC dynamics (Deco & Kringelbach, 2016; Di & Biswal, 

2015; Kopel, Emmert, Scharnowski, Haller, & Van De Ville, 2017; Liu & Duyn, 2013; 

Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 2012). 

In particular, we used co-activation patterns (CAPs; Liu, Chang, & Duyn 

(2013), to identify regions that co-activate with the NTS. CAPs are a threshold-based 

measure of FC between a seed region and the rest of the brain. They reliably track 

time point-to-time point alterations in “brain states” across participants over a wide 

range of thresholds (Liu & Duyn, 2013). To extract the CAP of interest, we took the 

confound-corrected BOLD time series from the NTS seed region (generated within 

the analysis for Hypothesis 1) during stimulation (tVNS session and sham session) 

as well as during baseline (tVNS session and sham session). Next, the time points 

corresponding to the positive peaks of the NTS time series were detected. Time 

points were included if the amplitude of the signal exceeded a main threshold of the 

mean amplitude plus two standard deviations (SD), defined for each time series 

separately. While prior work shows that CAP maps are stable over a wide range of 

thresholds (Liu & Duyn, 2013), there is no prior work on CAPs extracted from brain 

stem regions, because they mostly focused on the default mode network. 

Consequently, it is difficult to judge if CAP maps calculated from a seed in the NTS 

would fare differently. To test this, we ran an additional sensitivity analysis for the 

CAP threshold. In this analysis, we tested whether thresholds of SD ±1 result in 

congruent CAP maps. Therefore, we calculated similarity as well as the Dice and 
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Jaccard coefficients that can be interpreted based on established guidelines 

(Fröhner et al., 2019). Lastly, the CAP was obtained by averaging the whole-brain 

images at these time points. To statistically isolate tVNS effects, we compared the 

estimated CAPs during baseline (tVNS session vs. sham session), as well as the 

CAPs during stimulation (tVNS session vs. sham session) on the first level. On the 

participant (second) level, we modeled random intercepts and slopes for each 

participant. This enabled us to estimate deviations of each individual from the 

average group effect (fixed effect). To reveal the cascade of co-activation, we shifted 

the NTS seed BOLD time series 10 times by one TR and repeated this procedure. 

This stepwise time-delayed CAP approach allowed us to track the change in 

spatiotemporal dynamics elicited by the stimulation as compared to sham through 

the brain. 

As tVNS-induced effects may not only alter signal amplitude, complementary 

methods capitalizing on phase information can help to provide additional insights 

about the elicited dynamics within the NTS circuit. Thus, we further calculated phase 

coherence as a measure of FC between the seed region (i.e. NTS) and other brain 

regions which is independent of the scale of activity (Glerean, Salmi, Lahnakoski, 

Jääskeläinen, & Sams, 2012). We estimated phase coherence separately for each 

session during baseline (tVNS vs. sham session) as well as during stimulation (tVNS 

vs. sham session). To do that, we first normalized the BOLD time series of all 

regions included in the parcellation built for the initial CAP analysis. Next, to 

calculate the phase of the signals, we applied the Hilbert transformation. Finally, to 

obtain the phase coherence values, we used the cosine function on the difference of 

the phases of each NTS to ROI pair at each TR. This gave us delta FC maps with 

single TR resolution. To statistically isolate tVNS effects from those of sham, we 

compared the estimated FC maps during baseline (tVNS session vs. sham session), 

as well as the FC maps during stimulation (tVNS session vs. sham session) on the 

first level. On the participant (second) level, we modeled random intercepts and 

slopes for each participant. This enabled us to estimate deviations of each individual 

from the average group effect (fixed effect). Similar to the CAP analysis, we then 

shifted the NTS seed BOLD time series 10 times by one TR and repeated this 

procedure (Figure 3). This allowed us to identify the exact spatiotemporal signature 

of the tVNS effect. To control for multiple comparisons in both the CAPs analysis 
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described in the preceding section as well as the phase coherence analysis 

described here, we used the Benjamini-Hochberg false discovery rate (fdr_bh 

function with ‘dep’ option as implemented in MATLAB R2017a). 

Additionally, we counted the number of peaks which are determined after 

thresholding the signal using the same procedure as described above (calculation of 

CAPs) in each of the four conditions. For statistical analysis, we used the estimated 

number of peaks during baseline (tVNS session vs. sham session), as well as the 

frequencies during stimulation (tVNS session vs. sham session) on the first level. For 

the sparse confound model, we added order of stimulation conditions (tVNS 

first/sham first) as a nuisance regressor at the second level. We hypothesized that 

the number of peaks should be highest in the tVNS condition (time × stimulation 

interaction).  

 

2.6 Electrogastrogram 

The EGG non-invasively measures electrical activity reflecting the rhythmic 

contractions of the stomach. This gastric rhythm is initiated by pacemaker cells 

seated in the mid-to-upper corpus of the stomach (O’Grady et al., 2010). These 

pacemaker cells receive efferent vagal inputs from the NTS via the dorsal motor 

nucleus of the vagus (Koch & Stern, 2004). Then, pacemaker currents propagate to 

the rest of the stomach, ensuring that muscle cells in the stomach contract in an 

orchestrated manner for digestion (Rebollo et al., 2018).  

2.6.1 Data acquisition 

EGG data were acquired according to the protocol described by Rebollo et al. 

(2018). Briefly, we recorded EGG and associated triggers with BrainVision Recorder 

(Brain Products, Germany) using four bipolar standard adhesive electrocardiogram 

(ECG) electrode pairs (eight electrodes in total) connected to a BrainAmp amplifier 

(Brain Products, Germany). For EGG acquisition, the electrodes were placed in a 

bipolar montage (four pairs) in three rows over the abdomen to keep MR gradient 

artifacts at a minimum. EGG was acquired at a sampling rate of 5000 Hz with a low-

pass filter of 1000 Hz and no high-pass filter (DC recordings). To evaluate efferent 

effects of tVNS, we continuously recorded EGG inside the scanner including 
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baseline and stimulation periods. To mark the beginning and end of the baseline as 

well as the stimulation phase, triggers were sent using Psychtoolbox 

(http://psychtoolbox.org/). 

In addition to EGG, we also measured ECG using three bipolar electrodes set 

on both sides below the clavicula as well as on the left side below the ribcage. The 

ECG is no measure of interest for the current report. 

2.6.2 Preprocessing 

For preprocessing of the EGG data, we employed the analysis scripts written 

by Rebollo et al. (2018), which are available on GitHub 

(https://github.com/irebollo/stomach_brain_Scripts). The preprocessing was based 

on the FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) implemented 

in MATLAB. Accordingly, data were low-pass filtered with a cut-off frequency of 5 Hz 

and downsampled to 10 Hz. Given that the gastric frequency is known to be ~0.05 

Hz and MR gradient artifacts only affect signals >10 Hz, there was no specific artifact 

correction procedure needed for gradient artifacts (Rebollo et al., 2018). Next, to 

identify the individual EGG peak frequency, a fast fourier transform was run for each 

EGG channel separately to calculate the spectral density of the signal between 0 Hz 

and 0.1 Hz using MTMFFT as implemented in FieldTrip. The frequency range of 

interest was 0.033–0.066 Hz and EGG peak identification was based on two criteria: 

The respective peak had to have a power > 15 μV2. If peak estimates in more than 

one EGG channel exceeded this measure, the channel containing the sharpest peak 

was selected. After channel selection, the respective channel data were bandpass-

filtered to isolate the individual peak gastric frequency using a MATLAB-based FIR 

filter centered at the respective EGG peaking frequency with a filter width of ±0.015 

Hz and a filter order of 5. EGG data were excluded from further analysis if the 

spectral power in the frequency range of interest did not exceed 15 μV2 in any of the 

EGG channels or no sharp frequency peak could be identified from any of the EGG 

channels. Excluded EGG sessions were not replaced with new participants as EGG 

data were not related to the main hypothesis, but of relevance for the positive 

outcome control only. To maximize power, we instead included single sessions that 

passed quality control in group analyses using mixed-effects analysis. 
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2.6.3 Statistical analysis 

Hypothesis 3: tVNS-induced effects on myoelectrical frequency (positive 

control outcome) 

For statistical analysis, we compared the pre/post (baseline/stimulation) peak 

frequencies of the tVNS and sham measurements. As the impact of possible 

confound variables on EGG is not clear to date, we tested two mixed-effects models 

with different model complexity. Again, we calculated the deviance and BIC at the 

group level as described in 2.5.3. (Statistical analysis, temporal evolution of the tVNS 

effect).  

For EGG group analysis, we used the estimated frequencies during baseline 

(tVNS session vs. sham session), as well as the frequencies during stimulation 

(tVNS session vs. sham session) on the first level. As for the other hypotheses, we 

compared the extended confound model to the default confound model. Finally, after 

the winning model was identified, the interaction effect of Time (pre/post) × 

Stimulation (tVNS/sham) was evaluated to test for the hypothesized slowing in 

gastric frequency after tVNS. 

 

3.  Results 

3.1 Temporal evolution of the stimulation effect 

To estimate the effect of tVNS on BOLD responses in the NTS, we used full 

mixed-effects models. We predicted NTS time series extracted from smoothed rs-

fMRI data by a set of nine candidate models, tested for a possible lateralization of 

the stimulation effect, and identified the best confound model. 

 

Model comparisons between candidate models for the temporal profile of the tVNS 

effect 

 To compare the model fit between our 9 candidate models, we calculated the 

BIC for each model and the ΔBIC between the best fitting model and all other 

candidate models. First, we compared models based on time series extracted from 
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the right and left NTS, separately. For both sides, predictions based on the candidate 

model “block ON/block OFF” had the lowest deviance from the extracted data 

(deviances for all models based on the left, right and bilateral NTS can be found in 

Supplementary Table S1). Thus, we averaged the time series from the left and right 

NTS and following analyses were based on the bilateral NTS ROI. 

Based on the time series extracted from the bilateral NTS ROI, we found 

strong evidence in favor of the block ON/block OFF model (ΔBIClowest = 992 > 10 

for the comparison between the block ON/block OFF and the ramping ON/block OFF 

model; ΔBIChighest = 2085 for the comparison between the block ON/block OFF 

and the decay ON/ramping OFF model; Figure 4A). To evaluate confounds at the 

participant level, we compared the model fit between the default and the extended 

confound model and found strong evidence in favor of keeping the sparse model 

(ΔBIC = 20.97 > 10). In contrast, using unsmoothed time series extracted from the 

bilateral NTS ROI, models did not converge and corresponding model comparisons 

were not interpretable. 
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Figure 4. Model comparisons between candidate models for the temporal profile of the tVNS effect. 
A: We calculated delta deviance (compared to the winning model) and delta Bayesian Information 
Criterion (BIC) for mixed-effects models predicting NTS time series based on the stimulation ON and 
OFF pairs of design regressors (depicted on the x- and y-axes). The model based on the block 
ON/block OFF regressor pair (first row, black frame) had the lowest deviance and highest delta BIC 
with every other possible regressor combination (ΔBIClowest = 992 > 10). B: Mean NTS BOLD signal 
change (left plot) for sham stimulation (blue, upper panel) and tVNS (red, lower panel). Light orange 
areas mark periods recorded during ON phases (either tVNS or sham stimulation, respectively). Light 
grey areas mark OFF phases. The block ON/block OFF regressor pair best describes the temporal 
profile of the time series, but coefficients for the block ON/block OFF regressor pair showed a 
correlation of r = .99, indicating that ON and OFF phases cannot be statistically separated. Comparing 
stimulation and baseline phases for tVNS vs. sham sessions instead (right plot), shows an increase in 
resting-state BOLD signal in the NTS following tVNS compared to sham stimulation. The y-axis 
depicts the demeaned, fitted values for the Time (pre, post) × Stimulation (sham, tVNS) interaction (t 
= 2.97, pSatterthwaite = .005). C: Residual plots assessing residuals versus fitted values, normality, and 
autocorrelation of the residuals (from left to right) for the winning model. Whereas the residuals do not 
correlate with their own lagged values, the normality plot shows heavy tails indicating the presence of 
many very negative or very positive residual values as further indicated by the clusters on the far left 
and far right in the residuals versus fitted values plot. 
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tVNS-induced effects on resting-state fMRI BOLD 

We did not find a significant block ON × Stimulation (sham, tVNS) interaction 

(Figure 4B left; FWHM 4mm smoothed data: pSatterthwaite = .46, unsmoothed data: 

pSatterthwaite = .26) or block OFF × Stimulation interaction (FWHM 4mm smoothed 

data: pSatterthwaite = .54; unsmoothed data: pSatterthwaite = .18). However, in conflict with 

our preregistered analysis, models did not converge (outputs are provided on OSF: 

https://osf.io/zmau8/). Therefore, we inspected the model residuals and covariance 

matrices and found a correlation between the block ON and block OFF random 

slopes (r = .99) that precluded robust separation. Thus, we investigated the tVNS-

induced effects by comparing the full stimulation and baseline phases by predicting 

the bilateral NTS time series based on the Time (pre, post) × Stimulation (sham, 

tVNS) interaction and the sparse confound model. We found that tVNS compared to 

sham led to a significant increase in BOLD signal change (Figure 4B right; mean 

Time × Stimulation: 179.44 [57.15, 301.72], t = 2.97, pSatterthwaite = .005) indicating 

that activity within the bilateral NTS increases for the stimulation phase compared to 

the baseline phase when applying tVNS versus sham stimulation. The empirical 

effect size was dz = 0.47 [0.12, 0.84] (correlation between tVNS and sham sessions: 

r = .45 [.18, .68]) with the CI including the recovered dz = 0.79 as well as the 

correlation of r = .57 between sessions that our simulations were based on. Using 

data smoothed with a 6 mm FWHM kernel, we obtained comparable results (mean 

Time × Stimulation: 161.45 [19.19, 303.71], t = 2.30, pSatterthwaite = .027). Using 

unsmoothed data, the model failed to converge and the Time × Stimulation 

interaction was not significant (t = 1.0, pSatterthwaite = .3).  

 

Model-free analysis of the temporal profile of the NTS BOLD time series 

To test for an increase in power of NTS BOLD time series for tVNS versus 

sham stimulation, we estimated the power spectral density (dB) of the confound-

corrected NTS BOLD time series. We used a linear mixed-effects model predicting 

power of NTS BOLD based on the interaction Time (pre, post) × Stimulation (sham, 

tVNS) over frequency bins ranging from .01 to .15 Hz. We found no significant effect 

of tVNS on NTS BOLD power (Supplementary Figure S2; t = 0.10; pSatterthwaite = .9). 

Similarly, we found no significant effect of tVNS on NTS BOLD power based on 

unsmoothed NTS time series (t = -0.25, pSatterthwaite = .8). 
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3.2 Spatiotemporal pathway of stimulation effects 

To unravel the pathway of signaling associated with the stimulation, we tested 

for regions whose activity is associated with the activity within the NTS, statically as 

well as in a time-lagged manner. We tested for tVNS effects based on signal 

amplitude by performing incremental calculations of CAPs with increasing lag. 

Furthermore, we calculated static and dynamic phase-coherence to determine 

changes in frequency that are orthogonal to changes in amplitude. 

 

tVNS-induced effects on co-activation patterns 

First, we tested for regions which show a significant static connectivity with 

the NTS across all sessions (sham, tVNS) and phases (pre, post) by averaging the 

estimated CAP maps and calculating a one sample t-test for each ROI. After multiple 

comparison correction, 149 regions showed a significant static connectivity with the 

NTS (Figure 5; the only regions which did not show a significant static connectivity 

with the NTS were the subcallosal gyrus, right cerebellar culmen, and the nodule of 

the cerebellar vermis). 

To test for the tVNS effect on CAPs, we used mixed-effects models predicting 

the estimated CAP based on the Time (pre, post) × Stimulation (sham, tVNS) 

interaction for each ROI in the extended Harvard-Oxford atlas and each time shift. 

Contrary to our hypothesis, we found no significant effects of tVNS on static or 

dynamic connectivity based on CAPs after correction for multiple comparisons 

(supplementary Figure S3; mean CAP maps have been uploaded to NeuroVault for 

inspection: https://neurovault.org/collections/CHANQVEU/). Without correcting for 

multiple comparisons, we found a significant Time × Stimulation interaction in the 

right putamen (t = -2.23) and the right cerebellar tonsil (t = 2.54; Figure 5). 

 

Sensitivity analysis for the co-activation pattern threshold 

To test whether different SD thresholds lead to congruent CAP maps, we 

calculated similarity, Dice and Jaccard coefficients for CAP maps generated based 

on thresholds of SD = 2 ± 1. We found an excellent overlap (Dice coefficient: 

SD1/SD2 = .98, SD1/SD3 = .96, SD2/SD3 = .96; Jaccard coefficient: SD1/SD2 = .96, 

SD1/SD3 = .93, SD2/SD3 = .93) and similarity (similarity: SD1/SD2 = .99, SD1/SD3 
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= .91, SD2/SD3 = .94), respectively, between the CAP maps resulting from different 

SD thresholds, indicating that our results are not dependent on the SD threshold. 

 

tVNS-induced effects on phase coherence 

First, we tested for regions which show a significant phase coherence with the 

NTS across all sessions and phases by averaging the estimated phase coherence 

maps and calculating a one sample t-test for each ROI. After multiple comparison 

correction, 145 regions showed a significant phase coherence with the NTS (Figure 

5; the only regions which did not show a significant phase coherence with the NTS 

were the bilateral posterior part of the superior temporal gyrus, left middle temporal 

gyrus, bilateral inferior temporal gyrus, right fusiform cortex and the cerebellar 

culmen). 

To test for the tVNS effect on phase coherence, we used mixed-effects 

models predicting the estimated phase coherence based on the Time × Stimulation 

interaction for each ROI in the extended Harvard-Oxford atlas and each time shift. 

Analogous to the CAP-based analysis and, again, contrary to our hypothesis, we 

found no significant effects of tVNS on static and dynamic connectivity based on 

phase coherence (supplementary Figure S4; mean phase coherence maps have 

been uploaded to NeuroVault for inspection: 

https://neurovault.org/collections/CHANQVEU/). Without correcting for multiple 

comparisons, we found a significant Time × Stimulation interaction in the right 

postcentral gyrus (t = -2.26), left superior parietal lobe (t = -2.49), left lateral occipital 

cortex (t = -2.11), bilateral parahippocampal gyrus (right: t = -2.96, left: t = -2.11), and 

the bilateral fusiform cortex (right anterior temporal fusiform cortex: t = -3.19, right 

posterior temporal fusiform cortex: t = -2.95, right temporal occipital fusiform cortex: t 

= -2.40, left posterior temporal fusiform cortex: t = -2.10; Figure 5). 
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Figure 5. Regions showing static functional connectivity (FC) with the NTS based on co-activation 
patterns (CAPs, left side) and phase coherence (right side). A: An extended network of 149 (CAPs) 
and 145 (phase coherence) regions, respectively, shows static FC with the NTS (one-sample t-test; all 
regions pFDR-corrected < .05) across all phases (baseline and stimulation in both sessions). B: No regions 
showed altered FC after correction for multiple comparisons. However, tVNS modulated CAPs in the 
putamen and cerebellum, and phase coherence in the right postcentral gyrus, left superior parietal 
lobe, bilateral parahippocampal gyrus, bilateral fusiform gyrus, and the left lateral occipital cortex 
(Stimulation × Time interaction; all regions puncorrected < .05). 
 

 

tVNS-induced effects on the number of peaks determining the co-activation patterns 

To test for the tVNS effect on the number of peaks determined after 

thresholding the NTS signal for the CAP calculation, we used a mixed-effects model 

predicting the estimated number of peaks based on the Time × Stimulation 

interaction. Again, we found no significant effect of tVNS on the number of peaks 

after thresholding the NTS signal (Supplementary Figure S5; MΔsham = 1.3, MΔtVNS = 

0.55, t = -0.77, pSatterthwaite = .44).  

 

3.3 tVNS-induced effects on gastric myoelectrical frequency 

To investigate whether gastric myoelectrical frequency is modulated by tVNS, 

we used a mixed-effects model predicting gastric frequency based on the Time × 

Stimulation interaction. After initial quality control, data from two participants had to 

be excluded as the spectral power in the frequency range of interest did not exceed 

the preregistered threshold of 15μV2. We further had to exclude single sessions from 
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14 participants (Nsham = 7, NtVNS = 7) for whom no sharp frequency peak could be 

identified. This yielded the final sample of N = 38 participants with at least one 

session that passed quality control (N = 24 participants with data from both 

sessions).  

First, we compared the model fit between the default and the extended 

confound models by calculating deviance and ΔBIC between both models. We found 

evidence in favor of keeping the sparser default confound model (ΔBIC = 5.03). 

Contrary to our hypothesis, we found no significant effect of tVNS on gastric 

myoelectrical frequency (Figure 6; t = 0.67, pSatterthwaite = .51). 

 

 
 

 
 
Figure 6. No effect of tVNS compared to sham stimulation on gastric myoelectric frequency. A: 
Change in gastric frequency (post - pre). B: Bootstrapped delta gastric frequency distributions (post - 
pre) for tVNS (red) and sham stimulation (blue) for all data points included in the analysis (including 
single sessions from 14 participants). C: Interaction between Time (pre, post) and Stimulation (sham, 
tVNS) for all participants with data from two sessions. In contrast to our hypothesis and a previous 
study from our group (Teckentrup et al., 2020), we found that gastric frequency was not decreased 
following tVNS compared to sham stimulation. 
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4. Discussion 

tVNS is a promising non-invasive brain stimulation technique, but elicited 

dynamics in the brain are still largely elusive. Here, we applied tVNS versus sham 

stimulation in 40 healthy participants using a single-blind randomized cross-over 

design concurrently to resting-state fMRI and EGG recordings. Model comparisons 

showed that from a set of 9 candidate models, a block-wise shift in signal amplitude 

after stimulation fitted the NTS time series best. Notably, random effects of ON and 

OFF stimulation slopes showed a high correlation, indicating that these phases 

cannot be reliably separated with fMRI BOLD. In line with our first hypothesis, tVNS 

compared to sham stimulation increased activation in the NTS. Nevertheless, these 

results were contingent on smoothing and accurate placement of the mask to avoid 

signal dropout. Contrary to our second hypothesis, we found no evidence that the 

tVNS-induced changes in activation propagate downstream as measured by CAPs 

and phase coherence. Also, contrary to our third hypothesis, we found no evidence 

for a decrease in gastric myoelectrical frequency after tVNS. Thus, acute tVNS can 

perturb brain signaling in the NTS, but further research using modified protocols is 

necessary to evaluate downstream effects of the stimulation as well as efferent 

effects on gastric motility.  

Confirming our first hypothesis, we found an increased activity in the bilateral 

NTS during tVNS compared to sham stimulation. As suggested by our model 

comparison of candidate temporal profiles, the stimulation likely induces a general 

shift in NTS activity. Corroborating this result, the confidence interval for the 

empirical effect size of the stimulation effect included the effect size recovered from 

our initial simulation. The result fits well with previous studies investigating effects of 

tVNS on brain activation which mostly showed bilateral (Yakunina et al., 2017; 

Sclocco et al., 2019) or ipsilateral increases of activation in the NTS (Frangos et al., 

2015; Frangos & Komisaruk, 2017). The NTS is the recipient of the majority of vagal 

afferent projections in the brain stem. Consequently, successful tVNS should 

modulate signaling within this region. Still, several other studies either found a 

decrease or no change in activation in the NTS (Dietrich et al., 2008; Kraus et al., 

2013; Frangos & Komisaruk, 2017; Badran et al., 2018). This might be explained by 

the site of stimulation, as stimulating the cymba conchae has been shown to elicit 
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NTS activation most reliably (Yakunina et al., 2017), but these studies either applied 

tVNS to the tragus or the neck. Furthermore, it has been argued that studies 

showing increases in NTS activation had optimized their power and sensitivity to 

observe changes in NTS activity by tuning acquisition parameters (Sclocco et al., 

2019) or statistical analyses (Fang et al., 2017). Using our preregistered NTS mask 

which we inflated for usage with fMRI BOLD data, we noticed a substantial signal 

loss in the preprocessed rs-fMRI data. Thus, we generated a mask based on the 

coordinates reported by Priovoulos et al. (2019) with better coverage of gray matter, 

which improved coverage of the NTS in the normalized EPI data and significantly 

increased tSNR in all participants (total increase in tSNR of 32.5%). As a small ROI 

in the brain stem, the NTS is still a challenging region to measure robustly with fMRI 

due to inherently low SNR (Beissner, 2015; Sclocco, Beissner, Bianciardi, Polimeni, 

& Napadow, 2018) and cardiorespiratory noise (Brooks, Faull, Pattinson, & 

Jenkinson, 2013). Accordingly, even when controlling for physiological noise, 

analyzing our model residuals uncovered heavy tails in the distribution of the data 

(Kasper et al., 2017). To avoid undue influence of heavy tails, data trimming is a 

common approach (Wilcox, 2005). Future studies modeling stimulation-induced 

changes in brain signaling may therefore evaluate trimming as a means to improve 

robustness. Still, with these issues being addressed in an unbiased manner, our 

results confirmed the hypothesized increase in NTS activation after tVNS. 

In contrast to our second hypothesis, we did not find evidence for effects of tVNS 

on connectivity between downstream brain regions and the NTS, neither based on 

signal amplitude using CAPs, nor based on frequency using phase coherence. So 

far, only few studies investigated connectivity changes after tVNS and typically 

focused on patient groups with depression (Fang et al., 2017; Liu et al., 2016; Tu et 

al., 2018; Wang et al., 2018) and migraine (Garcia et al., 2017) after chronic 

treatment with tVNS. Analyzing static FC across all phases showed that both CAPs 

and phase coherence captured an extensive network associated with the NTS. 

However, tVNS did not robustly modulate this NTS FC network (i.e., no significant 

effects after multiple comparison correction). Individual variability in tVNS-induced 

effects might have contributed to variability in downstream connectivity effects and 

future studies on connectivity changes will likely need to recruit larger samples to 
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resolve potentially low to moderate effects on NTS-based FC. Collectively, our 

results do not provide support for large effects on NTS-based FC at the group level. 

In contrast to our third hypothesis, we also did not find evidence for effects of 

tVNS on gastric myoelectric frequency. This finding is inconsistent with previous 

studies from our group (Teckentrup et al., 2020) as well as others (Hong et al., 

2018). Several differences in the study protocol might have contributed to the 

divergence from previous work. In the current study, we assessed changes in gastric 

frequency during 10 minutes of stimulation, whereas we had observed changes in 

frequency during 30 minutes of stimulation in our previous study. Thus, changes in 

gastric frequency as measured via EGG might only occur after a temporal delay. 

However, also Hong et al. (2018) had stimulated for only 10 minutes and found a 

decrease in gastric frequency after tVNS. Crucially, they measured gastric motility 

invasively in the pylorus and corpus of the stomach with stronger effects in the 

pylorus region and non-invasive EGG might reflect different sources, leading to 

attenuated effects (Wolpert, Rebollo, & Tallon-Baudry, 2020). Moreover, both 

previous studies stimulated the left branch of the vagus nerve while we stimulated 

the right branch in the current study. Recent findings in animals showed that the right 

branch projects to the dopaminergic midbrain (Han et al., 2018) and the differential 

innervation of mechano- and chemoreceptors in the gut by the left and right vagus 

nerve endings lends additional credibility to side-specific effects of tVNS (Wang, de 

Lartigue, & Page, 2020). Thus, changes in gastric frequency might be boosted after 

left-sided compared to right-sided tVNS. Furthermore, the metabolic state of 

participants might have played a role as participants in our previous study took part 

after >4h of fasting, whereas participants in the current study were neither hungry 

nor full. Importantly, the absence of changes in gastric frequency after right-sided 

tVNS does not preclude changes in coupling between stomach and brain signaling 

(Rebollo et al., 2018), which might show instant changes. Taken together, our 

hypothesis of a decrease in gastric frequency instantly after tVNS was not confirmed, 

and further studies will need to investigate possible effects of time delay, metabolic 

state, and lateralization on an alleged biomarker of the stimulation. 

Our study has several strengths and limitations which should be addressed in 

future work. Based on an a priori power analysis and simulations of the expected 

stimulation effects, we ran a well-powered study including a state-of-the-art sham 
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stimulation condition as control (Farmer et al., 2020) and comprehensive measures 

to restrict and correct for possible sources of (physiological) noise. We further report 

an effect size for tVNS-induced effects on brain signaling in the NTS to inform future 

hypothesis-driven research. Still, tVNS-induced effects were dependent on 

smoothing and exact placement of the mask. Applying spatial smoothing has been 

shown to be beneficial in multivariate pattern analysis (Gardumi et al., 2016; 

Mandelkow et al., 2017) which has been attributed to an increase in SNR 

(Mandelkow et al., 2017). We showed that using our modified NTS mask improved 

tSNR in all participants. Compared to the original mask, our modified mask is still 

based on the MNI coordinates reported by Priovoulos et al. (2019), yet aligns better 

with the processed EPI data provided by fmriprep after normalization. Importantly, a 

restricted version of the original, inflated mask which only contained the 25% voxels 

with the highest tSNR led to results comparable to those with the modified mask. 

This highlights the importance of using accurately placed masks for time series 

modeling in small brain regions that are close to non-brain tissue as our 

preregistered mixed-effects models only converged when tSNR was sufficiently high. 

Still, the tVNS effects based on the modified NTS mask should be validated in further 

studies using concurrent stimulation and fMRI. To address the differences in results 

on changes in dynamic FC after tVNS, more studies with large sample sizes are 

needed. Based on our results, future studies using a within-participant design should 

preferably include more than 40 participants to identify robust changes after 

stimulation, specifically in functional connectivity. 

To summarize, tVNS is a promising technique to non-invasively alter brain 

function. Here, in line with most previous reports, we showed that tVNS increases 

fMRI BOLD activation in the NTS. Extending prior and informing future work using 

tVNS, we found that NTS BOLD activation during stimulation is best characterized by 

a simple block model describing a general increase in activity during tVNS. Our 

results further provide substantial evidence for using bilateral NTS masks as we 

found no evidence supporting a lateralization of stimulation effects in the NTS with 

fMRI. However, our study could not identify a more fine-grained spatiotemporal 

profile of the stimulation as intended because tVNS-induced changes did not exceed 

stringent correction levels. Additionally, we highlight that tVNS effects are sensitive 

to spatial smoothing and placement of the mask to avoid insufficient tSNR for 
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statistical inference. Likewise, we found no evidence for a robust decrease in gastric 

frequency during tVNS. While this observation might be due to various differences to 

previous studies (e.g., the metabolic state of the participant, side of the stimulation, 

or a delay in onset of efferent effects on the stomach), it indicates that the use of the 

EGG as a biomarker of tVNS requires further validation. Collectively, our results 

support the notion that tVNS is a promising technique to perturb brain signaling in a 

well-defined neuroanatomical circuit that is hard to target with alternative methods. 

Thus, our work serves as a comprehensive reference to advance future research on 

brain dynamics after tVNS. 
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