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INTRODUCTION 
Although most cancer deaths are due to metastatic spread, little is 
known about the genomic determinants of cancer metastasis. 
Once metastatic cancer cells have detached from the primary 
tumor site, they can invade all parts of the body (Lambert et al., 
2017; Massagué and Obenauf, 2016). However, the distribution of 
metastatic sites for a given primary tumor is not random and is 
dictated by factors such as anatomical location, cell of origin and 
molecular subtype, among others (Gao et al., 2019; Nguyen et al., 
2009). Furthermore, tumor cell-extrinsic factors such as treatment, 
target organ microenvironment and other systemic factors such as 
circulating chemokines and cytokines can also influence the 
pattern of metastatic progression (Massagué and Ganesh, 2021). 
The classical seed-and-soil hypothesis, according to which 
disseminated cancer cells preferentially colonize organs that 
enable and are compatible with their own growth, has been 
explored for more than a century (Paget, 1889). Yet much remains 
unknown about the interplay between tumor genomic features and 
metastatic potential, as well as organ-specific patterns of 
metastasis. 
Molecular profiling of tumors coupled with clinical annotation of 
metastatic events could help provide insight into this question. 
However, large-scale cancer sequencing efforts have so far 

focused on primary, untreated tumors (e.g., The Cancer Genome 
Atlas (Sanchez-Vega et al., 2018)), or they have characterized the 
overall genomic landscape of metastatic disease without explicitly 
interrogating specific routes of metastatic dissemination (Priestley 
et al., 2019; Robinson et al., 2017; Zehir et al., 2017). Other studies 
have investigated the genomic complexity of cancer metastasis by 
reconstructing tumor evolution across different organs at varying 
levels of resolution, but they have been limited by small sample 
sizes (Brastianos et al., 2015; Brown et al., 2017; Eckert et al., 
2016; Hu et al., 2020; Jiménez-Sánchez et al., 2017; Makohon-
Moore et al., 2017; Naxerova et al., 2017; Noorani et al., 2020; 
Reiter et al., 2020; Shih et al., 2020). Identifying associations 
between genomic features and specific patterns of metastatic 
spread is an active area of research and several landmark studies 
on this topic have been published during the past few years 
(Birkbak and McGranahan, 2020). In particular, richly annotated 
datasets combining genomic features and detailed clinical history 
of metastases for individual patients have been recently made 
available through large collaborative efforts such as METABRIC in 
breast cancer (Rueda et al., 2019) and TRACERx in clear-cell 
renal cell carcinoma (Turajlic et al., 2018). However, a study 
involving thousands of participants across multiple tumor types in 
which clinical and genomic data has been homogeneously 
processed through a unified computational pipeline is still lacking.  

Progression to metastatic disease remains the main cause of cancer death. Yet, the underlying genomic 
mechanisms driving metastasis remain largely unknown. Here, we present MSK-MET, an integrated pan-cancer 
cohort of tumor genomic and clinical outcome data from more than 25,000 patients. We analyzed this dataset 
to identify associations between tumor genomic alterations and patterns of metastatic dissemination across 50 
tumor types. We found that chromosomal instability is strongly correlated with metastatic burden in some tumor 
types, including prostate adenocarcinoma, lung adenocarcinoma and HR-positive breast ductal carcinoma, but 
not in others, such as colorectal adenocarcinoma, pancreatic adenocarcinoma and high-grade serous ovarian 
cancer. We also identified specific somatic alterations associated with increased metastatic burden and specific 
routes of metastatic spread. Our data offer a unique resource for the investigation of the biological basis for 
metastatic spread and highlight the crucial role of chromosomal instability in cancer progression. 
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Figure 1. Overview of the MSK-MET cohort.  
Metastatic patterns of 50 tumor types. For each tumor type, the following attributes are shown from left to right: tumor type abbreviation, 
number of patients, distribution of age at sequencing (red vertical line indicates the median), overall survival in years from time of 
sequencing (red vertical line indicates the median OS), sex ratio (female = gold, male = grey), distribution of metastatic burden across all 
patients (ranging from 0 to 6 distinct metastatic sites), and a heatmap with the percentage of metastatic patients with metastases at 
specific metastatic sites (the entire clinical course was taken into consideration). The number in each cell indicates the frequency of 
patients having at least one reported metastasis at that given site. For each tumor type, the distribution of all metastasis events by 21 
organ sites is shown as a stacked barplot to the right of the heatmap. For each metastatic site, the distribution of all 50 tumor types is 
shown as a stacked barplot below the heatmap. For each metastatic site, the number of patients having at least one metastasis is 
indicated in parentheses. Frequencies for sex-specific target organs (female genital, ovary and male genital) were calculated using 
patients of the corresponding sex. See also Table S1 and Figure S1. 

 

We assembled a pan-cancer cohort of >25,000 patients with tumor 
genomic profiling and clinical information on metastatic events and 
outcomes, which we designate MSK-MET (Memorial Sloan 
Kettering - Metastatic Events and Tropisms). All samples were 
profiled using the MSK-IMPACT targeted sequencing platform 
(Cheng et al., 2015), which identifies somatic mutations, 
rearrangements and copy-number alterations in 341-468 cancer 
genes, as well as tumor mutational burden (TMB), chromosomal 
instability and microsatellite instability. Metastatic events were 
extracted from the electronic health records (EHR) and mapped to 
a reference set of 21 anatomic locations. We analyzed genomic 
differences between primary and metastatic samples and between 
primary tumors from metastatic and non-metastatic patients, 
stratified by tumor type and molecular subtypes. Our analysis 
identified associations between metastatic burden (defined as the 
number of distinct organs affected by metastases throughout a 
patient’s clinical course) and specific genomic features, including 
mutational burden, chromosomal instability, and somatic 
alterations in individual cancer genes. We also identified 
associations between genomic alterations and organ-specific 
patterns of metastatic dissemination and progression. The clinical 

and genomic data used in our study have been made publicly 
available and constitute a valuable resource that will help further 
our understanding of metastatic disease. 
RESULTS 
Overview of the MSK-MET cohort 
A total of 25,775 patients were included in the present study, 
consisting of 15,632 (61%) primary and 10,143 (39%) metastatic 
specimens spanning 50 different tumor types (Figure S1A-D; 
Table S1). The median interval between sample acquisition and 
sequencing was 62 days (interquartile range (IQR) = 0-287 days). 
The median sequencing coverage was 653x (IQR = 525-790x) and 
the median tumor purity assessed by pathologists was 40% (IQR 
= 20-50%) (Figure S1B). The majority of sequenced samples 
obtained from metastatic sites were from lymph nodes (n=2305, 
23%), liver (n=2289, 23%), lung (n=982, 10%), or bone (n=726, 
7%). Among primary tumors, 11,741 (75%) were from patients with 
metastatic disease at the time of sequencing or at a later time 
(Figure S1D). Over the entire course of the disease, a total of 
99,419 metastatic events from 21,546 metastatic patients were 
retrieved from the EHR and mapped to 21 organ sites. The most 
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common target organ sites were lung, liver, bone, or unspecified 
(Figure S1E). The frequencies of organ-specific metastasis of 
individual tumor types were similar to previous reports (Budczies 
et al., 2015; Gao et al., 2019) (Figure S1F). Internal validation 
using 4,859 (22.5%) patients included in previous studies with 
available metastatic events extracted through manual chart review 
(Abida et al., 2017; Jones et al., 2021; Razavi et al., 2018; 
Shoushtari et al., 2021; Yaeger et al., 2018) revealed a high 
concordance and sensitivity with metastatic events extracted from 
the EHR (Figure S1G-H). We used this data to map patterns of 
metastatic dissemination from 50 tumor types to 21 metastatic 
organ sites (Figure 1).  
For the whole cohort, the median age at sequencing was 64y, 
ranging from a median of 33y for patients with testicular non-
seminoma to a median of 70y for patients with cutaneous 
squamous cell carcinoma. Overall, the median follow-up time was 
30 months and the five-year survival rate was 40%, ranging from 
90% in testicular seminoma to 10% in pancreatic adenocarcinoma. 
There was a median of four metastatic events per patient, ranging 
from one in hypermutated colorectal cancer to eight in high-grade 
serous ovarian carcinoma. Metastatic patterns differed by tumor 
types and histological subtypes. For example, compared to lung 
adenocarcinoma, lung neuroendocrine cancer had a higher 
prevalence of liver metastasis but a lower prevalence of CNS/Brain 
metastasis. Similarly, lobular breast cancer had a lower 
prevalence of lung metastasis but a higher prevalence of bone, 
ovary and peritoneum metastasis, compared to ductal breast 
cancer as reported before (Borst and Ingold, 1993). Differences in 
metastatic patterns were also observed across molecular subtypes 
of the same tumor type. For example, and in line with a previous 
study (Kennecke et al., 2010), HR-/HER2+ ductal breast cancer 
had a higher prevalence of CNS/Brain metastasis, while the 
HR+/HER2- subtype had a higher prevalence of bone metastasis. 
Genomic differences between primary and metastatic 
tumors 
To determine sample type specific genomic differences across 50 
tumor types, we compared the genomic features of primary 
(n=15,632) and metastatic tumors (n=10,143) (independent of the 
metastatic status of patients). The number of sequenced primaries 
was higher than the number of sequenced metastases for most 
tumor types, with some exceptions, such as cutaneous melanoma, 
high-grade serous ovarian cancer and adenoid cystic carcinoma. 
In 16 tumor types, metastases were significantly more 
chromosomally unstable, as inferred by a higher fraction of 
genome altered (FGA), compared to primary tumors, consistent 
with previous findings (Bakhoum et al., 2018; Ben-David and 
Amon, 2020; Hieronymus et al., 2018; Shukla et al., 2020; 
Stopsack et al., 2019; Watkins et al., 2020) (Figure 2A-B; Table 
S2). The difference in tumor purity- and ploidy-adjusted FGA 
(adjusted FGA) was confirmed in 11 tumor types using a subset of 
samples with available FACETS data (n=17,224) (Table S2). 
FACETS allowed us to estimate the frequency of whole-genome 
duplication (WGD) and assess the clonality of individual variants. 
As previously reported, WGD frequencies varied across tumor 
types (Bielski et al., 2018). In eight tumor types, we observed a 
significantly higher frequency of WGD in metastases compared to 
primary tumors (Figure 2A-B; Table S2). The higher 
chromosomal instability and higher frequency of WGD were 
particularly marked in uterine endometrioid, which can be 
explained by differences in the distribution of genomic subtypes 
within these two groups (Cancer Genome Atlas Research Network 
et al., 2013). Tumor mutational burden (TMB) was significantly 
higher in metastases from 10 tumor types, while TMB was lower 
only in metastases from hypermutated uterine cancer (Figure 2A-
B; Table S2). Consistent with the evolutionary bottleneck 

hypothesis (Birkbak and McGranahan, 2020), metastases from 12 
tumor types were significantly more homogeneous, with a higher 
fraction of clonal mutations compared to primary tumors. 
We further explored the clinical significance of TMB by comparing 
the percentage of patients with a high TMB ( 10 mut/Mb) and 
observed a higher percentage of TMB-high tumors in metastases 
from lung adenocarcinoma, HR+/HER2- ductal, lobular breast and 
prostate cancer patients. In five tumor types, we detected a 
significantly higher proportion of any actionable mutations 
(OncoKB levels 1 to 3, Methods) in metastases compared to 
primary tumors, but these differences were not significant after 
adjusting for differences in FGA and TMB (Figure 2B; Table S2). 
Next, we investigated differences in the frequency of arm-level 
copy number alterations between primary tumors and metastases. 
Because FGA was generally higher in metastases, we used a 
multivariable model to adjust for FGA and found 26 statistically 
significant differences (Figure 2B; Table S2). For example, in 
pancreatic adenocarcinoma, gain of chromosome 12p gain, where 
the oncogene KRAS is located, was more frequent in metastases 
than in primary tumors (17% vs. 4%, q-value = 0.002). In 
HR+/HER2- ductal and lobular breast cancer, loss of chromosome 
16q, a feature of low-grade breast cancer (Natrajan et al., 2009), 
was more frequent in primary tumors than in metastases (41% vs. 
30%, q-value = 1.56E-07 and 68% vs. 56%, q-value = 0.002, 
respectively). Finally, we investigated the frequency of recurrent 
oncogenic alterations between primary tumors and metastases 
and identified a total of 67 statistically significant differences 
across 17 tumor types. We also investigated the frequency of 
oncogenic pathways and identified 47 statistically significant 
differences across 11 tumor types (Figure 2C; Table S2). 
Amongst the statistically significant alterations, 53 were more 
frequent in metastases, while only 14 alterations were more 
frequent in primary tumors. TP53 mutations were the most 
commonly observed significant alterations and were more frequent 
in metastases in 7 tumor types (lung adenocarcinoma, prostate 
adenocarcinoma, HR+/HER2- ductal breast, colorectal MSS, 
lobular breast cancer, pancreatic neuroendocrine and uterine 
endometrioid). A possible explanation is that TP53 mutation is a 
later event in some of these tumor types; in others, it may simply 
be a hallmark of more aggressive disease. The notable exception 
was head and neck cancer, where TP53 mutations were more 
frequent in primary tumors. Other genomic alterations that were 
most often enriched in metastases included CDKN2A deletion 
(significant in 5 tumor types), PTEN mutations and deletion (4 
tumor types) and MYC amplification (4 tumor types). The most 
common significantly enriched oncogenic pathways in metastases 
were p53, Cell Cycle and DNA damage repair. The most significant 
differences were observed for alterations known to be associated 
with resistance to hormonal therapy in hormone-sensitive tumors. 
For example, AR amplification and AR mutations were significantly 
more frequent in prostate cancer metastases (1% vs. 30% and 0% 
vs. 6%, q-value < 0.05), and ESR1 mutations were more frequent 
in HR+/HER2- ductal breast cancer (2% vs. 19%, q-value < 0.05), 
lobular breast cancer (2% vs. 13%, q-value < 0.05), and 
endometrioid uterine cancer metastases (3% vs. 10%, q-value < 
0.05). These differences can likely be attributed to positive 
selection due to therapy since most patients with prostate cancer 
and ER+ breast cancer receive hormone therapy. TERT mutations 
were more frequent in metastases from papillary thyroid cancer 
and cutaneous melanoma patients (46% vs. 69% and 70% vs. 
81%, q-value < 0.05), but higher in primary tumors from head and 
neck squamous cell carcinoma patients (41% vs. 25%, q-value < 
0.05). ALK fusions, a predictive biomarker for the use of ALK 
inhibitors, were slightly more frequent in lung adenocarcinoma 
metastases (3% vs. 6%, q-value < 0.05). KRAS mutations were 
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Figure 2. Genomic differences between primary tumors and metastases. 
(A) Comparisons of the median fraction genome altered (FGA), median whole-genome duplication (WGD) frequency, median tumor 
mutation burden (TMB), and median clonal fraction for each tumor type in metastatic vs. primary tumors. Tumor types with statistically 
significant differences are labeled. For TMB both axes were limited to 10mut/Mb. 
(B) The following clinical and genomic features are shown side-by-side for primary (top row within each cancer type) and metastatic 
(bottom row) sequenced samples using a combination of barplots and violin plots; from left to right: sample counts, FGA, fraction of 
samples with WGD, TMB, clonality, fraction of samples with high TMB, and distribution of the highest actionable alteration levels. The 
black vertical line in each violin plots represents the median. The heatmap shows the frequency of individual arm level alterations in 
primary tumors and metastases (only the frequency of the more frequent event, gain or loss, is shown). Tumor types are ordered from 
top to bottom by decreasing FGA in metastasis and grouped by organ systems. * indicates q-value < 0.05. WGD and clonality were 
available for a subset of 17,224 samples with FACETS data.  
(C) Statistically significant differences in the frequency of oncogenic alterations and pathways between primary tumors and metastases 
in individual tumor types. Triangles summarize oncogenic alteration frequencies in primary tumors vs. metastases and are colored 
according to alteration type. Gene names in italics refer to specific genes, those in regular font refer to pathways. 
See also Table S2. 
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more frequent in metastases from pancreatic neuroendocrine 
patients (1% vs. 10%, q-value < 0.05) as was the overall frequency 
of RTK/RAS pathway alteration in this tumor type (6% vs. 21%, q-
value < 0.05). While KRAS mutations are a hallmark of pancreatic 
adenocarcinoma, this could suggest the existence of a 
transdifferentiation mechanism from neuroendocrine to an 
adenocarcinoma phenotype during metastatic progression. 
Collectively, these data indicate that metastases have higher 
chromosomal instability across many tumor types and that 
mutations in a multitude of driver alterations occur at different 
frequencies in primary and metastatic tumors.  
Genomic differences between primary samples from 
metastatic and non-metastatic patients 
Many of the primary tumors included in the previous analysis were 
from patients with metastatic disease. To identify genomic 
determinants of metastatic disease present in primary tumors we 
compared the genomic features of primary tumors from metastatic 
patients (n=11,993) to primary tumors from non-metastatic 
patients (n=3,669). The median follow-up time for these two 
groups was 33 months and 27 months, respectively. In 10 tumor 
types, FGA was significantly higher in primary tumors from 
metastatic patients as compared to primary tumors from patients 
without metastases. Compared to non-metastatic patients, TMB 
was significantly higher in six tumor types but lower in head and 
neck squamous cell carcinoma (Figure S2A-B; Table S3). When 
interrogating the frequencies of recurrent oncogenic alterations, 
we identified statistically significant frequency differences in 32 
genes across 12 tumor types and 21 oncogenic pathways across 
9 tumor types (Figure S2C; Table S3), with most observed at 
higher frequencies in primary tumors from metastatic patients. 
Compared to non-metastatic patients, TP53 mutations were 
significantly more frequent in metastatic patients with lung 
adenocarcinoma, HR+/HER2- ductal breast cancer, lobular breast 
cancer, urothelial bladder cancer, prostate adenocarcinoma, and 
endometrioid uterine cancer. TERT promoter mutations were more 
frequent in metastatic patients with papillary thyroid cancer. The 
frequency of MYC amplification was significantly higher in 
metastatic patients with prostate adenocarcinoma, microsatellite 
stable (MSS) colorectal cancer, and TN ductal breast cancer. On 
the other hand, SPOP mutations were less frequent in primary 
tumors from metastatic prostate adenocarcinoma patients, 
PIK3CA mutations were less frequent in the primary tumors of 
HR+/HER2- ductal breast cancer metastatic patients, and 
CDKN2A mutations were less frequent in the primary tumors of 
pancreatic cancer metastatic patients. These findings support the 
hypothesis that a higher chromosomal instability is associated with 
metastatic progression in multiple tumor types and that several 
individual driver mutations might inform metastatic risk. Only a few 
of these, such as SPOP mutations in prostate cancer, which has 
been previously reported to be more frequent in primary tumors 
(Armenia et al., 2018), are associated with decreased metastatic 
potential. 
Genomic features associated with metastatic burden 
To explore the genomic determinants of metastatic burden, we 
analyzed the relationship between genomic alterations and the 
number of metastatic sites per patient (n=21,546). Not surprisingly, 
a higher metastatic burden was significantly associated with 
shorter overall survival in most (39/50, 78%) tumor types (Table 
S4). We observed that chromosomal instability, as inferred by 
FGA, was positively correlated with metastatic burden on a pan-
cancer level and in 11 individual tumor types. TMB, on the other 
hand, was not associated with metastatic burden on a pan-cancer 
level; it was positively correlated with metastatic burden in four 
tumor types, and negatively associated with metastatic burden in 
endometrioid and hypermutated uterine cancer (Figure 3A-B; 

Table S5). One of the strongest correlations between FGA and 
metastatic burden was observed in prostate cancer (rho = 0.33, q-
value = 7.0E-45), which is in line with previous studies 
(Hieronymus et al., 2018; Taylor et al., 2010). Conversely, we did 
not observe such association in many tumor types, including MSS 
colorectal cancer, where chromosomal instability is already high in 
patients with low metastatic burden (Figure 3B).  
Next, we investigated the association between recurrent 
oncogenic alterations and metastatic burden and identified a total 
of 24 statistically significant associations across 8 tumor types. We 
also investigated the association with oncogenic pathways and 
identified 16 statistically significant differences across 7 tumor 
types (Figure 3C; Table S5). Consistent with its role as a 
gatekeeper against chromosomal instability (Bieging et al., 2014), 
we observed a significant positive correlation between TP53 
mutations and metastatic burden in prostate adenocarcinoma, 
lung adenocarcinoma and HR+/HER2- ductal breast cancer. 
There was also a significant positive correlation between p53 
pathway alterations and metastatic burden in endometrioid uterine 
cancer. In metastatic prostate adenocarcinoma, AR amplification 
frequency was positively associated with metastatic burden. The 
frequency of ESR1 mutations increased with metastatic burden in 
HR+/HER2- ductal and lobular breast cancer. CDKN2A deletion 
frequency was positively correlated with metastatic burden in 
bladder urothelial cancer, lung adenocarcinoma and papillary 
thyroid cancer, while MYC amplification frequency was associated 
with increasing metastatic burden in lung adenocarcinoma and 
prostate adenocarcinoma. Of note, the frequency of four 
oncogenic alterations and one oncogenic pathway were negatively 
correlated with metastatic burden; FOXA1 in prostate 
adenocarcinoma, CBFB in HR+/HER2- ductal breast cancer, 
CDH1 in lobular breast cancer, ERCC2 in urothelial bladder cancer 
and the epigenetic pathway in MSS colorectal cancer (Figure 3C; 
Table S5). These results demonstrate that the relationship 
between higher chromosomal instability and increasing metastatic 
burden is tumor lineage dependent and that several driver 
mutations are associated with metastatic burden in both directions. 
Genomic differences of metastases according to their organ 
location  
Next, we investigated the genomic characteristics of metastases 
(n=10,143) according to their organ location. As expected, the 
location of the sequenced metastases differed by tumor type 
(Figure S3A). We found 17 significant associations between FGA 
and the metastatic site in six tumor types, 10 of which were also 
significant when using adjusted FGA (Figure S3B; Table S6). 
CNS/Brain metastases from patients with lung adenocarcinoma, 
MSS colorectal cancer and cutaneous melanoma had a 
significantly higher FGA, while lymph node metastases from 
patients with lung adenocarcinoma, pancreatic adenocarcinoma, 
bladder urothelial and cutaneous melanoma had a significantly 
lower FGA. There were seven significant associations between 
TMB and the metastatic site. A total of 31 genomic alterations in 
nine tumor types were significantly associated with specific 
metastatic sites and 25 oncogenic pathways across six tumor 
types (Figure S3C; Table S6). TP53 mutations were significantly 
more frequent in CNS/Brain metastasis from lung adenocarcinoma 
and liver metastasis from pancreatic adenocarcinoma, but less 
frequent in liver metastasis from urothelial bladder cancer and 
neuroendocrine lung cancer, as well as in intra-abdominal 
metastasis from pancreatic adenocarcinoma. In HR+/HER2- 
ductal breast cancer ESR1 mutations were significantly more 
frequent in liver metastasis. In lobular breast cancer, RHOA 
mutations were significantly more frequent in ovarian metastasis 
and FOXA1 mutations were enriched in liver metastasis. In lung 
adenocarcinoma, CDKN2A deletion was more frequent in skin and 
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Figure 3. Genomic features associated with metastatic burden. 
(A) Spearman’s correlation coefficient between FGA (circle) and TMB (diamond) with metastatic burden. Associations without a significant 
trend are shown in grey, and the lines indicate 95% CI. 
(B) Correlation between FGA and TMB with metastatic burden in the entire data set, prostate adenocarcinoma, hypermutated uterine 
cancer, and MSS colorectal cancer. Boxplots display median point, IQR boxes and 1.5  IQR whiskers for all samples. Split violin plots 
show the distribution of FGA and TMB in primary tumors (left, not filled) and metastases (right, filled).  
(C) Statistically significant oncogenic alterations and pathways associated with metastatic burden in individual tumor types. Spearman’s 
correlation coefficient is shown for each event, and the lines indicate 95% CI. Gene names in italics refer to specific genes, those in 
regular font refer to pathways. 
See also Table S4 and S5. 
 

liver metastases but less frequent in lymph nodes. Similarly, in 
urothelial bladder cancer, CDKN2A deletion was more frequent in 
lung metastases but less frequent in lymph nodes. PTEN 
mutations, as well as PI3K pathway alterations, were higher in 
brain metastases from melanoma, which is in line with a previous 
melanoma-specific study (Bucheit et al., 2014). Among others, we 
found that ERG fusions were less frequent in bone metastasis of 
prostate cancer patients, NF1 mutations were more frequent in 
lung metastasis of melanoma patients and that FGFR3 mutations 
were more frequent in lung metastasis of bladder urothelial 
patients. Taken together, our results show that metastases from 
different organs can have different genomic makeup. 

Genomic features associated with metastasis to specific 
target organs 
We analyzed the relationship between genomic features of 
metastatic patients and their organ-specific patterns of metastasis 
(n=21,546). We found 13 significant associations between FGA 
and organotropisms in 11 tumor types, seven of which were also 
significant when using adjusted FGA (Table S7). We observed a 
significant positive association between FGA and patients with 
liver metastasis in four tumor types (HR+/HER2- ductal breast, 
prostate adenocarcinoma, pancreatic adenocarcinoma and head 
and neck squamous), patients with lung metastasis in two tumor 
types (endometrioid uterine and cutaneous melanoma), and 
bonemetastasis in two tumor types (HR+/HER2- ductal breast and 
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Figure 4. Genomic features associated with metastasis to specific target organs. 
(A) Statistically significant oncogenic alterations and pathways associated with organ-specific patterns of metastatic spread. Gene names 
in italics refer to specific genes, those in regular font refer to pathways. 
(B) Schematic drawing summarizing the main findings from (A). 
See also Table S7. 

 

prostate adenocarcinoma). For TMB, we found eight significant 
associations between TMB and organ-specific patterns of 
metastatic in six tumor types, four positives (lung adenocarcinoma 
to brain and adrenal gland, pancreatic adenocarcinoma to liver, 
head and neck squamous to head and neck) and four negatives 
(prostate adenocarcinoma to bone, cutaneous melanoma to intra-
abdominal, lung adenocarcinoma to pleura and lung 
neuroendocrine to liver). 
We found 57 significant recurrent oncogenic alterations associated 
with specific patterns of metastasis in 10 tumor types. When 
interrogating oncogenic pathway alterations, we found 48 
significant associations in 12 tumor types (Figure 4A; Table S7). 
Lung adenocarcinoma, MSS colorectal cancer, and prostate 
cancer were associated with the highest number of significant 
associations. These results are summarized in Figure 4B. For 
example, lung adenocarcinoma patients with CNS/Brain 
metastasis had a higher frequency of TP53 mutations, TERT 
amplification, and EGFR mutations, but a lower frequency of 
RBM10 mutations. MSS colorectal cancer patients with lung 
metastasis had a higher frequency of KRAS mutations which was 
previously reported (Cejas et al., 2009; Pereira et al., 2015; Tie et 
al., 2011) but a lower frequency of SRC amplification. Prostate 
cancer patients with bone metastasis had a higher frequency of 
AR amplification and PTEN deletion but a lower frequency of ERG 
fusion; those with liver metastasis had a higher frequency of PTEN 
loss, RB1 loss and APC mutations; those with brain metastasis 
had a higher frequency of AR amplification and NOTCH pathway 
alterations; and those with lung metastasis had a higher frequency 
of APC mutations and CTNNB1 mutations. Experimental work has 
revealed the role of WNT pathway activation in driving prostate 
cancer metastasis (Leibold et al., 2020) and discovered a 
vulnerability to tankyrase inhibition in WNT altered prostate 
cancer. When interrogating the association between oncogenic 
pathways and organotropisms, we found that 26% of prostate 
cancer patients with lung metastasis had WNT pathway 

alterations, compared to 13% of patients without lung metastasis 
(Figure 4A). As previously reported (Gerratana et al., 2020), ESR1 
mutations were more frequent in HR+/HER2- ductal breast cancer 
patients with liver metastasis (16% vs. 5%). CBFB mutations were 
less frequent in HR+/HER2- ductal breast cancer patients with 
bone metastasis, which was demonstrated in a mouse model (Ran 
et al., 2020) while alterations in the PI3K pathway were more 
frequent in patients with bone metastasis. HR+/HER2- ductal 
breast cancer patients with brain metastasis had a lower frequency 
of MAP3K1 mutations, which were recently shown to be a 
surrogate for the less aggressive luminal A breast cancer subtype 
(Nixon et al., 2019). In line with a previous study (Bucheit et al., 
2014), PTEN mutations were more frequent in cutaneous 
melanoma patients with brain metastases, while TP53 mutations 
were less frequent in those patients. Thyroid papillary cancer 
patients with bone metastasis had a higher frequency of BRAF 
mutations, and esophageal cancer patients with lung metastasis 
had a higher frequency of ERBB2 amplification. In sum, while we 
did not observe gene or pathway alterations associated with 
specific routes of metastatic spread shared across different tumor 
types, our analysis revealed specific genomic alterations linked to 
specific organotropisms in individual tumor types. 
DISCUSSION 
We present MSK-MET, a unique, curated cohort of cancer patients 
with available genomic sequencing data and clinical information on 
metastatic disease and cancer outcome. Our study expands a 
previous pan-cancer dataset (Zehir et al., 2017) by including a 
larger number of patients with longer follow-up and by including a 
comprehensive description of metastatic events at the patient 
level. We demonstrate that mining of electronic health records can 
be used to extract relevant clinical information, and we present a 
pan-cancer map of metastasis in a contemporary cohort of patients 
treated at a single tertiary referral center. 
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Our analysis of genomic alterations from unpaired primary and 
metastatic samples revealed that metastases generally had a 
higher level of chromosomal instability, along with a higher 
frequency of WGD and TP53 mutations. These results are 
consistent with previous studies that have shown an association 
between chromosomal instability and cancer progression 
(Bakhoum et al., 2018; Ben-David and Amon, 2020; Hieronymus 
et al., 2018; Shukla et al., 2020; Stopsack et al., 2019; Watkins et 
al., 2020). Our results also suggest that metastases generally have 
a higher fraction of clonal mutations. This lower intra-tumor 
heterogeneity could be attributed to clonal selection and selective 
pressure from cancer therapy (Birkbak and McGranahan, 2020). 
We also identified several genomic alterations and signaling 
pathways enriched in metastatic samples. As described before (Hu 
et al., 2020; Pareja et al., 2020; Razavi et al., 2018), the most 
significant enrichments were associated with known drug 
resistance mechanisms (e.g., AR alterations in prostate cancer, 
and ESR1 mutations in breast cancer). We also compared primary 
tumor samples from metastatic and non-metastatic patients. In 
several tumor types, we observed a higher chromosomal instability 
and a higher frequency of TP53 mutations amongst other drivers 
in primary samples from metastatic patients whereas the clonal 
fraction was generally similar. This highlights the importance of 
chromosomal instability in governing cancer progression and 
metastasis and shows that clonal selection is rather a hallmark of 
metastasis. 
In an analysis aimed at identifying genomic alterations associated 
with metastatic burden, we found that higher chromosomal 
instability was correlated with metastatic burden in several tumor 
types. This association, however, was absent in many tumor types, 
including colorectal cancer, where copy-number alteration patterns 
may be established early in tumor development. Several 
mechanisms can explain the pro-metastatic effects of 
chromosomal instability and have been reviewed before (Ben-
David and Amon, 2020). It is believed that chromosomal instability 
can promote tumor progression by increasing subclonal diversity 
and tumor evolution (Watkins et al., 2020), but aneuploidy itself is 
not a universal promoter of transformation and recent studies 
suggest that aneuploidy is cancer-type-specific (Ben-David and 
Amon, 2020), which is in line with our observations. Beyond global 
chromosomal instability, we also identified several specific 
genomic alterations and signaling pathways associated with 
metastatic burden. The majority, including alterations associated 
with drug resistance, were enriched in samples from patients with 
higher metastatic burden. Few were associated with lower 
metastatic burden, including FOXA1 mutations in prostate cancer 
and CBFB mutations in breast cancer. 
Lastly, we investigated associations between genomic alterations 
and specific routes of metastatic dissemination. We compared 
independent metastatic samples according to their organ sites. 
This revealed that the genomic landscape of metastasis differed 
according to their target organs. Previous studies have also 
interrogated the differences between primary tumors and 
metastatic sites using either independent samples (Armenia et al., 
2018; Priestley et al., 2019; Robinson et al., 2017; Shih et al., 
2020) or paired samples (Brastianos et al., 2015; Brown et al., 
2017; Eckert et al., 2016; Hu et al., 2020; Jiménez-Sánchez et al., 
2017; Makohon-Moore et al., 2017; Naxerova et al., 2017; Noorani 
et al., 2020; Reiter et al., 2020). Clinical data extraction from the 
EHR allowed us to explore the genomic alterations of metastatic 
patients by taking into consideration a greater part of the 
metastatic events occurring in a patient's clinical course. We have 
generated a variety of hypotheses linking specific genomic 
alterations to specific organotropisms occurring in a cancer-
specific manner. Future functional characterization of these 

alterations could result in the identification of novel biomarkers and 
therapeutic approaches for metastatic cancer. 
Our study has several limitations. Firstly, while the overall cohort 
is large, sample size varied significantly between tumor types, 
which prevented us from drawing robust conclusions in less 
common tumor types. Secondly, the ICD billing codes used in our 
study likely do not fully capture all metastatic events and may be 
affected by inter-physician variability. Future improvements to the 
clinical data extraction process could come from the use of natural-
language processing and machine learning approaches, which will 
be required to mine the wealth of data contained in EHR systems 
at scale. Despite these limitations, metastatic patterns observed 
across tumor types were consistent with previous reports 
(Budczies et al., 2015; Gao et al., 2019) and manual chart review 
of a subset of cases. Our study validated previous findings from 
others and was able to generate a vast array of new associations 
in several tumor types. The next challenge will be to prioritize the 
most clinically useful candidates to identify and validate prognostic 
and predictive biomarkers that will have the potential to influence 
the clinical management of patients. 
Although this study represents a first step towards understanding 
how genomic alterations shape tumor progression, metastatic 
burden and organotropisms, more integrated studies are needed 
to fully investigate the impact of tumor cell-extrinsic effects, such 
as cancer therapy, target organ microenvironment and systemic 
factors. These studies will require comprehensive clinical timelines 
with accurate information about all lines of therapy and metastatic 
events. Additionally, single-cell profiling methods will be required 
to fully understand the cross-talk between tumor cells and the 
metastatic niche. Finally, our systematic study highlights the 
importance of chromosomal instability in progression and 
metastasis and drugs targeting this hallmark could represent an 
attractive strategy in several tumor types. MSK-MET will be 
publicly available via the cBioPortal for Cancer Genomics (Cerami 
et al., 2012; Gao et al., 2013) and will provide a valuable resource 
for the community and stimulate further research and applications 
in cancer care. 
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METHODS 
Samples and patients 
A total of 43,400 solid tumor samples from 38,933 patients 
sequenced at Memorial Sloan Kettering Cancer Center from 2013-
11-18 to 2020-01-06 (6.1y) and included in the AACR Project 
Genomics Evidence Neoplasia Information Exchange (GENIE) 
(AACR Project GENIE Consortium, 2017) 9.0-public database 
were considered for this study. All tumors were profiled using the 
Memorial Sloan Kettering Integrated Molecular Profiling of 
Actionable Cancer Targets (MSK-IMPACT) clinical sequencing 
assay, a hybridization capture-based, next-generation sequencing 
platform (Cheng et al., 2015). Tumor types were defined using a 
unique cancer type and one or more cancer type detailed (Table 
S1). For endometrial and colorectal cancers, we defined a subset 
of hypermutated (HM) tumors as those having an oncogenic POLE 
mutation or exhibiting more than 25 mutations/Mb or having 
MSIsensor score (Niu et al., 2014) > 10. Exclusion criteria were as 
follows: unavailable matched normal; low sequencing coverage 
(<100x); low tumor purity as defined by the absence of somatic 
alterations (including silent); pediatric patients (<18y at time of 
sequencing); patients with more than one unique sequenced tumor 
type; cancer of unknown primary; tumor type in which metastasis 
are rare (e.g. Gliomas); breast cancer with unavailable molecular 
subtype information; tumor types with small sample size (e.i. n <80 
and either primary n <30 or metastasis n <30). Finally, one sample 
per patient was selected using a set of priority rules as follows: the 
presence of a FACETS fit that passed qc > highest purity > highest 
sample coverage > most recent gene panel. A total of 25,775 
samples spanning 50 tumor types were used for analysis (Figure 
S1A-D, Tables S1). This set included samples that were 
sequenced with three generations of the MSK-IMPACT panel, 
containing 341 genes (n = 1,801 samples), 410 genes (n = 6,372 
samples), and 468 genes (n = 17,602 samples). 
Clinical data extraction procedures for the identification and 
mapping of metastatic events 
Clinical data were retrieved from the institutional electronic health 
records (EHR) database on 2020-11-05. Metastatic events were 
extracted from the pathology report of the sequenced samples and 
patients’ electronic health records. The anatomic location of the 
sequenced samples is described in the sample pathology reports 
as a free-text description by pathologists. The EHR includes 
International Classification of Diseases (ICD) billing codes which 

classify a comprehensive list of diseases, disorders, injuries and 
other health conditions including metastatic events. Metastatic 
events from the sample pathology report and the ICD billing codes 
from the EHR were systematically mapped to a curated list of 21 
organs (Table S8). Lymph nodes were also classified as distant or 
regional given the anatomic location of the primary tumor. Of note, 
the classification of distant vs. regional was not possible for tumor 
types in which the anatomic location of the primary tumor is not 
well defined (e.i. melanoma cutaneous, cutaneous squamous cell, 
sarcoma lipo and sarcoma UPS/MXF). The organ site mapping for 
metastatic cancer is available at https://github.com/clinical-data-
mining/organ-site-mapping. For a user providing a table of organ 
site descriptions or ICD Billing codes, annotations of the 21 organ 
sites will be generated. Furthermore, additional annotations 
recognizing local extension and distant lymph node spread can be 
created. Metastatic burden was defined as the number of distinct 
organs (excluding regional lymph nodes) affected by metastases 
throughout a patient’s clinical course (ranging from 1 to 15 in the 
present study). Patients with more than six affected organ sites 
were grouped for analyses of metastatic burden. 
Comparison of metastatic sites automatically extracted from 
electronic health records vs. manual chart review 
A total of 4,859 patients (22.5%) with metastatic sites extracted 
through manual chart review and previously published were 
available (Abida et al., 2017; Jones et al., 2021; Razavi et al., 
2018; Shoushtari et al., 2021; Yaeger et al., 2018). Ten tumor 
types were represented including the most frequent (prostate, 
lung, breast, colorectal, and melanoma). There was a strong 
correlation between the number of metastatic sites retrieved from 
manual chart review and the number of metastatic sites 
automatically extracted from electronic health records (Figure 
S1G). For colorectal hyper mutant and MSS only the first 
metastatic events were reported so we restricted the comparison 
to the first metastatic event extracted from EHR. It is also important 
to note that the manual chart review was done before this study. 
Therefore, the present study has a longer follow-up which resulted 
in a higher number of metastatic sites. We also calculated the 
sensitivity for each metastatic site and each tumor type (Figure 
S1H). The median sensitivity was 77% across tumor types and 
metastatic sites. 
Genomic analysis 
Tumor mutational burden (TMB) was calculated for each sample 
as the total number of nonsynonymous mutations, divided by the 
number of bases sequenced. Fraction of genome altered (FGA) 
was calculated for each sample as the percentage of the genome 
with absolute log2 copy ratios >0.2. Log2 copy-number ratios were 
derived as previously described (Cheng et al., 2015). 
Chromosome arm-level copy number alterations were computed 
using the ASCETS tool (Spurr et al., 2020) using default 
parameters. Allele-specific analyses of copy number alterations 
were performed using the FACETS tool (Shen and Seshan, 2016), 
which infers purity- and ploidy-corrected integer DNA copy number 
calls from sequencing data. The quality of FACETS fits was 
determined using a set of criteria as described in facets-preview 
(https://github.com/taylor-lab/facets-preview). To estimate a tumor 
purity- and ploidy-adjusted version of the FGA, we defined 
“adjusted FGA” as the fraction of the genome different from the 
major integer copy number (Mcn), where Mcn is defined as the 
integer total copy number spanning the largest portion of the 
genome. Tumor samples were considered to have undergone 
whole-genome doubling (WGD) if more than 50% of their 
autosomal genome had Mcn >2. The clonality of each mutation 
(clonal or subclonal or indeterminate) was determined as 
described in facets-suite (https://github.com/mskcc/facets-suite). 
For each tumor sample, the fraction of clonal mutations (clonal 
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fraction) was determined by dividing the total number of clonal 
mutations by the sum of clonal and subclonal mutations. MSI-H 
status was defined by an MSIsensor score >10 (Niu et al., 2014). 
Somatic alterations were annotated using OncoKB for 
oncogenicity and clinical actionability (Chakravarty et al., 2017) 
(Data version: v2.8, released on 2020-09-17). For hypermutated 
colorectal and hypermutated uterine cancer, only genes that were 
recurrently mutated based on MutSig-CV (q-value<0.1) were 
considered for association analyses. For each tumor type, 
recurrent oncogenic alterations were defined as those considered 
oncogenic or likely oncogenic by OncoKB and present in at least 
5% of either primary or metastatic samples (median of 15 per 
tumor type, Table S1). Canonical oncogenic pathway-level 
alterations were computed using curated pathway templates as 
previously reported (Ding et al., 2018; Sanchez-Vega et al., 2018). 
Segmented copy-number data were processed using the CNtools 
package v1.4. 
Statistical analyses 
Comparisons between groups (primary vs. metastatic tumors, 
primary samples from metastatic vs. non-metastatic patients, and 
metastases according to their organ location) were performed 
using the non-parametric Mann-Whitney U test for continuous 
variables or the Fisher’s exact test for categorical 
variables. Differences in the frequency of actionable mutations 
(Levels 1 to 3, as defined by OncoKB) between groups (primary 
tumors vs. metastases and primary tumors from metastatic vs. 
non-metastatic patients) were further tested using a multivariable 
logistic regression model adjusted for TMB and FGA. Differences 
in the frequency of arm-level copy number alterations between 
groups (primary vs. metastatic tumors and primary samples from 
metastatic vs. non-metastatic patients) were tested using a 
multivariable logistic regression model adjusted for FGA. A 
genomic feature was considered to be significantly correlated with 
metastatic burden if (a) the Spearman’s correlation between the 
two variables was statistically significant (q-value < 0.05) and (b) 
the coefficient associated with the genomic feature as a predictive 
variable in a multivariable linear regression model adjusted for 
sample type (metastatic vs. primary tumor) was statistically 
significant (p-value < 0.05). The second condition was required 
because the ratio of metastatic samples to primary samples was 
associated with metastatic burden and could otherwise act as a 
confounding factor. We assessed genomic features associated 
with the presence or absence of metastasis in a target organ using 
only target organs present in at least 5% of the patients. A genomic 
feature was considered to be significantly associated with 
metastasis to specific target organs if (a) the Mann-Whitney U test 
for continuous variables or the Fisher’s exact test for categorical 
variables was statistically significant (q-value < 0.05) and (b) the 
coefficient associated with the genomic feature as a predictive 
variable in a multivariable logistic regression model adjusted for 
sample type (metastatic vs. primary tumor, categorical) and 
metastatic burden (1 to 6, numerical) was statistically significant 
(p-value < 0.05). The second condition was required because the 
ratio of metastatic samples to primary samples and metastatic 
burden were associated with metastasis to specific target organs 
and could otherwise act as a confounding factor. When TMB and 
FGA were used in a generalized linear model (linear and logistic 
model), their distributions were harmonized using a normal 
transformation as described before (Vokes et al., 2019) then 
scaled from 0 to 1 by subtracting the minimum and dividing by the 
maximum. Logistic regression was performed using Firth’s bias-
reduction method as implemented in the R package brglm 
(Kosmidis and Firth, 2020). Overall survival (OS) was measured 
from the time of sequencing to death and was censored at the last 
time the patient was known to be alive. If a patient had more than 
one sequenced sample, the first time of sequencing was used. 

Median follow-up time was calculated using the reverse Kaplan-
Meier method. Median overall survival and five-year survival rate 
were calculated by the Kaplan-Meier method. The association 
between metastatic burden and overall survival was assessed 
using univariable Cox proportional hazards regression models. All 
reported p-values are two-tailed. Multiple testing correction was 
applied within each tumor type using the false discovery rate (q-
value) method and q-value < 0.05 was considered significant. All 
analyses were performed using R v3.5.2 (www.R-project.org) and 
Bioconductor v3.4. 
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Figure S1. Study design and characteristics of the patients and samples included in MSK-MET, related to Figure 1.  
(A) CONSORT flow diagram of the study. 
(B) Distribution of age at time of sequencing, time interval between surgical procedure and sequencing, tumor sample coverage, tumor 
purity assessed by the pathologist. 
(C) Distribution of 25,775 tumors across 50 tumor types grouped by ten organ systems. 
(D) Distribution of the 25,775 tumors according to the sample type (primary vs. metastasis), site of metastatic sample and whether the 
primary sample was from a patient with evidence of distant metastasis at the time of the study or not. 
(E) Distribution of the 99,220 metastatic events mapped to 21 organ sites. 
(F) Comparison of the frequency of metastasis in several target organs from different tumor types reported in (Gao et al., 2019) and in 
(Budczies et al., 2015) vs. the present study. 
(G) Comparison of the number of metastasis using data from manual chart reviews and clinical data automatically extracted from the 
EHR (This study). 
(H) Heatmap showing the recall rate (sensitivity) across several target organs from different tumor types using patients retrieved from 
manual chart reviews. 
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Figure S2. Genomic differences between primary samples from metastatic and non-metastatic patients, related to Figure 2.  
(A) Scatterplot showing the comparison of the median FGA, median WGD, median TMB and median clonality for each tumor type in 
primary samples from metastatic and non-metastatic patients. 
(B) The following clinical and genomic features are shown side-by-side for primary samples from metastatic and non-metastatic patients 
using a combination of barplots and violin plots; from left to right: sample counts, FGA, fraction of samples with WGD, TMB, clonality, 
fraction of samples with TMB-high status and distribution of highest actionable alteration. The black vertical line in each violin plots 
represents the median. Heatmap shows the frequency of arm level alterations in primary tumors and metastases. Tumor types are ordered 
from top to bottom by decreasing FGA in metastasis and grouped by organ systems. * indicates q-value < 0.05. WGD and clonality were 
available for a subset of 10,106 samples with FACETS data. 
(C) Statistically significant differences in the frequency of oncogenic alterations between primary tumors and metastases across all tumor 
types. Triangles summarize oncogenic alterations frequencies in primary samples from metastatic vs. non-metastatic patients and are 
colored according to alteration type. 
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Figure S3. Genomic differences of metastases according to organ location, related to Figure 4.  
(A) Distribution of sequenced metastasis according to organ location with the heatmap showing the percentage of metastatic samples 
where each row represents a tumor type and each column represents the organ location. For each tumor type, the distribution of all 21 
organ locations is shown as a stacked barplot to the right of the heatmap. For each organ, the distribution of all 50 tumor types is shown 
as a stacked barplot below the heatmap. For each tumor type, the number of metastasis samples is indicated in parentheses. For each 
organ, the number of metastasis samples is indicated in parentheses. 
(B) Statistically significant association between FGA (black circle) and TMB (white diamond) and specific metastatic sites. 
(C) Statistically significant oncogenic alterations associated with specific metastatic sites. 
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SUPPLEMENTAL TABLES 
Supplemental tables can be found online. 
 
Table S1. Summary of the 50 tumor types included in the MSK-MET cohort, Related to Figure 1 
Table S2. Genomic differences between primary tumors and metastases, Related to Figure 2 
Table S3. Genomic differences between primary samples from metastatic and non-metastatic patients, Related to Figure S2 
Table S4. Association between metastatic burden and overall survival assessed using Cox proportional hazards model, 
Related to Figure 3 
Table S5. Genomic associations with metastatic burden, Related to Figure 3 
Table S6. Genomic differences of metastases according to their organ location, Related to Figure S3 
Table S7. Genomic features associated with metastasis to specific target organs, Related to Figure 4 
Table S8. Mapping between free-text description from pathology reports and ICD billing codes from EHR to a curated list of 21 
organs, Related to Figure 1 
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