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Intratumoral variability is a seminal feature of human tumors
contributing to tumor progression and response to treatment.
Current technologies are unsuitable to accurately track pheno-
types and subclonal evolution within tumors, especially in re-
sponse to genetic manipulations. Here, we developed epitope
combinatorial tags (EpicTags), which we coupled to multiplexed
ion beam imaging (EpicMIBI) for in situ tracking of barcodes
within tissue microenvironments. Using this platform, we dis-
sected the spatial component of cell lineages and phenotypes in
a xenograft model of small-cell lung cancer. We observed emer-
gent properties from mixed clones leading to the preferential ex-
pansion of subclonal patches for both neuroendocrine and non-
neuroendocrine cancer cell states in this model. In tumors har-
boring a fraction of PTEN-deficient cancer cells, we uncovered a
non-autonomous increase of subclonal patch size in PTEN wild-
type cancer cells. EpicMIBI can facilitate in situ interrogation
of cell-intrinsic and cell-extrinsic processes involved in intratu-
moral heterogeneity.
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Introduction

Heterogeneity within a tumor can be result of genetic, epige-
netic, and metabolic diversity, thus contributing to tumor pro-
gression and resistance to treatment (reviewed in (Easwaran,
Tsai, and Baylin 2014; Jamal-Hanjani et al. 2015; Zahir et
al. 2020)). For instance, multi-region sequencing of human
tumors has revealed intricate patterns of tumor evolution:
large proportions of region-specific genetic alterations were
not detected in other areas of the tumors analyzed (Boutros
et al. 2015; Gerlinger et al. 2012). The reversible process
of epithelial-to-mesenchymal transition (EMT) provides an-
other example of intra-tumoral heterogeneity. EMT is con-
sidered to be spatiotemporally regulated via epigenetic mech-
anisms, which in turn might influence cell migration ability
and the initiation of metastasis (reviewed in (Derynck and
Weinberg 2019)).
Tumors are also comprised of resident and infiltrating non-
cancer cells, such as immune cells and fibroblasts (reviewed
in (Hanahan and Weinberg 2011; Davidson et al. 2021)).
This variable cellular organization, in conjunction with se-
creted biomolecules and extracellular matrix proteins, is de-

fined as the tumor microenvironment (reviewed in (Ding et
al. 2018; Hinshaw and Shevde 2019; Joyce 2005)). As inter-
actions among different cell subtypes within the microenvi-
ronment will influence the pathobiology of cancer (Lei et al.
2020), defining the individual biologies of cancer subclones
within the tumor microenvironment is an essential step to-
wards providing context for the development of novel thera-
peutic strategies. The variability within tumors begs essential
questions: do the subclones behave as lone actors, or is there
an underlying, and interactive, order of these clones that aids
tumor growth and survival? Is the tumor simply a competi-
tion amongst related peers, or is there a social ecology of tu-
mor cells with important contributory, symbiotic, differences
that must be present for success?
Single-cell technologies provide opportunities to investigate
whether inherent order exists in tumor samples (reviewed in
(González-Silva, Quevedo, and Varela 2020; Irish, Kotecha,
and Nolan 2006)). Most single-cell sequencing technologies
employ microfluidics for single-cell isolation (e.g., Fluidigm-
based scRNAseq) or employ droplet-based barcoding of in-
dividual cells (e.g., Drop-seq) (Macosko et al. 2015). These
technologies have revealed intra-tumor heterogeneity in can-
cer stem cells, EMT, immune load, clonal evolution, and re-
sponse to treatment (González-Silva, Quevedo, and Varela
2020; Hong et al. 2019; Ireland et al. 2020). Since these
cells are taken from their native context, such heterogeneity
can appear random while the spatial organization was over-
looked.
Recent advances have added in-depth spatial characterization
of cellular subtypes within tissues by simultaneously measur-
ing dozens of proteins or RNAs (Angelo et al. 2014; Eng et
al. 2019; Rodriques et al. 2019; Goltsev et al. 2018; Schürch
et al. 2020). Technologies such as Slide-seq quantify mRNA
levels in situ (Rodriques et al. 2019) and hence distinguish
between cell types; however, this approach cannot measure
critical functional events such as post-translational modifica-
tions of proteins, or their translocation between cellular com-
partments. DBiT-seq is an alternative that can detect both
mRNA and selected proteins (Liu et al. 2020), but it is cur-
rently limited to a 10-m scale that is unsuitable for subcellular
compartmentalization.
Multiplex ion beam imaging (MIBI), can capture post-
translational modifications and measure over 40 proteins with
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a resolution down to 260 nm (Angelo et al. 2014; Keren et al.
2019). MIBI is thus suitable to assess active and inactive pro-
teins within their subcellular locales, while simultaneously
revealing phenotypic, epigenetic and metabolic cell states.
Ideally, approaches such as MIBI can be combined with ge-
netic modification of cell populations to allow perturbation
analysis of individual cancer subclones to the behavior and
organization of the tumor microenvironment. With enough
scalability, combining multi-parameter acquisition and ge-
netic screening would allow in situ detection of molecular
drivers of cellular spatial identity, hence allowing large-scale
testing of potential vulnerabilities in different regions of the
tumor under investigation.
Lineage tracing methodologies have been useful for de-
lineating mutations that occur during cancer evolution.
CRISPR/Cas9 barcoding systems such as homing guide
RNAs and CARLIN enable the reconstruction of a develop-
mental lineage tree in vivo (Kalhor et al. 2018; Bowling
et al. 2020; Quinn et al. 2021). The CRAINBOW system
for fluorescently barcoding somatic mutations also provides
a snapshot of oncogenic clonal expansion in vivo, suggesting
that tumor heterogeneity is not random, but has some pre-
determined characteristics that are heritable of reproducible
(Boone et al. 2019). Other methods allow for visualization
of the hypoxic state of cells, yielding cell-specific informa-
tion about the local tumor cell states and the more global tu-
mor microenvironment (Vermeer et al. 2020; Hartmann et al.
2021). However, such methods can be limited in the number
of cells and parameters they can trace. Previous work have
adapted protein barcodes for cancer cell clonality tracking
via mass cytometry (Wroblewska et al. 2018), but is unable
to resolve the spatial relationships of cells within a tissue.
Here, we report a method that couples an epitope
combinatorial tagging strategy (EpicTag) with MIBI
(EpicMIBI) for the spatial identification of cancer cell clones
within a tumor. Cells overexpressing a unique combination
of short epitopes are detected with MIBI using a robust
multiplex antibody panel. EpicTags enable subclonal growth
tracking and the visualization of a snapshot of tumor evo-
lution. Using a xenograft model of small cell lung cancer
(SCLC), an aggressive form of lung cancer with neuroen-
docrine features, we found that homogeneously tagged
cells configure a tumor with reproducible phenotypically,
epigenetically, and metabolically distinct cell types with cer-
tain phenotypes attaining dominance within tumor patches.
Importantly, an emergent structure is apparent dependence of
co-localized phenotypes that create an ecology with apparent
co-residence of tumor subtypes. We also observed that
loss a tumor suppressor, PTEN, can shift tumor evolution
not only through cell intrinsic mechanisms but also by
modifying behaviors of neighboring cancer cells that are
PTEN wild type. These results underscore the necessity of
imaging approaches such as EpicMIBI to characterize the
ecosystem of the tumor microenvironment by delineating the
individual contributions of cancer subclones towards global
tumor burden, with clear opportunities for novel anti-cancer
therapies.

Results

Imaging-based identification of specific cancer popula-
tions using epitope-based barcodes
To distinguish cell populations using epitope barcoding,
we synthesized EpicTag vectors expressing a GFP reporter
linked to a C-terminal tag consisting of combinations of
three different epitopes (Figure 1A). We reasoned that co-
expression of epitopes linked to GFP would ensure suffi-
cient retention within cells to enable detection and cell iden-
tification by antibody-based multiplex imaging technologies.
Each epitope combination tagged to GFP relates to a unique
cell line through the corresponding combination of antibod-
ies. We designed 20 different lentiviral vectors, each express-
ing three unique epitopes from a pool of six: AU1, FLAG,
HA, StrepII, Prot C, and VSVg (Figure S1A). We then indi-
vidually transduced human NCI-H82 SCLC cells with each
construct, thus generating 20 EpicTag cell lines. Each of the
20 cell lines were then further barcoded with a unique combi-
nation of palladium isotopes, pooled at the same ratio, and la-
beled with a panel of isotope-conjugated antibodies targeting
GFP and the six epitopes. Mass cytometry analysis showed
GFP expression in the vast majority of the population (Figure
S1B) and efficient detection of each of the six epitopes (Fig-
ure S1C), validating the robust expression from the vector
backbone and the performance of the tag-specific antibod-
ies. We applied UMAP (Uniform Manifold Approximation
and Projection) (Becht et al. 2018) dimensional reduction
to the epitope signals and detected groups of cells that ex-
press each of the 20 EpicTags (Figure S1D), indicating that
all epitope combinations are expressed in the pooled popu-
lation. As expected, each epitope-barcoded group contained
a unique palladium barcode (Figure S1E, F). Taken together,
these experiments validated the 20 EpicTag-barcoded NCI-
H82 cell lines and the workflow necessary to generate and
test barcoded cells.
Next, we used the 20 EpicTag-barcoded NCI-H82 cell lines
and MIBI to distinguish barcoded cells in sections of bar-
coded cell pellets (Figure 1B). We first generated a cell pellet
consisting of 50% wild-type NCI-H82 cells and 50% of a
pooled population of the 20 EpicTag-barcoded NCI-H82 cell
lines. MIBI analysis identified cells with and without GFP
expression (Figure 1C, left), enabling identification of genet-
ically modified cells within the pellet. The signal from the
sum of all epitopes overlapped with the GFP signal and was
absent from areas without GFP (Figure 1C, right), indicating
that epitope signals are specifically found in GFP-containing
cells only. We detected signals for each of the six epitopes,
and the composite of all six revealed a complex multicolor
image (Figure 1D). We identified all 20 barcodes within the
cell pellet (Figure 1E and Figure S1G), validating EpicMIBI
as a technique for imaging-based barcode detection. These
ex vivo data indicate that combinatorial staining of epitope-
tagged proteins, coupled to a multiplexed imaging technol-
ogy such as MIBI, enables the retention of spatial informa-
tion for barcoded cells.
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Figure 1. Imaging-based identification of specific cell populations with epitope-based barcodes. (A) Schematic of a representative EpicTag construct. The lentiviral-
based vector contains an EF1a promoter (orange) for the expression of puromycin N-acetyl transferase (puroR; magenta), a T2A self-cleaving peptide (yellow), and GFP
(green) fused to a C-terminal tag consisting of combinations of three short epitopes (epi 1, epi 2, and epi 3; purple, olive green, and cyan, respectively). (B) Workflow for
multiplex imaging of epitope-based barcodes in cell pellets. (1) A library of short epitopes is selected. (2) Twenty cell lines expressing unique combinations of epitopes are
generated based on a six-choose-three strategy. (3) Each cell line is grown in vitro in an independent flask, and then cultures are mixed and pelleted. (4) Cell pellet sections
are mounted in gold-coated slides, and samples are stained with an isotope-conjugated antibody cocktail and loaded onto the MIBIscope. (5) A mass spectrum is obtained for
each pixel of the targeted area, data are processed to obtain a two-dimensional image for each antibody, and epitope images are overlayed to identify barcodes in the image.
(C to E) Representative MIBI images of a cell pellet consisting of 50% wild-type NCI-H82 cells and 50% of a pooled population of 20 barcoded NCI-H82 cell lines from the
six epitopes depicted in Figure 1B.1. C) Left: Overlay of anti-GFP (green) and anti-Histone H3 (HH3) (gray) images showing cells with expression (white arrow) or absence
(yellow arrow) of GFP. Right: Overlay of anti-GFP (green) and the sum of all six anti-epitope (magenta) images showing that epitope signals are detected in GFP-positive
cells (white arrow) but not in GFP-negative cells (yellow arrow). Scale bars: 40 µm. D) Black and white images representative of anti-epitope (AU1, FLAG, HA, StrepII, Prot
C and VSVg) images from the same field of view (FOV). The multicolor overlay at the bottom shows that each GFP-positive cell expresses a combination of epitopes. Scale
bars: 80 µm. E) Multiple images showing a representative cell for each of the 20 barcodes. Each row is a barcode and each column is an epitope (AU1: red; FLAG: green;
HA: blue; Strep II: cyan; Prot C: magenta; VSVg: yellow). The composite column is the overlay of the six anti-epitope images. Dashed lines were manually drawn to indicate
the contour of the relevant cell. The numbers within the white squares indicate whether the epitope was expected (1) or not (0) in a given barcode. Images are enlargements
from boxed regions in Supplementary Figure 1G. Scale bars: 10 µm.

Cells barcoded with EpicTags are detected in vivo
We determined the potential of the EpicTag strategy in vivo
by pooling the 20 EpicTag-barcoded NCI-H82 cell lines to
generate tumors in mice. Single-cell suspensions from these
tumors were subjected to mass cytometry. All 20 combina-
tions were detected in GFP-expressing cells (Figure S2A-D),
indicating that EpicTag expression is durable in NCI-H82
cells within tumors in vivo. In tumor sections analyzed by
MIBI, we detected all six epitopes, and cells expressed all
the expected combinations of the three epitopes (Figure 2A,
B). Thus, EpicMIBI can be leveraged as a proxy for com-
mon cell ancestry at the local scale amongst cancer cells in a
proliferating tumor in mice.
EpicTags are composed of two critical building blocks: a
structured protein and a tail of epitopes. Expressing proteins
alone as barcodes suffers from a lack of scalability, whereas
short epitopes by themselves are not efficiently expressed or
retained within the cell. This co-dependency can be lever-
aged to increase the number of barcodes based on experimen-
tal needs. On the protein side, distinct proteins can be tagged
with combinations of three epitopes (Figure 2C, top). For ex-
ample, we tagged mCherry with the six-choose-three (6C3)
scheme described above (Figure S1A) and generated 20 ad-
ditional EpicTag-barcoded NCI-H82 cell lines. We pooled
the 20 mCherry+ and the 20 GFP+ cell lines and confirmed
the presence of all 40 cell lines using mass cytometry (Fig-
ure S2E). We further validated the system by generating a
pool excluding the NCI-H82 cell lines that were mCherry+

AU1-FLAG-HA+ and GFP+ StrepII-ProtC-VSVg+. We re-
covered the 38 expected combinations but not the two miss-
ing combinations (Figure S2F), highlighting the robustness
of the system. We then generated tumors in mice by mixing
mCherry+ and GFP+ cancer cells and identified mCherry-
expressing and GFP-expressing cells (Figure 2C). These data
show that the EpicTag system can be expanded to other pro-
teins that can be tagged and detected using an antibody. We
next expanded the number of short epitopes suitable for MIBI
(Figure 2D, top). We generated vectors expressing E2 and
Tag100 epitopes, generated tumors, and analyzed the sam-
ples. Both epitopes were detected in vivo (Figure 2D). We
then generated tumors including cells expressing GFP or
mCherry tagged with six epitopes (AU1, FLAG, StrepII, Prot
C, Tag100 and VSVg). We detected cells expressing all six

epitopes together and either GFP or mCherry (Figure 2E).
Thus, a twelve-choose-six (12C6) scheme, or 924 combina-
tions, is feasible given enough validated epitopes.
Altogether, these experiments demonstrate the modularity of
the EpicTag system for tracing cancer-cell lineages within tu-
mors through the diverse combination of well-expressed pro-
teins tagged with a wide range of epitopes.

Complex spatial tumor structures arise from a well-
established cancer cell line
NCI-H82 cells belong to the NEUROD1-high subtype of
SCLC (SCLC-N) (Rudin et al. 2019). Similar to other
subtypes of SCLC, SCLC-N tumors are heterogeneous and
harbor cancer cells with neuroendocrine (NE) and non-
neuroendocrine (non-NE) features (Ireland et al. 2020; Stew-
art et al. 2020). Single-cell RT-qPCR analyses suggested that
cells with NE and non-NE features co-exist in NCI-H82 cells
in culture (Lim et al. 2017; Groves et al. 2021). Accumu-
lating evidence indicates that the interplay between NE and
non-NE cells is critical for tumor growth and evolution in
SCLC (reviewed in (Shue, Lim, and Sage 2018)).
Using NCI-H82 xenografts as a model, we investigated the
spatial organization of tumor heterogeneity using EpicMIBI,
focusing on NE and non-NE phenotypes. To this end, we
simultaneously stained barcoded NCI-H82 tumors with a
22-antibody MIBI panel to identify cell barcodes as well
as various cell types in the tumor microenvironment and
functional states for the cancer cells (e.g., cell cycle, dif-
ferentiation) (Figure 3A). All the antibodies tested gener-
ated detectable signal with the expected cellular localization
(Figure 3B). NCI-H82 cells were identified by GFP expres-
sion and further confirmed using a human-specific mitochon-
drial marker, which does not stain for mouse cells (Figure
3C). For each NCI-H82 cell identified, barcode expression
(AU1, FLAG, HA, StrepII, Prot C, and VSVg) was ana-
lyzed, as well as markers of NE and non-NE differentia-
tion (synaptophysin and vimentin, respectively), epigenetic
states (H3K4me2, H3K27ac, and H4K8ac – histone modifi-
cations linked to active transcription), and metabolic states
(GLUT1 and citrate synthase – markers for glycolysis and
citric acid cycle activity, respectively) (Figure 3D). We also
identified proliferative cells (Ki67 and the mitosis marker
phospho-Ser28 of histone H3, HH3) and cells with DNA
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Figure 2. Detection of epitope-based barcodes in SCLC xenografts. (A) Workflow for multiplex imaging of epitope-based barcodes in subcutaneous NCI-H82 SCLC
xenografts. (1) Cell lines expressing unique combinations of epitopes are generated based on an n-choose-k strategy and grown in vitro. (2) Barcoded cells are mixed and
injected subcutaneously into the left and right flanks of a mouse. (3) Tumors are formalin-fixed, paraffin-embedded (FFPE), and sections are mounted in gold-coated slides.
Samples are stained with an isotope-conjugated antibody cocktail and loaded onto the MIBIscope. (4) A mass spectrum is obtained for each pixel of the targeted area, data
are processed to obtain a two-dimensional image for each antibody, and epitope images are overlayed to identify barcodes in the image. (B) Left: Representative overlay of
AU1, FLAG, HA, StrepII, Prot C, and VSVg MIBI images of a tumor consisting of a pooled population of 20 barcoded NCI-H82. Right: Multiple enlarged images from boxed
regions in the left image showing that individual cells express three of the six epitopes. Columns are overlay, with each of the epitopes (AU1: red; FLAG: green; HA: blue;
Strep II: cyan; Prot C: magenta; VSVg: yellow), and HH3 (gray) to identify the cell nucleus. Scale bar: 80 µm. (C-E) Representative MIBI images of a tumor consisting of a
pooled population of wild-type NCI-H82 cells and four barcoded NCI-H82 cell lines expressing GFP or mCherry tagged to six epitopes (AU1, FLAG, StrepII, Prot C, Tag100,
and VSVg) or to three epitopes (FLAG, HA, and E2). C) Top: Schematic of a representative EpicTag construct. The vector contains an EF1a promoter (orange) for the
expression of puromycin N-acetyl transferase (puroR; magenta), a T2A self-cleaving peptide (yellow), and a protein (GFP in green; mCherry in red; “n” number of proteins
in violet) fused to a C-terminal tag consisting of combinations of three short epitopes (purple, olive green, and cyan). The dashed gray line indicates the modularity of the
system. Bottom left: Overlay of anti-GFP (green), anti-mCherry (red), and anti-HH3 (gray) images showing cells expressing GFP or mCherry but not both simultaneously.
Bottom right: Individual and enlarged images from boxed region on the left. Scale bar: 40 µm. D) Top: Schematic of a representative EpicTag construct with distinct epitopes.
The vector contains an EF1a promoter (orange) for the expression of puroR (magenta), a T2A self-cleaving peptide (yellow), and a protein (violet) fused to a C-terminal tag
consisting of combinations of “n” short epitopes (olive green, and cyan). The dashed gray line indicates the modularity of the system. Bottom left: Overlay of anti-E2 (cyan),
anti-Tag100 (magenta), and anti-HH3 (gray) images showing cells expressing Tag100 or E2 but not both simultaneously. Bottom right: Individual and enlarged images from
boxed region on the left. Scale bar: 40 µm. (E) Black and white images of the same field of view (FOV) showing cells expressing either GFP (green arrow) or mCherry (red
arrow) and the six epitopes (AU1, FLAG, StrepII, Prot C, Tag100 and VSVg). Scale bar: 8 µm.
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Figure 3. Spatial organization of NCI-H82 SCLC xenografts. (A) Summary of the antibody panel used for this study: Epitope markers for tracing cancer cell lineages;
Phenotypic markers for distinguishing cell types and states; Organism markers to distinguish between human (NCI-H82 SCLC cells) and mouse cells; Functional markers
for assessment of proliferation, DNA damage and metabolic state; Epigenetic markers for gene expression activity; Cell nucleus markers to stain DNA. (B) Images for each
marker (gray) shown individually in a representative region of an NCI-H82 xenograft (Tile 3, field of view, FOV 2). HH3 is shown in all images (blue). Scale bars: 50 µm. (C)
Images for aSMA (cyan), CD31 (yellow), and human cell marker (orange) in a representative region of an NCI-H82 xenograft (Tile 7, FOV 5). HH3 is shown in all images
(blue). Scale bars: 20 µm. (D) Images for 14 markers in a representative region of the dataset (Tile 14). These data exemplify antibody staining patterns used to assess
barcode (left), phenotype (second to the left), epigenetic state (second to the right), and metabolic state (right) of cells within an NCI-H82 xenograft. Scale bars: 100 µm
(top) and 50 µm (bottom). (E) Representative images of pS139 H2AX (red; indicative of extensive DNA damage), Ki67 (yellow; indicative of proliferation), and pS28 HH3
(cyan; indicative of mitosis) in a representative region of the dataset (Tile 2, FOV 3). HH3 is shown in all images (blue). Scale bars: 20 µm. (F) A heatmap of mean marker
expression for the eight phenotypic clusters (rows) and the eight markers that define them (columns). The intensity of each marker is defined by the color bar at the bottom
(normalized counts). (G) UMAP of all cells in the dataset (n = 231715) colored by their phenotypic cluster. Each point represents a cell. Cells were grouped based on the
expression of 13 markers (Vimentin, pS28 HH3, human cell marker, Ki67, aSMA, CD31, Citrate Synthase, GLUT1, pS139 H2AX, Synaptophysin, H3K27ac, H3K4me2, and
H4K8ac). (H) Frequencies of each phenotypic cluster in the entire dataset (n = 231,715) and in each individual tile (Tiles 1 to 16). The dashed line separates the entire
dataset representation from the individual tiles. Phenotypic clusters are indicated by color. (I) Representative phenotypic cluster maps on a region enriched in NE cells (Tile
5; phenotypic cluster 7) and a region with distinct cell types (Tile 15; phenotypic cluster 1 to 8). Scale bars: 100 µm. (J) Schematic of cellular neighborhoods. Cell type A
(green) and cell type B (pink) might be in a region rich in homotypic (Neighborhood; A rich and B rich, respectively) or heterotypic (Neighborhood; Mixed) interactions. (K)
A heatmap of the frequencies of each phenotypic cluster (columns) for each of the seven CNs (rows). The normalized intensity of each marker is defined by the color bar.
(L) Representative neighborhood maps on a region enriched in homotypic NE cell interactions (Tile 5; neighborhood 3) and in a region with distinctive substructures (Tile 15;
neighborhoods 1 to 7). Scale bars: 100 µm.

damage (phospho-Ser139 H2AX, γH2AX) (Figure 3E). In
addition, we identified mouse endothelial cells (CD31) and
stromal cells (aSMA) (Figure 3C). Overall, we analyzed 16
tiles, each one consisting of square field of views (FOVs)
of 1200 µm to obtain the spatial location and phenotype of
>200,000 cells in NCI-H82 xenografts (Figure S3A, B).
Cell populations were defined using unsupervised self-
organizing map (SOM) on the expression data from all tiles.
We identified eight phenotypic clusters: seven SOM clusters
based on marker expression, and a final manual annotation
step to identify CD31+ cells (Figure 3F). Phenotypic clus-
ters 2, 3, 5, 6, and 7 were of human origin, and clusters 1 and
4 were of mouse origin. Cluster 8, consisting of a 0.7% of
the total cells, contained cells with low levels of expression
of all markers, and it was therefore removed from the analy-
sis. Cluster 1 contained mouse stromal cells as indicated by
the expression of aSMA and vimentin, and lack of expression
of the human-specific mitochondrial marker. Cells in cluster
4 were mouse endothelial cells as indicated by the expression
of CD31 and vimentin, and the absence of the human-specific
mitochondrial marker. Non-NE NCI-H82 cells (marked by
vimentin and undetected expression of synaptophysin) were
found in cluster 2, whereas NE cells (marked by synapto-
physin and undetected expression of vimentin) were split into
clusters 6 and 7. The split into two NE clusters was mainly
driven by differences in the expression of epigenetic mark-
ers H3K27ac and H4K8ac, which were expressed in cluster 7
but not in cluster 6. Cluster 5 was composed of mitotic cells
(marked by pS28 HH3). Cells in cluster 3 had high expres-
sion of both synaptophysin and vimentin. Visual inspection
of cells in cluster 3 revealed that most of them correspond
to NE cells near stromal cells, suggestive of a possible leak-
age of signal from stromal cells into NE cells, even though
some of these cells may also represent a transition between
the NE and non-NE states (Figure S3C). UMAP dimension
reduction (Becht et al. 2018) was used to obtain a visual
overview of where cells from each phenotypic SOM cluster
were located. This representation shows that cells from each
phenotypic SOM cluster are grouped together (Figure 3G),
further supporting the clustering results.
Next, we calculated the frequencies of cells from each phe-

notypic SOM cluster in each tile analyzed (Figure 3H) and
mapped the localization of the clusters onto each tile (Fig-
ure 3I and Figure S3D). Mouse stromal and endothelial cells
(clusters 1 and 4, respectively) were present in all tiles ana-
lyzed (Figure 3H) and were scattered in the cluster-colored
maps (Figure 3I). As expected, more than 75% of the cells
in all tiles combined were NE cells (clusters 6 and 7) (Figure
3H, “All tiles”), and these cells were also the major popu-
lations in each individual tile (Figure 3H, “Tiles 1 to 16”).
NE cells with high expression of H3K27ac (a marker of ac-
tive transcriptional states) (cluster 7) were a major population
in all tiles (Figure 3H, I), whereas NE cells with low levels
of expression of H3K27ac (cluster 6), indicative of a distinct
epigenetic state, were only present at a high frequency in a
subset of tiles (Figure 3H, I; e.g., Tile 15). Similarly, non-
NE cells (cluster 2) only presented at a high frequency in
some tiles (Figure 3H, I; e.g., Tile 15). These results indicate
that the distinct cancer cell states observed in the NCI-H82
xenografts are not homogenously distributed within the tu-
mors. Thus, there may be specific local interactions between
or within specific cancer cell states.
From an analytical standpoint, spatial cell arrangements
might arise when two or more phenotypes are considered. In
a reductionist view, if two phenotypes, A and B, are present
in a tumor, they can be located in regions rich in A, rich
in B, or containing both phenotypes (Figure 3J). Complex-
ity escalates dramatically with increasing layered classifica-
tions or additional phenotypes. We previously showed that
a tissue can be represented as a collection of cellular neigh-
borhoods (CNs) (Schürch et al. 2020). CNs are regions of
cells with a similar surrounding. The CN analytical frame-
work defines distinct locations within tissues and enables a
quantitative study of how neighborhoods influence function.
Phenotypes identified in the NCI-H82 xenografts were clus-
tered based on their 30 nearest neighbors to obtain seven dis-
tinctive CNs (Figure 3K) that we mapped to the segmenta-
tion map for each tile for a visual overview of the data (Fig-
ure 3L and Figure S3E). Certain CNs were enriched in cells
with homotypic interactions: NE cells with high expression
of H3K27ac (CN 3), NE cells with low levels of H3K27ac
(CN 4), and non-NE cells (CN 2) (Figure 3K, L). Other CNs
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were composed of several cell types and states. For example,
CN 1 included NE and non-NE cells (Figure 3K, L). CN 7,
enriched in mouse cells, indicated vascularized and stromal
regions of the tumor (Figure 3K, L). CN 6 was enriched in
cells from cluster 3 (“double positive cells”), suggesting cells
in this CN are surrounding the stroma (Figure 3K, L). CN 5
was composed of a mixture of NE cells with high and low
expression of H3K27ac and non-NE cells was also identified
(Figure 3K, L). Overall, a 52.9% of cells within NCI-H82
xenografts were in neighborhoods with homotypic interac-
tions (CN 2, 3, and 4).
These analyses show that complex spatial rearrangements can
arise in vivo in a tumor even from a well-established cancer
cell line, raising the question of whether clonal expansion of
cancer cells drive the formation of such structures.

Clonal cancer cell growth is not spatially constrained in
NCI-H82 xenografts
We reasoned that identifying the ancestries of the cells sur-
rounding each cancer cell in the NCI-H82 xenograft model
would provide insights into the processes that shape tumor
architecture and growth. Barcodes in NCI-H82 follow a sim-
ple rule: three of the six epitopes are expected at a time in
a cell. Advanced algorithms could be harnessed for cell de-
barcoding, but simply selecting a minimal image entity (e.g.,
a pixel, a segmented cell) and assigning the three most ex-
pressed epitopes provides an efficient and scalable pipeline
for debarcoding.
By integrating cell- and pixel-based barcode assignment, we
developed subclonal tumor maps to represent both the spa-
tial locations of each cell within a tile, and its intrinsic Epic-
Tag barcode information; the process is shown schematically
in Figure 4A. In the cell-based barcode assignment single
cells are first segmented based on histone H3 (HH3) and
human-specific mitochondrial marker for nuclear and cyto-
plasm identification, respectively. Counts for each of the
six epitopes within each cell are then sorted from highest to
lowest. In the cell-agnostic pixel-based barcode assignment,
sliding windows of distinct sizes are used to scan each pixel
on the tile to identify regions enriched in barcodes. Subse-
quently, barcodes are assigned to individual pixels based on
the three most highly expressed epitopes. Cell- and pixel-
based barcode assignments are compared and merged follow-
ing a set of rules (see methods section) to obtain a barcode
for each cell within the tumor and a connectivity map for
cells sharing a barcode and in physical contact. Using this
pipeline, we identified all 20 possible epitope combinations
on a tile from the NCI-H82 xenografts (Figure 4B, C and Fig-
ure S4A). Each barcoded population expressed the expected
epitopes (Figure 4D), indicating that computational decon-
struction of epitope-based images identifies common ances-
tries in the cancer cell population within the tumor.
We then processed the xenograft dataset with our debarcod-
ing pipeline (Figure 4A) and obtained a subclonal tumor map
for each tile (Figure S4B). After single-cell extraction and
pooling of all tiles, we obtained the percentages of all twenty

barcodes (Figure 4E). Cells with barcode 8 were the most
highly represented, accounting for 9.71% of the pooled pop-
ulation. Those with barcode 4 were the least represented,
accounting for 1.96% of the pooled population. The devia-
tion from the expected 5% contribution from each of the 20
EpicTag-barcoded cell lines might be explained by several
factors, for instance minor differences at initial seeding (Fig-
ure S4C), limited sampling, and presence of non-debarcoded
events, which include non-cancer cells but also cancer cells
without a clear barcode combination. All 20 EpicTag bar-
codes were identified on each of the tiles, but the distribu-
tion on a tile often deviated from the pooled data. For ex-
ample, cells with barcode 1, which accounted for 5.52% of
the pooled population, were 12.64% of the cells on tile 5 and
1.63% of the cells on tile 15 (Figure 4E). These data indi-
cate that global tumor clonality is not a faithful representation
of local clonal growth, thus suggesting that leveraging local
scale as a variable may reveal novel mechanisms driving tu-
mor evolution.
A subclonal tumor map conveys a static and fractional pic-
ture of the local complexity of cell-cell interactions within
a tumor. Despite these limitations, certain local cancer cell
behaviors that shape tumor growth can be inferred in such
subclonal tumor map. Cancer cells sharing a barcode are ex-
pected to be detected both as individually distributed cells
and as grouped in subclonal tumor patches of distinct sizes
(Figure 4F, top). Further, individual cells and subclonal tu-
mor patches with the same barcode are expected both in prox-
imity to one another and scattered through the tumor (Fig-
ure 4F, top). This distribution is expected to arise in con-
cert with the distribution from other cancer cells with dis-
tinct barcodes (Figure 4F, top; gray cells). Individually dis-
tributed cells represented 33% of cancer cells in the barcoded
NCI-H82 xenografts (Figure S4D). The remaining 67% were
found within subclonal tumor patches ranging in size from
two cells to groups of hundreds of cells, with the absolute
patch size rapidly declining (Figure S4D). We plotted the dis-
tance of each cell with barcode 12 to the fifth nearest neigh-
bor with the same barcode in tile 1 and observed that most
distances were smaller than the ones from a randomized dis-
tribution (Figure S4E). The same trend appeared when con-
sidering the nearest neighbors up to 300 (Figure S4F) and was
shared among all barcodes in all tiles in the dataset (Figure
S4G). Together, these analyses show that the introduced can-
cer cells are not randomly distributed in NCI-H82 xenografts
and tend to form clonal patches.
Spatial cell distribution within a tumor can be viewed as a
grid of pairwise distances (Figure 4F, bottom). This represen-
tation summarizes all existing distances below a given thresh-
old, revealing clonal dynamics otherwise difficult to observe.
For all cells in a barcode of a tile, we plotted the distances to
the cells within the same patch and the distances to their near-
est neighbors sharing a barcode. Some cancer cells sharing
the same EpicTag grouped in relatively large, well-defined
patches, whereas others were scattered individually around
the tumor, far from cells of the same barcode. Certain patches
co-existed near other patches of the same barcode (Figure 4G,
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Figure 4. A debarcoding strategy identifies subclonal tumor patches (A) Pipeline to reconstruct subclonal tumor maps. (1a) Epitope images are the input for pixel-based
assignment of barcodes. (1b) A sliding window approach is applied to obtain a pixel-based assignment of barcodes. The cyan region within the dashed red circle in the
enlarged image exemplifies a large region of the tumor sharing the same barcode. (2a) HH3 and human cell marker images are the initial inputs for cell-based assignment
of barcodes. (2b) Single cells are segmented by the DeepCell neural network. (2c) Segmentation maps (step 2b) and epitope images (step 1a) are merged to obtain a
cell-based assignment of barcodes. Epitope counts within each segmented region are extracted, normalized, and ordered to provide a barcode for each cell. Cyan cells
within the dashed red circle in the enlarged image show that cells within the same patch (as shown in 1b) are not in direct contact after segmentation. (3) Merging step for
cell- and pixel-based barcode assignments. Patches are shown as irregular shapes. Single cells are shown as small circles. Both depicted patches are bigger than a single
cell to exemplify than patches consist of a group of cells. Barcodes are shown as colors. A dashed circle indicates a cell without an assigned barcode. To merge cell- and
pixel-based barcode assignments, each cell within the tile is classified in one of six merging categories. On each category, left indicates the results from cell- and pixel-based
barcode assignments and right indicates the result after integration. (4a) A connectivity map is obtained for each tile. Each circle represents a cell. Gray lines indicate that
cells not directly touching in the segmentation map are from the same patch. (4b) A barcode is provided to each cell, resulting in a collection of images (one for each of the 20
barcodes). (5) Together, the connectivity map (4a) and the barcode readouts (4b) represent a subclonal tumor map. (B-C) Representative subclonal tumor map from a MIBI
image of a tumor consisting of a pooled population of 20 barcoded NCI-H82 cell lines. B) Left: Overlay of anti-epitope (AU1, FLAG, HA, StrepII, Prot C, and VSVg) images
showing barcode expression in the cells within the tumor. Right: Subclonal tumor map of the image on the left. Each cell was segmented and colored by barcode. Each
EpicTag barcode has a distinct color (Barcode readout: 1 to 20). A white box indicates the area enlarged in Figure 5C. Scale bars: 100 µm. C) Top: Enlarged image of the
epitope composite image in Figure 5B. The blueish colors identify regions enriched in FLAG, StrepII, and Prot C signals and missing AU1, HA, and VSVg signals. Bottom:
Enlarged image of the subclonal tumor map in Figure 5B. The signals generating the blueish color in the epitope composite image on top are properly identified as EpicTag
barcode 14 (olive green color). Segmentation provides a visual overview of the cells (white lines). (D) Quantification of epitope intensity on each debarcoded population from
Figure 4B. Each row is an EpicTag barcode and each column is an epitope. Left: Expected signal for each epitope in each barcode. Grey indicates positive signal, and white
indicates negative signal. For example, a population defined by EpicTag barcode 1 (first row) is expected to express AU1, FLAG, and HA. Right: Measured epitope signal in
each debarcoded population. Color shows the median of the normalized counts. (E) Frequencies of each EpicTag barcode in the entire dataset (n = 231,715) and in each
individual tile (Tiles 1 to 16). The dashed line separates the entire dataset representation from the individual tiles. The legend indicates the color for each EpicTag barcode.
(F) Top: Schematic representation of cells with the same EpicTag barcode. A black circle outlines a cell with a given barcode (“Cell with barcode X”). A grey circle outlines
a cell without that barcode (“Cell with barcode non-X”). Each number indicates a cell. Cells with a particular barcode can be individually distributed (e.g., cell 1) or grouped
(e.g., cells 2 to 4). Cells sharing a barcode can be distributed nearby (e.g., cell 6 and 11) or far apart (e.g., cell 5). Bottom: Grid of pairwise distances of the schematic shown
on top. The numbers refer to the numbers of the schematic shown on top. A green box indicates self-interaction. A white box indicates the distance between two cells is
higher than a threshold. The black to white gradient indicates distance (darker indicates closer). The red arrow highlights cell number seven. (G) Grid of pairwise interactions
showing the distances of each cell to its fifth nearest neighbor for cells with EpicTag 12 in tile 1 (Top) and a randomized sample (Bottom). Randomization was performed by
randomly assigning EpicTag 12 to segmented cells in tile 1, up to the number of EpicTag 12 in tile 1. Cells were arranged in the diagonal by patch size (larger patches in the
top left corner). The green box exemplifies a subclonal tumor patch. The white boxes exemplify subclonal tumor patches that are closer in space. The red box exemplifies
individually scattered cells.

top), and this spatial distribution did not occur in randomized
data (Figure 4G, bottom). These results indicate that clonal
growth is not spatially constrained, and further suggest that
collective cancer cell movements within the tumor that may
result from collective cell migration, growth of cells nearby,
or other mechanisms, shape the tumor architecture.

Non-neuroendocrine SCLC cells establish large clonal
patches within the tumor
Simultaneous display of lineages (EpicTag barcodes), cell
types and states (phenotypic SOM clusters), and CNs (neigh-
borhoods), as well as subcellular visualization of functional
markers, provide a rich dataset to interrogate drivers of tu-
moral evolution (Figure 5A). For an integrative data visual-
ization of lineages, phenotypes, CNs, and marker expression,
we plotted the expression of eight markers (vimentin, synap-
tophysin, Ki67, H4K8ac, H3K4me2, H3K27ac, GLUT1, and
citrate synthase) for all barcoded cells from non-NE, NE
H3K27aclow, and NE cell states (clusters 2, 6, and 7, respec-
tively) in all CNs (Figure S5A). The coefficients of variation
(CVs) of marker expression among barcodes in each cancer
cell state and CN indicate that there is an overall similar ex-
pression of markers across cancer cell states and CNs with
rare exceptions (Figure S5B, C), as would be expected for 20
isogenic cell lines.
We first focused on the three main cancer cell states (non-NE,
NE, and NE H3K27aclow) in their respective homotypic CNs
(non-NE rich, NE rich, and NE H3K27low rich, respectively)
(Figure 5B). There was comparable expression of most mark-
ers across all barcodes in the three selected clusters and CNs
(Figure S5B, C), indicating good reproducibility between the
EpicTag barcoded cells. A notable exception was high CV for

H3K27ac for NE H3K27aclow cells (cluster 6) in CN 4 (NE
H3K27low rich) (Figure S5C), but this marker is silenced in
these cells and slight differences in expression might account
for such a high CV. Outside the clusters in their homotypic
CNs, CN 4 (NE H3K27low rich) showed the highest CV
(Figure S5B) (non-NE cells from cluster 2: 61%, and NE
cells from cluster 7: 46%) indicating large marker expres-
sion variation within this CN. This might be explained by
the low number of cells observed (Figure S5A; cell numbers
for clusters 2 and 7 in CN 4 are 295 and 203, respectively).
NE H3K27aclow (cluster 6) and NE cells (cluster 7) in CN 2
(non-NE rich) also displayed increased CVs compared to the
other CNs (Figure S5B; 60% and 23% for clusters 6 and 7,
respectively), but this might also be explained by low num-
bers of cells (Figure S5A; cell numbers for cluster 6 and 7 in
CN 2 are 380 and 895, respectively). Taken together, these
analyses show good marker expression agreement amongst
barcodes across clusters and CNs.
EpicTag-barcoded NCI-H82 cells generate patches of a broad
range of sizes. We asked whether the total number of cells
correlated with increased patch numbers and sizes for each
EpicTag barcode and phenotypic cluster. In some cases,
small patches might result from a tissue slice that captures
cells only from the far edge of a larger phenotypic cluster. For
NE cells (cluster 7), the number of cells and patches strongly
correlated across barcoded cell lines (Radj2 = 99%) (Figure
5C and Figure S5D). In contrast, there was a lower correla-
tion for non-NE cells (cluster 2; Radj2 = 63%) (Figure 5C
and Figure S5D). An exponential model provided a better fit
to the non-NE data (Radj2 = 84%) (Figure 5C), suggesting
that the mechanisms of expansion differ for the NE and non-
NE patches. The barcoded cells are from the same parent
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cell culture, and we expected similar barcode representations
across the different clusters (with cells switching from one
state to another similarly in all barcoded cell lines), which
was observed for most phenotypic clusters (Figure S5E). One
notable exception was the lack of correlation for the ratio be-
tween NE and non-NE cells (clusters 7 and 2, respectively)
when comparing barcoded cell lines (Figure S5F), sugges-
tive of specific dynamics in the acquisition of these cancer
cell states within tumors.
The non-NE cells (cluster 2) generated fewer patches than
the NE cells (cluster 7) (Figure 5C). The ratio of the slopes
from the linear models indicates that for NE cells (cluster 7),
1.8 times more cells were in fewer patches than for non-NE
cells (cluster 2), suggesting that non-NE cells are contained
in larger patches (Figure 5D, white arrow). Indeed, the patch
size was significantly larger in non-NE (cluster 2) compared
to NE (cluster 7) and other cell states (Figure 5E, right, and
Figure S5G, H). These data suggest that NCI-H82 cells with
a non-NE phenotype remain together after cell division and
tend to form larger patches.
We identified subclonal tumor patches with the same barcode
in proximity that had both NE and non-NE states (clusters 7
and 2, respectively), suggesting a switch in phenotype (Fig-
ure 5D, yellow arrows). Non-NE cells (cluster 2) were iden-
tified in all barcoded populations (Figure 5E), but six bar-
coded cell lines generated much larger patches of non-NE
cells (cluster 2) compared to their NE counterparts (cluster
7) (Figure 5E, EpicTags 5, 6, 8, 12, 14, and 18) and four bar-
coded cell lines contained only 25-50 cells of non-NE cells
(cluster 2) (Figure 5E, EpicTags 1, 3, 4, and 17), depicting a
high variation in non-NE cell number across the 20 barcoded
cell lines. Notably, approximately 90% of cells in each patch
were assigned to the same cluster and the presence of a domi-
nant cluster was significantly higher than expected based on a
random distribution (Figure S5I). These observations suggest
that NCI-H82 cells grown in vivo are mostly NE in nature but
that large patches of non-NE cells may sometimes “stabilize”
and expand in response to unknown stimuli.
We surmised that the generation of these large patches of
non-NE cells (cluster 2) may be due to increased prolifer-
ation and thus examined markers associated with cell pro-
liferation in tumor sections. Analysis of Ki67, a marker of
non-quiescent cells (Miller et al. 2018), showed that mi-
totic cells (cluster 5) had the highest level of Ki67 expres-
sion as expected (Figure 5F, G). In non-NE cells (cluster 2),
Ki67 levels significantly increased, and the number of qui-
escent cells significantly decreased with patch size (Figure
5F, G). In contrast, there was no significant correlation be-
tween Ki67 expression, number of quiescent cells and patch
size for NE cells (cluster 7) (Figure 5F, G). NE H3K27aclow

cells (cluster 6) had a low proliferative index (Figure 5F, G),
highlighting a functional difference with NE cells (cluster
7). Interestingly, non-NE (cluster 2) and NE cells (cluster 7)
were more quiescent in CN 4 (18% and 11%, respectively),
which is enriched in NE-H3K27aclow cells (cluster 6) (Fig-
ure S5J, K). This suggests that the proliferation of NE and
non-NE cells is affected by the presence of more slowly cy-

cling NE-H3K27aclow cells. Ki67 expression was higher in
the larger patches across all CNs, although this was observed
to a less extent for CN 4, enriched in NE-H3K27aclow cells
(cluster 6) (Figure S5L). Notably, citrate synthase (CS) ex-
pression was significantly elevated in larger non-NE (clus-
ter 2) patches (more than 10 cells), but GLUT1 levels were
similar across patch sizes in both non-NE (cluster 2) and NE
cells (cluster 7) (Figure 5H and 5I), suggesting elevated ac-
tivity of the citric acid cycle compared to glycolysis in larger
non-NE patches. Finally, we noted that that larger patches
(more than 10 cells) of non-NE (cluster 2) and NE cells
(cluster 7) showed less DNA damage based on γH2AX sig-
nal (Figure 5K) independent of the neighborhood in which
these cells were located (Figure S5M). Decreased DNA dam-
age, changes in metabolism, and increased proliferation may
all contribute to the expansion of larger non-NE subclonal
patches once small patches have formed.

PTEN loss promotes a non-cell autonomous increase of
patch size in neighboring PTEN wild-type cancer cells
Our method for in situ lineage tracing (barcodes) coupled
to phenotypic cell characterization and the accompanying
pipeline for subclonal tumor patch analysis provide a unique
opportunity to study functional interactions between genet-
ically distinct cancer cells within the tumor microenviron-
ment. PTEN is as a known potent tumor suppressor in SCLC
(McFadden et al. 2014; Cui et al. 2014) but the evolution of
PTEN mutant clones within SCLC tumors has not been ex-
amined. We knocked out PTEN by Cas9-sgRNA ribonucle-
oprotein delivery (PTEN−/−) in NCI-H82 SCLC cells ex-
pressing EpicTags 1 and 20 (Figure 6A) and generated six
control cell lines by delivering non-targeting Cas9-sgRNA ri-
bonucleoproteins (EpicTags 2, 4, 14, 16, 17, and 18). These
eight cell lines were then pooled with the remaining twelve
wild-type EpicTag NCI-H82 lines to generate a population
consisting of 20 cell lines with individual expected contribu-
tions of 5%. A pool of the 20 original EpicTag lines was used
as a control. In the pool containing the PTEN−/− lines, Epic-
Tag lines 1 and 20 grew more rapidly in culture than the other
lines (Figure 6B, C) and accounted at the end of the experi-
ment for 15% and 29% of the population, respectively. The
original EpicTags lines 1 and 20 did not have a competitive
advantage (Figure 6C, left). These observations validated the
expected tumor suppressor role for PTEN in SCLC cells.
The pooled population containing the two PTEN−/− lines
and the control pool were injected subcutaneously into mice
to generate tumors. We analyzed approximately 198,000
cells from ten tumor regions that included PTEN−/− cells
and four tumor regions with only control cells. All 20 bar-
codes were detected in tumors from both groups (Figure
S6A). Surprisingly, in this context, EpicTag lines 1 and 20
did not expand more than control cells, and each EpicTag
line accounted for a similar percentage in all tumors (Figure
6C, right). We also found no difference in the proliferation of
PTEN−/− and control cells in the xenografts (Figure S6B).
These data show that PTEN knockout in NCI-H82 cells pro-
vides a competitive growth advantage in culture but, interest-
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Figure 5. Non-neuroendocrine SCLC cells establish large patches with increased proliferative index and decreased DNA damage. (A) Overview of different classes
of datasets. From left to right: Cell lineage assignment using EpicTag barcodes; phenotypic clusters; cellular neighborhoods (CNs); epigenetic markers, and metabolic
markers. Scale bars: 100 µm. (B) Polar plots of marker expression (Vimentin (VIM), Synaptophysin (SYP), Ki67, H4K8ac, H3K4me2, H3K27ac, GLUT1, citrate synthase
(CS)) in homotypic CNs (cluster 2 – CN 2, cluster 6 – CN 4, cluster 7 – CN 3). (C) The total number of barcoded cells (EpicTags 1 to 20) per patch from all tiles for clusters
2 (non-NE) and 7 (NE). Linear models fit of the data for NE and non-NE cells with R2

adj = 99% and 63%, respectively. An exponential fit was calculated for the non-NE
cells yielding a fit of R2

adj = 84%. (D) Representative image with phenotypic clusters and EpicTag barcodes indicated. White arrow highlights a large patch of non-NE cells.
Yellow arrows indicate where non-NE and NE cells share the same barcode. Scale bars: 100 µm. (E) Patch sizes by cell number per EpicTag for cluster 2 (non-NE cells,
red) and cluster 7 (NE cells, cyan). p-value = 2.2*10−16. (F) Ki67 expression in individual clusters. For each cluster the data were separated by patch size: 1 cell, 1 to 10
cells, and over 10 cells. Significance is calculated by ANOVA within and between groups and adjusted by Bonferroni (Table S1). P-adj: 0.05-0.01:*, 0.01-0.001:**,<0.001:***.
(G) Quiescent cells per cluster. For each cluster the data were separated by patch size: 1 cell, 1 to 10 cells, and over 10 cells. Significance is calculated by ANOVA within
and between groups and adjusted by Bonferroni (Table S1). P-adj: 0.05-0.01:*, 0.01-0.001:**, <0.001:***. (H) Citrate synthase expression. For each cluster the data were
separated by patch size: 1 cell, 1 to 10 cells, and over 10 cells. Significance is calculated by ANOVA within and between groups and adjusted by Bonferroni (Table S1). P-adj:
0.05-0.01:*, 0.01-0.001:**, <0.001:***. (I) GLUT1 expression. For each cluster the data were separated by patch size: 1 cell, 1 to 10 cells, and over 10 cells. Significance
is calculated by ANOVA within and between groups and adjusted by Bonferroni (Table S1). P-adj: 0.05-0.01:*, 0.01-0.001:**, <0.001:***. (J) Percentage of cells with DNA
damage per cluster. For each cluster the data were separated by patch size: 1 cell, 1 to 10 cells, and over 10 cells. Significance is calculated by ANOVA within and between
groups and adjusted by Bonferroni (Table S1). P-adj: 0.05-0.01:*, 0.01-0.001:**, <0.001:***.

ingly, not in vivo in the context studied.
Analyses of 2D cultures can reveal causal links between
genotype to function but may not recapitulate relevant char-
acteristics of 3D in vivo tumor growth (Han et al. 2020). The
relative lack of expansion of the PTEN−/− cells compared
to the control cells in the xenograft models suggested that
wild-type and PTEN−/− cells may interact differently in 3D
tumors than 2D cultures. However, the overall tumor archi-
tecture, as defined by SOM clusters and CNs, was compara-
ble between tumors that included PTEN−/− cells and tumors
that included only wild-type cells (Figure S6C-G), suggest-
ing that no major differences in the spatial arrangements of
the NCI-H82 xenografts were induced when 10% of the pop-
ulation lacked PTEN.
By barcoding cells, fine details of tumor architecture can
be assessed. We analyzed patches in tumors that developed
from pools containing PTEN−/− cells and controls (PTEN
wild-type) and from tumors from pools of PTEN wild-type
cells. Similar to our previous analysis (Figure S5I), we ob-
served patches of cells with a dominant phenotype for the
control (PTEN wild-type) cells (Figure S6H). In contrast, the
patches of cells that lacked PTEN were generally composed
of multiple cell states (Figure S6H), including patches with
a mixture of NE (cluster 7), vimentin-positive (cluster 2),
and NE H3K27aclow (cluster 6) cells (Figure S6I). Notably,
PTEN−/− cells had a higher percentage of NE H3K27aclow

cells (cluster 6) compared to control cells in the same tumor
(Figure 6D). NE H3K27aclow cells (cluster 6) were smaller
than conventional NE cells (cluster 7) (Figure S6J) and were
identified in areas with features of necrosis (Figure S6K).
PTEN−/− cells were more likely to be located in CN 5 (Fig-
ure 6E), areas of the tumor corresponding to the border be-
tween regions rich in conventional NE cells (CN 3) and NE
H3K27aclow (CN 4) (Figure 6F). Cells in CN 5 expressed
considerably less H3K27ac compared to cells in CN 3, and
levels of H4K8ac were lower than in CN 3 and CN 4, al-
though the difference was less dramatic (Figure S6L), sug-
gesting a stepwise process of epigenetic alterations. Over-
all, these data suggest that loss of PTEN in cell populations
in vivo is accompanied by both an increase in plasticity (or
a lack of commitment to certain fates) and a propensity for
higher cell death, which may account for the lack of observed
competitive advantage of PTEN−/− cells in vivo.

Our patch analysis of control NCI-H82 xenografts (Figure 4)
provided a ground truth for the expected subclonal growth
dynamics of this cell line in vivo (Figure 6G; “First set con-
trol”). The same patch size was also observed in the con-
trol tumors generated in parallel to the tumors containing
PTEN−/− populations (Figure 6G; “2nd set control”). Strik-
ingly, the clonal patches were larger in tumors containing
PTEN−/− cells than in tumors with only control cell lines
(Figure 6G; “2nd set PTEN”). Not only were patches con-
taining PTEN−/− cells larger, but there was also an increase
of patch size for most PTEN wild-type control cell lines (Fig-
ure 6H, I). Larger patch size in control cells in tumors con-
taining PTEN−/− cells could not be explained by increased
proliferation (Figure S6M), altered GLUT1 or citrate syn-
thase levels (Figure S6M), or higher amounts of DNA dam-
age (Figure S6N). While the reason for the larger patch size
remains unknown, and was unexpected, these data demon-
strate that the overall architecture of NCI-H82 xenografts is
altered by the presence of a PTEN−/− population initially
seeded at ∼10%. Modified tumor architecture is not just ex-
plained from a PTEN−/− cell intrinsic perspective: these ge-
netically edited cells exert non-autonomous effects on other
cancer cells within the tumor.

Discussion

Clonal evolution is a major determinant of tumorigenesis. In-
creasing evidence suggests that the local microenvironment
strongly influences clonal cancer cell growth, and the field
will greatly benefit from strategies to track clonality in situ
while keeping tissue context information. By applying a
strategy for in situ tracking of barcodes in a xenograft model
of SCLC, we show that lineage tracing integrated with deep
in situ tissue characterization can reveal new insights into tu-
mor architecture and mechanisms of tumor evolution. Our
data show that even a well-established cell line grown in cul-
ture for decades can form complex tumor structures with ap-
parently inter-dependencies wherein one or more phenotypic
states prefer or generate nearby distinct phenotypic states.
Within these structures, we identified localized growth of
subclonal patches and detected distinct spatial dynamics of
the identified cell phenotypes within the tumor. We further
extended the capabilities of the system by linking barcode ex-
pression to specific genome edits, opening new opportunities
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Figure 6. PTEN deficiency in a fraction of cancer cells modifies tumor architecture through cell intrinsic and extrinsic mechanisms. (A) Workflow for multiplex
imaging of genetically modified epitope-based barcoded cells in subcutaneous NCI-H82 xenografts. (1) Cell lines expressing unique combinations of epitopes are generated
based on an n-choose-k strategy and grown in vitro. PTEN was knocked out by RNP sgRNA:Cas9 nucleofection in cells expressing EpicTags 1 and 20. (2) Barcoded cells
are mixed. (3) The same mixture is divided and grown in vitro or injected subcutaneously into the flanks of a mouse. (4) The in vitro culture is analyzed by mass cytometry.
(5) Tumors are analyzed by MIBI. (B) UMAP of cultured cells (n = 69,065) grouped by epitope expression and colored by epitope (AU1, FLAG, HA, StrepII, Prot C, and VSVg).
Dashed ellipses and percentages indicate EpicTag 1 (bottom) and 20 (top) and their respective contributions to the final population. (C) Frequencies of each EpicTag barcode
in cells grown in vitro and in vivo in the “Control” consisting of 20 wild-type EpicTag barcoded cells and in the “PTEN−/−” pool consisting of PTEN knockout cells (EpicTags
1 and 20), unedited but nucleofected cells (EpicTags 2, 4, 14, 16, 17, and 18), and wild-type cells (EpicTags 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, and 19). The legend indicates
the color for each EpicTag barcode. Black dashed boxes indicate PTEN knockout cells. (D) Frequencies of each phenotypic cluster in “Control” (n = 56,199) and “PTEN−/−”
(n = 142,056) tumors. For the “PTEN−/−” tumors, frequencies for wild-type cells (“-”), unedited but nucleofected cells (“ctrl”), and PTEN knockout cells (“PTEN−/−”) are
shown. (E) Frequencies of each CN in “Control” (n = 56,199) and “PTEN−/−” (n =142,056) tumors. For the “PTEN−/−” tumors, frequencies of wild-type cells (“-”), unedited
but nucleofected cells (“ctrl”), and PTEN knockout cells (“PTEN−/−”) are shown. The legend indicates the color for each CN. (F) Phenotypic cluster map, CN map, and
images of H3K27ac (magenta), H4K8ac (cyan), and H3K4me2 (yellow) in a representative region of a PTEN−/− NCI-H82 xenograft (Tile 4, FOV 4). Bottom row images are
enlarged representations of red dashed squares in the top row. White arrows indicate representative H3K27ac−, H4K8ac+, and H3K4me2+ cells enriched in CN 5. Scale
bars: 40 µm (top) and 10 µm (bottom). (G) Overall patch size by cell number in “Control” and “PTEN−/−” tumors. The overall patch size from the dataset shown in Figure
5 is shown as reference (“First set control”). P-values calculated by the student’s t-test. (H) Patch size by cell number per EpicTag in “Control” and “PTEN−/−” tumors. For
“PTEN−/−” tumors, sizes of wild-type cells (“-”), unedited but nucleofected cells (“C”), and PTEN knockout cells (“P”) are indicated. The legend indicates the color for each
EpicTag barcode. P-value calculated by the student’s t-test. (I) Images of subclonal tumor map with EpicTag barcodes highlighted in patches of more than 50 cells in “Control”
and “PTEN−/−” tumors. White arrows indicate PTEN knockout patches. The legend indicates the color for each EpicTag barcode. Scale bars: 100 µm.

to study, in situ, complex autonomous and non-autonomous
phenotypes during tumor growth.
The NCI-H82 xenografts analyzed in this study had het-
erogeneity demarcated within distinct regions of the tumor.
From a global non-spatially defined perspective, this het-
erogeneity is in line with previous studies indicating that
NCI-H82 cells exist in a rather undefined region of the low-
dimensional space from the continuum of functional states of
several SCLC cell lines (Groves et al. 2021). In our dataset,
we identified three major states of NCI-H82 cells: NE cells,
NE cells lacking H3K27ac, and non-NE cells. NE cells were
identified by synaptophysin expression and were further di-
vided into cells that did and did not express H3K27ac. NE
H3K27ac positive cells were present in all analyzed regions,
whereas NE H3K27ac negative cells were enriched in cer-
tain regions of the tumors. The spatial component of NE
H3K27ac negative cells, together with the non-clonal nature
of these cells, suggests a coordinated H3K27ac shutdown di-
rected by the microenvironment. In regions enriched in NE
cells with high levels of H3K27ac, we observed a localized
growth of subclonal patches, as well as grouping of individ-
ually barcoded cells, which is suggestive of spatial dynam-
ics and phenotypic dependencies that remain to be under-
stood. Cancer cells in the tumor core can be notably dynamic
(Staneva et al. 2019). The ability to study how these move-
ments relate to cancer cell clonal growth will have profound
implications in our understanding of tumor evolution.
Non-NE NCI-H82 cells were identified by high levels of
vimentin, a prominent mesenchymal marker (reviewed in
(Dongre and Weinberg 2019)), suggesting that these can-
cer cells have undergone an epithelial-to-mesenchymal-like
transition. Subclonal patches of non-NE cells were signifi-
cantly larger than NE cell-containing patches. The non-NE
cells in larger patches had an increased proliferation and de-
creased percentage of quiescent cells compared to non-NE
cells in smaller patches or individually scattered cells, pro-
viding an explanation of how non-NE cells stabilize within
the xenografts. Notably, non-NE cells in larger patches
had increased citric acid cycle activity indicating that these
cells may exploit the respiratory chain for energy produc-
tion. Larger patches contained proportionally fewer cells

with DNA damage cells than smaller patches or individual
non-NE and NE cells, and hence cell fitness (as defined by
low DNA damage) may lead to larger patches. Other fac-
tors may also play a role, such as preferred cell type targeting
by the innate immune system. Notch signaling activation is
related to the NE to non-NE shift, and this may be another
mechanism in play (Lim et al. 2017).
PTEN is a prominent tumor suppressor in SCLC (McFadden
et al. 2014; Cui et al. 2014). In NCI-H82 cells, we found that
PTEN loss results in rapid expansion of SCLC cells in vitro
but not in vivo. Notably, both PTEN−/− and wild-type cells
formed large clonal patches in tumors containing PTEN−/−

cells. The analysis suggests that increased patch size is inde-
pendent of proliferation, DNA damage, GLUT1 and citrate
synthase expression, which may hint that PTEN deficiency
results in the secretion of paracrine factors that enhance the
clonal growth of cancer cells in the proximity of PTEN mu-
tant cells. Alternatively, PTEN mutant cells might create con-
ditions that minimize mobility of cell clones, and thus reduce
‘fragmentation’ and mixing. Hence, our data support the idea
that PTEN loss may alter cancer behaviors via cell-intrinsic
and cell non-autonomous effects in the tumor microenviron-
ment (Toso et al. 2014; Trimboli et al. 2009; Bronisz et al.
2011). Whether these phenotypes related to mesenchymal
transitions and non-cell autonomous roles for PTEN specific
to a few SCLC models or broadly relevant to SCLC remains
to be determined.
The EpicMIBI approach is constrained by the number of bar-
codes deployed, the size of the antibody panel, constraints
on the acquisition area, and debarcoding fidelity. We show
in situ detection of twenty barcodes using GFP tagged to
three out of six epitopes and provide evidence that this strat-
egy could be easily extended in vivo to 140 barcodes through
use of three additional antibodies. Our results also show co-
detection of six epitopes in the same tumor cell, suggesting
that thousands of barcodes could be created by leveraging
additional tags (e.g., T7, Universal, V5, HSV). Addition-
ally, an increase in barcoded cell numbers can theoretically
be obtained by controlling subcellular location (e.g., nucleus,
membrane) (Loulier et al. 2014) or expression levels of the
same barcode (Sakaguchi, Leiwe, and Imai 2018). Epitope
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sequences are currently introduced in vitro as unique and
heritable barcodes, but alternatives similar to the Confetti re-
porter system (Snippert et al. 2010) would allow in vivo ex-
pression of thousands of stochastic barcodes in a temporally
and spatially controllable manner.
We leveraged the multiplex imaging capabilities of MIBI to
detect EpicTags as well as a panel of 22 antibodies covering
a range of biological functions (e.g., epigenetic, metabolic
states, proliferation, and DNA damage status). MIBI is cur-
rently limited to a ∼50-antibody targets due to the difficulties
in obtaining certainly isotopically-enriched compounds. If
an increase in the number of parameters is required in future
analyses, the EpicTag barcoding strategy could be adapted to
alternative multiplex imaging technologies such as protein-
based CODEX (Goltsev et al. 2018), t-CyCIF (Lin et al.
2018), or Immuno-SABER (Saka et al. 2019), or nucleic
acid-based FISSEQ (Lee et al. 2014), SeqFISH+ (Eng et
al. 2019), MERFISH (Chen et al. 2015), SABER (Kishi
et al. 2019), or Slide-seq (Rodriques et al. 2019). MIBI
is applicable to 2D tissue sections, limiting preservation of
relevant clonal cell spatial interactions in the z-axis such as
irregularly-shaped tumor patches and vascular growth. Re-
construction based on serial sectioning might be an option
(Catena et al. 2020) but remains time consuming. An appeal-
ing future direction will be leveraging on technologies for 3D
multiplex imaging such as STARmap (Wang et al. 2018) or
clearing-enhanced 3D microscopy (Li, Germain, and Gerner
2017).
The debarcoding pipeline also has limitations. Our strategy
is based on integrating two independent initial steps: cell-
based and pixel-based barcode assignment. Both provide
valuable information. Cell-based assignment yields single-
cell barcode classification but is prone to artifacts derived
from the integration of signals on imperfectly segmented re-
gions. Pixel-based assignment is not constrained by segmen-
tation limitations and is thus a more faithful representation
of barcode expression, but it does not provide single-cell
barcode information and might be prone to artifacts in cer-
tain locations within the tissue. Integrating cell- and pixel-
based barcode assignment provides robust classification for
cells expressing proper barcode amounts, but classification of
cells in noisy areas remains challenging. In addition, signal
spillover from neighboring cells may be a confounding fac-
tor. Machine learning techniques (Moen et al. 2019) may en-
able more reliable debarcoding in noisy regions and an over-
all more efficient image processing.
In summary, the ability to track barcoded cancer cells in situ,
together with the characterization of their spatial surround-
ings, opens new avenues for understanding tumor evolution.
Barcoded cells can additionally be genetically modified for
functional assessment of gene knockout, knockdown, over-
expression, or mutation. Leveraging the capability to trace
complex populations with distinct sets of genetic modifica-
tions, future work will be able to identify causal relations of
genotypes and phenotypes to cellular neighborhoods. Lin-
eage tracing is a blooming technology uniquely positioned to
reveal the spatiotemporal dynamics of tissues at the single-

cell scale (reviewed in (Wagner and Klein 2020)). EpicMIBI
and other similar technologies (Frieda et al. 2017; Askary et
al. 2020; Chow et al. 2021) will reveal principles and mecha-
nisms of tissue developmental processes, in both normal and
malignant growth, that will thus accelerate therapeutic dis-
coveries.
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Materials & Methods

Cell line model
NCI-H82 cells were purchased from ATCC (HTB-175TM). Cells were cultured in RPMI media: RPMI 1640 (Corning, #15-
040-CV) with 10% bovine growth serum (Thermo Fischer Scientific, #SH3054103HI), plus 1x penicillin/streptomycin plus
glutamine (Thermo Fisher Scientific, #10378016). Cells tested negative for mycoplasma.

Xenograft mouse model
Experiments with mice were conducted in accordance with Stanford University Animal Care and Use Committee guidelines.
Cells were prepared in antibiotic-free media and mixed with Matrigel (BD biosciences, # 356237) at a 1:1 ratio. Aliquots of
200 µL (2-5 x 106 cells) were injected subcutaneously into the flanks of NOD-scid IL2Rgammanull mice (NSG mice). Tumors
were collected once they reached a size of ∼1 cm3.

Vectors
EpicVectors are lentiviral vectors that express a puromycin resistance gene, T2A, and GFP or mCherry linked to a combination
of three of six possible epitopes (VSVg, AU1, FLAG, StrepII, Prot C, HA). The vectors are deposited to Addgene (#162079-
162118), and information available is in the Key Resources table.

Lentiviral production
One day prior to transfection, 293T cells (ATCC, CRL-3216TM) were seeded in DMEM (Thermo Fisher Scientific, #11965092)
and 10% fetal bovine serum (Thermo Fisher Scientific, # 16000044) at 1 million cells per well of a 6-well plate. The following
day, 293T cells were transfected with a mixture of 0.5 µg of each lentiviral EpicVector (Key Resources), 5 µg of 3rd generation
lentiviral vectors (at a 1:1:1 ratio of VSV-g, pMDLg/pRRE, and pRSV-Rev), 5 µL PEI (Polysciences, #23966-1) in 50 µL Opti-
MEM (Thermo Fisher Scientific, # 31985088). The mixture was incubated 10 min and added dropwise to cells. The next day,
the media was removed, and 2 mL of fresh antibiotic-free media was added to the cells. After 2 days, all viruses were collected,
and cells were infected with 2 mL of virus per 4 million cells for each EpicVector, with the addition of polybrene (Millipore-
Sigma, #TR-1003-G) at 8 µg/mL, bringing the total volume of media to 5 mL. The next day, the virus was removed, and
fresh media containing penicillin/streptomycin (Thermo Fisher Scientific, #10378016) was added. After 2 days, multiplicity of
infection was measured by FACS for GFP or mCherry. Puromycin was added for approximately 1 week until over 98% of cells
were positive for GFP or mCherry.

Ribonucleoprotein nucleofection
Three sgRNAs were designed to hybridize approximately 150 bases apart on the target of interest (see Key Resources) and were
synthesized by Synthego. The three sgRNAs were resuspended in Tris-EDTA and were mixed at a 1:1:1 ratio. First, 12 µL of SE
buffer (Lonza, #V4XC-1032) was added to each well of a 96-well v-bottom plate. Then 3 µL of sgRNA (300 pmol for all three
sgRNAs) was added to the SE buffer. An aliquot of 0.5 µL of Alt-Rr S.p. Cas9 (Integrated DNA Technologies, # 1081059)
was added to 10 µL of SE buffer. Next the Cas9 was added to the sgRNA solution, mixed thoroughly, and incubated at 37 ºC
for 15 min to form the ribonucleoproteins (RNPs). NCI-H82 cells were pelleted, counted, and resuspended to 1 million cells
per reaction in 5 µL of SE Buffer. Cells and the RNP solution were added to each well. Cells were immediately nucleofected
using the Lonza 4D-NucleofectorTM X Unit (Lonza, #AAF-1002X) with the EN150 program. After nucleofection, warm
RPMI media was added to the cells. Cells were incubated at 37 ºC for 15 min and then transferred to a 24-well plate. Editing
efficiency was evaluated 4 days later by FACS or sequencing.

Flow cytometry and cell sorting
Flow cytometry was conducted on a CytoFLEX (Beckman Coulter) and on a FACSAria (BD Biosciences). Analysis of the data
was done using Cytobank and R analysis software.

Antibody conjugation to isotopes
The antibodies listed in the Key Resources Table were conjugated to isotope-chelated Maxpar X8 polymers (Fluidigm,
#201300) as previously described (G. Han et al. 2018). Briefly, 100 g of antibody in carrier-free PBS were partially reduced by
TCEP treatment (Thermo Fisher Scientific, #77720) for 30 min at 37 ºC. Reduced-antibodies were mixed with isotope-chelated
polymers for 1.5 h at 37 ºC. Antibody concentration was quantified via Nanodrop. Isotope-conjugated antibodies were diluted
to >0.2 mg/mL in PBS antibody stabilizer (Thermo Fisher Scientific, #NC0414486) and stored at 4 ºC.
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Palladium barcoding for CyTOF
Cells were fixed in freshly prepared 1.6% Paraformaldehyde (PFA) in 1X PBS (Thermo Fisher Scientific, #28906) for 20 min
at room temperature. Cells were washed twice with ice-cold 1X PBS and once with ice-cold 0.02% Saponin (Millipore-Sigma,
#S7900-100G) in 1X PBS for 20 min at 4 ºC. Each palladium barcode (Fluidigm, #201060) was resuspended in 1 mL ice-
cold 0.02% Saponin in 1X PBS and transferred to the selected sample. Cells were pipetted to ensure proper mixing with the
palladium barcoding reagent and incubated for 15 min at room temperature. Cells were then washed twice with cell staining
media (CSM; 0.5% bovine serum albumin (Millipore-Sigma, #A3059) and 0.02% sodium azide (Millipore-Sigma, #71289) in
1X PBS), and mixed into a single cell suspension.

Cell preparation for CyTOF
Cells were fixed in freshly prepared 1.6% PFA in 1X for 20 min at room temperature. Cells were washed thrice with cold 1X
PBS and permeabilized in pre-chilled 100% methanol for 20 min at 4 ºC. Cells were washed once with 1X PBS and twice
with CSM. Barcoded cells were stained for 3 h at 4 ºC in CSM with the following cocktail of isotope-conjugated antibodies
at 2 g/mL: anti-GFP, anti-AU1, anti-FLAG, anti-HA, anti-StrepII, anti-Prot C, anti-VSVg, and anti-cleaved caspase 3 (clone
C92-605, BD Biosciences, #559565). After staining, cells were washed twice with CSM, once with 1X PBS, and incubated
with 1X PBS containing 1.6% PFA and 1 M iridium-based DNA intercalator (Fluidigm, #201192B) for 16 h at 4 ºC. After
intercalation, cells were washed once with 1X PBS and thrice with distilled water before analysis. Data were collected with a
CyTOF II mass cytometer (Fluidigm). The raw FCS files processing was performed in CellEngine (CellCarta) by gating out
doublets based on cell length, debris based on iridium staining, and dead cell based on cleaved caspase staining. The resulting
data were plotted using UMAP (umap R package v.0.2.7.0) (McInnes, Healy, and Melville 2018) and visually inspected to
identify barcodes.

Tumor preparation for CyTOF
Tumors were collected from the flanks of the mice and were minced using a razor blade. The samples were then placed to
a 50 mL conical tube containing 9 mL of L15 media (Sigma Aldrich, # L1518) plus 1 mL enzyme mix (10 mL L15 with
85 mg Collagenase I (Millipore-Sigma, # C0130), 28 mg Collagenase II (Millipore-Sigma, # 6885), 85 mg Collagenase IV
(Millipore-Sigma, # 5138), 12.5 mg Elastase (CellSystems, # LS002292), 12.5 mg DNAseI (Millipore-Sigma, #10104159) and
filtered with a 0.22 m filter (Millipore-Sigma, # SLMP025SS)). The samples were incubated at 37 ºC for 15 min in a slant
with rotation. Then the mixture was filtered using a 70 m strainer (Fisher Scientific, # 08-771-2) into a new 50 mL tube. The
samples were centrifuged at 400 xg for 5 min at room temperature. The supernatant was discarded, and 1 mL of red blood cell
lysis buffer (Thermo Fisher Scientific, Cat# 00-4333-57) was added for 30 seconds. Then, 30 mL of 1XPBS were added and
the samples were centrifuged at 400 g for 5 min at room temperature. Cells were collected in RPMI media without antibiotics
supplemented with 10% DMSO, and frozen down to -80 ºC until use.

Cell pellet preparation for MIBI
All 20 barcoded NCI-H82 cell lines were mixed in a 15 mL conical tube and washed twice in cold 1X PBS by centrifuging at
125 xg for 5 min at 4 ºC. The supernatant was decanted, 10 mL of freshly prepared 4% PFA in 1X PBS was carefully placed
on top of the pellet, and the tube was placed on a rocker set at low speed for 16 h at 4 ºC. The PFA-fixed cell pellet was pressed
with a tip to cast it loose from the bottom of the tube and rinsed thrice by pouring and decanting 10 mL 1X PBS. The pellet was
briefly dried on top of an absorbent piece of paper, transferred to a new 15 mL conical tube, submerged in pre-heated Histogel
(Thermo Fisher Scientific, #NC9150318), and incubated for 10 min at 4 ºC. The Histogel-embedded pellet was placed in a
9-spaces chamber, submerged in 80% ethanol, and FFPE processed.

Tumor preparation for MIBI
Tumors were collected immediately after euthanasia, submerged in 10 mL of freshly prepared 4% PFA in 1X PBS (Thermo
Fisher Scientific, #28906), and placed on a rocker set at low speed for 24 h at room temperature. Tumors were then rinsed
thrice with 1X PBS, transferred to 80% ethanol, and FFPE processed.

Gold-coated glass slide preparation
Superfrost Plus glass slides of 25 mm width and 75 mm length (Thermo Fisher Scientific, #12-550-15) were soaked in dish
detergent, rinsed twice with distilled water, soaked in acetone, and air-dried with compressed air in a fume hood. Clean slides
were coated with a 30 nm tantalum layer followed by a 100 nm gold layer. Coating was prepared at the Stanford Nano Shared
Facility (Stanford, CA) and New Wave Thin Films (Newark, CA) as previously described (Ji et al. 2020; Keren et al. 2019).
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Vectabond treatment of gold-coated slides
Gold-coated slides were silanized by Vectabond treatment (Vector labs, #SP-1800-7). Using glass beakers, gold-coated slides
were submerged in acetone for 5 min, placed in freshly prepared Vectabond solution (3.5 mL Vectabond and 175 mL acetone)
for 30 min, and air-dried with compressed air in a fume hood. Slides were baked at 70 ºC for 30 min and stored at room
temperature.

Sample preparation for MIBI
FFPE blocks were sectioned using a microtome into 5 m thin sections and placed on vectabond-treated gold-coated slides.
Tissue sections were baked for 20 min at 70 ºC, and immediately deparaffinized and rehydrated with fresh reagents as follows:
xylene (x3), 100% ethanol (x2), 95% ethanol (x2), 80% ethanol, 70% ethanol, distilled water (x3). Each wash was performed
for 3 min at room temperature with repetitive dipping using a linear stainer (Leica, #ST4020). Slides were transferred for heat-
induced epitope retrieval to a PT module (Thermo Fisher Scientific, #A80400012) preheated to 75 ºC. Samples in 1X Dako
Target Retrieval Solution, pH 9 (Agilent, #S2375) were heated to 97 ºC, stayed at the same temperature for 10 min, and then
cooled down to 65 ºC.
Slides were washed twice with 1X TBS IHC wash buffer with Tween 20 (Cell Marque, #935B-09) and 0.1% BSA (Thermo
Fisher Scientific, #BP1600-100) for 5 min at room temperature. A hydrophobic barrier around the tissue was drawn using a
PAP pen (Vector Laboratories, #H-4000). Tissue sections were blocked in 1X TBS IHC wash buffer with Tween 20, 2% normal
donkey serum (Millipore-Sigma, #D9663-10ML) (MIBI wash buffer), 0.1% Triton X-100 (Millipore-Sigma, #T8787-100ML),
and 0.05% sodium azide (Millipore-Sigma, #71289-50G) for 1 h at room temperature. Tissue sections were then stained
for 16 h at 4 ºC in 1X TBS IHC wash buffer with Tween 20, 3% normal donkey serum, and 0.05% sodium azide with the
following cocktail of isotope-conjugated antibodies: anti-GFP, anti-AU1, anti-FLAG, anti-HA, anti-StrepII, anti-Prot C, anti-
VSVg, anti-Vimentin, anti-HH3, anti-phosphoS28 HH3, anti-human-specific mitochondrial marker, anti-Ki67, anti-aSMA,
anti-CD31, anti-Citrate synthase, anti-GLUT1, anti-phosphoS139 H2AX, anti-synaptophysin, anti-H3K27ac, anti-H3K4me2,
and anti-H4K8ac.
After staining, slides were washed thrice with MIBI wash buffer for 5 min at room temperature, post-fixed with a solution of 2%
glutaraldehyde (Electron Microscopy Sciences, #16120) and 4% PFA in 1X PBS for 5 min at room temperature and quenched
with 100mM Tris pH 7.5 for 5 min at room temperature. Tissue sections were then dehydrated with fresh reagents as follows:
100mM Tris pH 7.5 (x2), distilled water (x3), 70% ethanol, 80% ethanol, 95% ethanol (x2), 100% ethanol (x2). Each wash was
performed for 3 min at room temperature with repetitive dipping using a linear stainer. The slides were air-dried and stored at
room temperature under vacuum until MIBI acquisition.

MIBI data acquisition
MIBI data were acquired with a MIBI-TOF mass spectrometer (Ionpath) using a duoplasmatron ion source running research
grade oxygen (Airgas, OX R80). We acquired two datasets for this study. Dataset 1 consists of the 16 tiles used for figures 3 to
5. Dataset 2 consists of 14 tiles, 4 “Control” and 10 “PTEN”, used for Figure 6. Each tile acquired consisted of 9 FOV (Figure
S3B). The acquisition parameters per FOV were the following:

1. Pixel dwell time: 7 ms

2. Image area: 400 m x 400 m

3. Image size: 512 x 512 pixels

4. Probe size: ∼ 400 nm

5. Primary ion current: ∼ 3.5 nA

6. Number of depths: 1

Initial processing of MIBI images
Raw MIBI data were processed using MIBIAnalysis tools (https://github.com/lkeren/MIBIAnalysis) as previously described
(Baranski et al. 2021; Keren et al. 2018). The mass spectra were calibrated using sodium and gold. The number of nearest
neighborhoods for denoising was 25.

Cell segmentation of MIBI images
MIBI image cell segmentation was obtained with Mesmer, a deep learning algorithm based on the DeepCell library (deepcell-
tf 0.6.0) (Van Valen et al. 2016; Greenwald et al. 2021). The neural network weights for prediction were imported
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from https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5. Seg-
mentation was computed using denoised and capped at the 99.7th percentile images of HH3 and human-specific mito-
chondrial marker as input, to account for the nucleus and cytoplasm, respectively. Model_mpp in the python script multi-
plex_segmentation.py was 1.8 for dataset 1 and 1.6 for dataset 2.

Cell type annotation
Cell segmentation was used to extract cell counts per marker. Counts were normalized by cell size, scaled based on the median
HH3 expression per cell in each tile, and transformed using an inverse hyperbolic sine (asinh) with cofactor of 0.05 (to account
for the adjustment based on HH3 scaling).
Unsupervised single-cell clustering was performed using the FlowSOM R package (Van Gassen et al. 2015). The channels used
for clustering were vimentin, phosphoS28 HH3, human-specific mitochondrial marker, Ki67, aSMA, CD31, citrate synthase,
GLUT1, phosphoS139 H2AX, synaptophysin, H3K27ac, H3K4me2, and H4K8ac. Phenotypic SOM clusters were manually
annotated based on visual inspection of the heatmap of marker expression per SOM cluster. Multiplex MIBI images were
carefully compared to the SOM cluster maps, generated by coloring the cells with the respective SOM cluster, to assess accuracy
and specificity of the clustering result and annotation. Single-cells were plotted using the umap R package (n_neighbors = 15
and min_dist = 0.01) and colored by SOM cluster to orthogonally inspect the clustering results and annotation. Single cells
in properly annotated clusters were classified, and the remainder clusters were subjected to additional rounds of clustering
until all cells were annotated. A post-clustering identification of endothelial cells was performed by selecting cells with low
human-specific mitochondrial marker, small cell size, and high CD31 expression.

CN analysis
Cell centroids were computed and the 30 nearest neighbors were selected for each cell. The frequencies of each SOM cluster
were calculated per cell. Data from all tiles for each dataset were combined, and CNs were selected using k-means (k = 20)
and labeled based on visual inspection of the heatmap of SOM cluster frequencies per CN. The CN maps were generated by
coloring the cells with the respective CN.

Debarcoding pipeline
Epitope debarcoding was performed by merging cell-based and pixel-based barcode assignment. The input for cell-based
assignment of barcodes were the segmentation map and the six epitope MIBI images. Epitope counts within each segmented
cell were extracted, normalized, and ordered to provide a barcode (1 to 20) to each cell.
The input for pixel-based assignment of barcodes were the six epitope MIBI images. A sliding window scan was applied to
extract the counts of each epitope by centering a n x n window to each pixel. The size of the sliding window was an odd number
(e.g., 3 x 3, 5 x 5, etc.). After applying a sliding window, the value of each epitope was capped at the 95th percentile, and a
barcode (1 to 20) was provided based on the 3 most expressed epitopes. A selection step of the third minus the fourth most
expressed epitopes being higher than 0.05 was applied to account for blank pixels. The data were plotted back to the 2D tissue
space and groups of pixels larger than 30 and sharing a barcode were selected. The unselected pixels were subjected to extra
rounds of scanning with sliding window of larger size, up to sliding windows of 11 x 11.
To merge cell- and pixel-based barcode assignments, each cell within the tile is classified in one of six categories.

1. Category a: a cell with the same cell-based barcode as its pixel-based barcode retains that barcode.

2. Category b: a cell with a cell-based barcode without pixel-based barcode is assigned the cell-based barcode.

3. Category c: a cell without a cell-based barcode without pixel-based barcode results in a cell without barcode.

4. Category d: a cell without a cell-based barcode that has 50% or more of its area within an area of the same pixel-based
barcode is assigned the pixel-based barcode.

5. Category 3e: A cell with cell-based barcode within areas with two or more pixel-based barcodes results in a cell with the
barcode of the area from which the cell shares the highest surface percentage.

6. Category f: A cell with cell-based barcode overlapping with an area presenting a distinct pixel-based barcode results in
a cell keeping the cell-based barcode if the percentage of shared area is less than 50%. Alternatively, it results in a cell
with pixel-based barcode if the percentage of shared area is 50% or more.

To identify subclonal tumor patches, a barcode based on the merging step was provided to pixels related to single cells, and a
barcode from the pixel-based barcode assignment was provided to pixels unrelated to single cells. Single cells within groups of
pixels sharing a barcode were provided with the same patch identification number.
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Statistical analysis
Statistical analysis was conducted using R. Significance is calculated by ANOVA within and between groups and adjusted by
Bonferroni. P-adjusted: 0.05-0.01:*, 0.01-0.001:**, <0.001:***.

Data visualization
MIBI data visualization was performed in ImageJ or Ionpath MIBITracker. Plots were created using the ggplot2 R package
(Wilkinson 2011). Figures 1A, 2A, 6A, and S2A were created in part using BioRender.com. All figures were prepared using
Illustrator (Adobe).
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Figure S1
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Figure S1. Validation of barcode expression in NCI-H82 SCLC cells, related to Figure 1. (A) Schematic of the expected epitopes (rows) for each combination (columns)
in a 6-choose-3 strategy. A filled square indicates presence of the epitope in the combination. An empty square indicates absence of the epitope in the combination. (B)
GFP and iridium (191Ir)-based DNA intercalator were measured by mass cytometry in a pooled population of 20 barcoded NCI-H82 cell lines. The dashed red box indicates
live cells expressing high levels of GFP that were selected for further analysis. (C) Biaxial plots showing positive and negative populations for each of the epitopes, validating
epitope expression and antibody staining. GFP and epitopes were measured by mass cytometry in the pooled population of 20 barcoded NCI-H82 cell lines (n = 45,700).
(D) UMAP of cells (n = 45,700) grouped by epitope expression (AU1, FLAG, HA, StrepII, Prot C, and VSVg). Each point represents a cell. Each number indicates a barcode
combination (see epitope column in “F”). (E) Schematic of the palladium staining. Each of the 20 epitope combinations is labeled by one unique palladium combination.
(F) UMAP of cells (n = 45,700) grouped by epitope expression and colored by epitope (AU1, FLAG, HA, StrepII, Prot C, and VSVg) or palladium isotope intensity. Pairs of
palladium isotope and epitope in each row show similar patterns indicating a unique palladium and epitope combination for each of the 20 cell lines. (G) Representative
overlay of MIBI images (AU1: red; FLAG: green; HA: blue; Strep II: cyan; Prot C: magenta; VSVg: yellow) of a cell pellet consisting of 50% wild-type NCI-H82 cells and 50%
of a pooled population of 20 barcoded NCI-H82 cell lines. The white squares are enlarged in Figure 1E and their associated numbers indicate the barcode combination. The
multicolor image in Figure 1D is an enlarged version of the bottom right of this image. Scale bars: 100 µm.
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Figure S2
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Figure S2. Validation of barcode expression in NCI-H82 SCLC xenografts, related to Figure 2. (A) Workflow for mass cytometry analysis of NCI-H82 xenografts. (1) Cell
lines expressing unique combinations of epitopes are generated based on an 6-choose-3 strategy and grown in vitro in an independent flask. (2) Barcoded cells are mixed
and injected subcutaneously into the flanks of a mouse. (3) Tumors are processed to generate a single-cell suspension, stained with an isotope-conjugated antibody cocktail,
and analyzed by mass cytometry. (B) GFP and iridium (191Ir)-based DNA intercalator measured by mass cytometry in a single-cell suspension from barcoded NCI-H82
tumors. The dashed red ellipse indicates live cells that express high levels of GFP that were selected for further analysis (Figures S2C and D; n = 39,630). (C) Biaxial plots
showing positive and negative populations for each of the epitopes, validating epitope expression and antibody staining in cells from barcoded NCI-H82 tumors. GFP and
epitopes were measured by mass cytometry in the single-cell suspensions from tumors. (D) UMAP of all cells from the dashed red ellipse in panel B (n = 39,630) colored
by epitope expression (AU1, FLAG, HA, StrepII, Prot C, and VSVg). Each point represents a cell. Each epitope barcode is a unique group. (E) UMAP of cells from a pooled
population of 40 barcoded NCI-H82 cell lines analyzed by mass cytometry grouped by protein and epitope (GFP, mCherry, AU1, FLAG, HA, StrepII, Prot C, and VSVg) and
colored by their intensity. Each point represents a cell. Each number indicates a barcode combination. The dashed lines separate GFP-positive from mCherry-positive cells.
(F) Overlay of 40 barcoded NCI-H82 cell lines (red) and a pooled population of 38 barcoded NCI-H82 cell lines (blue). The latter includes the same cell lines as were mixed in
the 40-line pool except for the line expressing GFP with a tag consisting of Prot C, StrepII, and VSVg (combination 20) and the line expressing mCherry with a tag consisting
of AU1, FLAG, and HA (combination 21). Each number indicates a barcode combination. The dashed lines separate GFP-positive from mCherry-positive cells.
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Figure S3

Figure S3. Overview of phenotypic clusters and CNs in NCI-H82 xenografts, related to Figure 3. (A) Left: Representative image of a barcoded NCI-H82 tumor cut
and mounted onto a glass slide before MIBI. Middle: The same image after MIBI acquisition; darker regions indicate the areas acquired. Right: Numbered areas within each
tumor indicate the acquired tiles. Data from this dataset are shown in Figures 3 to 5. Scale bar: 2.4 mm. (B) Schematic representation of tile acquisition. Each tile has a
size of 1200 x 1200 ?m and is composed of nine squared FOVs of size 400 x 400 ?m. Each dashed square represents a FOV. The order of FOV acquisition is indicated by
the numbers within each square. (C) Representative overlaid MIBI images of synaptophysin (SYP; green), vimentin (red), aSMA (cyan), and HH3 (blue) staining of NCI-H82
cells. Top image: Region of vimentin co-expression with synaptophysin (white arrow). Bottom image: Region of vimentin expression in proximity to stroma (white arrow).
White lines are segmented cells. (D) Phenotypic cluster maps for each tile. Numbers in the legend refer to phenotypic clusters defined in Figure 3F. Tile 1 is shown in Figure
5A. Tile 5 and 15 are shown in Figure 3I. Scale bar: 300 µm. (E) Neighborhood maps for each tile on the dataset. Numbers in the legend refer to CNs defined in Figure 3K.
Tile 1 is shown in Figure 5A. Tile 5 and 15 are shown in Figure 3L. Scale bar: 300 µm.
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Figure S4

Figure S4. Overview of EpicTags in NCI-H82 xenografts, related to Figure 4. (A) Positive cells for each barcode in the tile shown in Figure 4B. The number within the
black square indicates the barcode. (B) Subclonal tumor maps for each tile on the dataset. Numbers and colors in the legend refer to the barcodes described in Figure S1A.
Tile 1 is shown in Figure 5A. Tile 14 is shown modified in Figure 5D. Scale bar: 300 µm. (C) Computational simulation of frequencies of each EpicTag barcode after a random
initial seeding. (D) Bar graph showing the number of cells for each patch size in the dataset. The green arrow indicates individually distributed cells. The blue green indicates
cells in patches. The x-axis is log10 transformed on the right. (E) Histogram showing the distances of each cell to its fifth nearest neighbor. The pink distribution represents
the distribution of cells in the tumor for barcode 12 in tile 1 and the blue distribution represents a randomized sample in tile 1 (with the same number of cells of barcode 12).
(F) Dot plot for barcode 12 in tile 1 showing the mean of the distances of each cell to its k nearest neighbor in the tumor and in randomized data. k ranges from 1 to 300. (G)
Dot plot showing the mean of the distances of each cell to its k nearest neighbor in the tumor and in randomized data for all 20 barcodes in each of the 16 tiles (n = 320).
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Figure S5
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Figure S5. Functional analyses of phenotypic SOM clusters and CNs in NCI-H82 xenografts, related to Figure 5. (A) Polar plots illustrating marker expression (VIM,
SYP, Ki67, H4K8ac, H3K4me2, H3K27ac, GLUT1, CS) across clusters and CNs. Concentric circles represent marker expression. Dashed lines indicate homotypic CNs (red:
cluster 2 – CN 2, blue: cluster 6 – CN 4, green: cluster 7 – CN 3). (B) Average marker CV across clusters in CNs. The CV was calculated from means of expression in
barcoded cells; the mean of all CVs is plotted. (C) CVs across clusters and CNs. (D) Representation of cell number and patches per tile. The total number of barcoded
cells and patches per tile separated by clusters 2 (non-NE, non-neuroendocrine) and 7 (NE). Linear models fit the data for NE and non-NE cells with R2

adj = 86% and 58%,
respectively. (E) Correlation of barcodes between NE and non-NE cells. Cell number (top) and patch number (bottom) of NE and non-NE cells are plotted per barcode. Linear
models and correlations of the total data (blue) and data without combinations 5, 4, 8, 12, 14, and 18 (orange) are displayed. (F) Correlations, histograms, and points for each
barcode for all clusters. (G) Geometric means of patches size across all barcodes for cluster 7 (NE) and cluster 2 (non-NE). (H) Patch sizes across all tiles per barcode for
clusters 2, 3, 5, 6, and 7 (human cell clusters); statistical comparison was between cluster 2 and the remaining clusters. (I) Percentage of the dominant cluster within a patch
(blue) and a randomized assignment of clusters within a patch (orange). (J) Quiescent cells per CN for each cluster. (K) Quiescent cells per cluster in each CN. Data were
separated by patch size: 1 cell, 1 to 10 cells, and over 10 cells. (L) Cell proliferation as indicated by Ki67 expression for each cluster and CN. (M) Percentage of cells with
DNA damage per cluster and CN.
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Figure S6
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Figure S6. Functional analyses of control and PTEN−/− tumors, related to Figure 6. (A) Four images from “Control” tumors consisting of 20 wild-type EpicTag barcoded
cells, and ten images of “PTEN−/−” tumors consisting of PTEN knockout cells (EpicTags 1 and 20), unedited but nucleofected cells (EpicTags 2, 4, 14, 16, 17, and 18), and
wild-type cells (EpicTags 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, and 19). The legend indicates the color for each EpicTag barcode. Numbers refer to the barcodes described in
Figure S1A. All tiles are shown modified in Figure 6I. Scale bars: 200 µm. (B) Cell proliferation as indicated by Ki67 expression for cells in “Control” and “PTEN−/−” tumors.
For the “PTEN−/−” tumors, proliferation of control cells (wild-type cells, and unedited but nucleofected cells) and PTEN−/− cells (“PTEN”) are shown. (C) A heatmap of
the mean marker expression for the eight clusters (phenotypic cluster; rows) and the eight markers that define them (columns). The intensities of each marker are defined
by the color bar at the bottom (normalized counts). (D) UMAP of all cells in the dataset (n = 194,821) colored by their phenotypic cluster. Each point represents a cell. Cells
were grouped based on the expression of 13 markers (Vimentin, pS28 HH3, human cell marker, Ki67, aSMA, CD31, Citrate Synthase, GLUT1, pS139 H2AX, Synaptophysin,
H3K27ac, H3K4me2, and H4K8ac). (E) Phenotypic cluster maps for tiles of the “Control” and “PTEN−/−” tumors. Numbers in the legend refer to phenotypic clusters defined
in Figure S6C. Scale bars: 200 µm. (F) A heatmap of the frequencies of each phenotypic cluster (columns) for each of the seven CNs (rows). The normalized intensity of
each marker is defined by the color bar. (G) Neighborhood maps for tiles of “Control” and “PTEN−/−” tumors. Numbers in the legend refer to CNs defined in Figure S6F.
Scale bars: 200 µm. (H) Percentages of the dominant clusters within a patch for cells in “Control” and “PTEN−/−” tumors. For “PTEN−/−” tumors, percentages in control
cells (wild-type cells, and unedited but nucleofected cells) and PTEN−/− cells (“PTEN”) are shown. (I) Subclonal tumor map, phenotypic cluster map, and a composite
image of vimentin (red), synaptophysin (green), H3K27ac (violet), alpha SMA (cyan), CD31 (yellow), and Histone H3 (blue) in a representative region of a “PTEN” NCI-H82
xenograft (Tile 14, FOV 3 and 4). Bottom row images are enlarged representations of red dashed squares in the top row. White arrows indicate representative H3K27ac−,
H4K8ac+, and H3K4me2+ cells enriched in CN 5. Scale bars: 50 µm. (J) Cell size by pixel count for NE and NE H3K27aclow cells in “Control” and “PTEN−/−” tumors.
For the “PTEN−/−” population, cell sizes of control cells (wild-type cells, and unedited but nucleofected cells) and PTEN−/− cells (“PTEN”) are shown. (K) Representative
image of Histone H3 staining in a representative region of a “PTEN−/−” NCI-H82 xenograft (Tile 6). Image on the right is an enlarged representation of the white dashed
square in the image on the left. Areas within the dashed red lines resemble necrotic areas. A red arrow indicates a region in the enlarged image that resembles a necrotic
area. Scale bars: 200 µm (left) and 50 µm (right). (L) H3K27ac, H4K8ac, and H3K4me2 expression per CN in “Control” and “PTEN−/−” tumors. (M) Ki67, GLUT1, and
citrate synthase (CS) expression per cluster in “Control” and “PTEN−/−” tumors. For the “PTEN−/−” population, expression is shown for control cells (wild-type cells,
and unedited but nucleofected cells) and PTEN−/− cells (“PTEN”). (N) Percentage of cells with DNA damage per cluster in “Control” and “PTEN−/−” tumors. For the
“PTEN−/−” population, percentages are given for control cells (wild-type cells, and unedited but nucleofected cells) and PTEN−/− cells (“PTEN”). For each cluster the data
were separated by patch size: 1 cell, 1 to 10 cells, and over 10 cells.
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