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Abstract
CD8+ T cells play a crucial role in the control and resolution of viral infections and can adopt a wide
range of phenotypes and effector functions depending on the inflammatory context and the duration
and extent of antigen exposure. Similarly, viral infections can exert diverse selective pressures on
populations of clonally related T cells. Technical limitations have nevertheless made it challenging to
investigate the relationship between clonal selection and transcriptional phenotypes of virus-specific T
cells. We therefore performed single-cell T cell receptor (TCR) repertoire and transcriptome
sequencing of virus-specific CD8 T cells in murine models of acute, chronic and latent infection. We
observed clear infection-specific populations corresponding to memory, effector, exhausted, and
inflationary phenotypes. We further uncovered a mouse-specific and polyclonal T cell response,
despite all T cells sharing specificity to a single viral epitope, which was accompanied by stereotypic
TCR germline gene usage in all three infection types. Persistent antigen exposure during chronic and
latent viral infections resulted in a higher proportion of clonally expanded T cells relative to acute
infection. We furthermore observed a relationship between transcriptional heterogeneity and clonal
expansion for all three infections, with highly expanded clones having distinct transcriptional
phenotypes relative to lowly expanded clones. Finally, we developed and utilized a bioinformatic
pipeline integrating pseudotime and clonality, termed Clonotyme, to further support a model in which
expanded virus-specific CD8+ T cells adopt heterogenic, yet preferentially, effector-like phenotypes.
Together our work relates clonal selection to gene expression in the context of viral infection and
further provides a dataset and accompanying software for the immunological community.

Introduction
T cells adopt a wide range of phenotypes and effector functions to orchestrate host-defense against
infection. Viral infections can be loosely divided into acute and persistent (chronic and latent)
infections, with influenza and SARS-CoV-2 being examples of the former and human
immunodeficiency virus (HIV), cytomegalovirus (CMV), and hepatitis B virus examples of the later.
Murine models of acute, chronic, and latent viral infections have been used to investigate the diverse
phenotypes and functions of CD8+ T cells and have been instrumental in characterizing effector,
memory, exhausted, inflationary, and self-renewing T cell populations (Frebel, Richter, and Oxenius
2010; Utzschneider et al. 2016; Wherry 2011; Sandu et al. 2020; Welten et al. 2020).
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Laboratory studies with the lymphocytic choriomeningitis virus (LCMV) in mice have revealed that
acute infections are characterized by the rapid recruitment and differentiation of virus-specific effector
CD8+ T cells that enable viral clearance within days (Wherry et al. 2003). This is in contrast to chronic
LCMV infections, where prolonged TCR stimulation results in the upregulation of inhibitory molecules
and a decrease in effector capabilities, collectively termed T cell exhaustion (Wherry 2011). Finally,
infection with another common mouse virus, murine cytomegalovirus (MCMV), has demonstrated to
induce a population of expanded CD8+ T cells that respond to the latent reactivation events
characteristic of herpes viruses, collectively termed inflationary T cells (Wiesel and Oxenius 2012;
Karrer et al. 2003; Welten et al. 2020; Klenerman and Oxenius 2016). Reductionist approaches
involving transgenic animals have been instrumental to characterize infection-specific T cell
phenotypes, as transgenic CD8+ T cells expressing virus-specific TCRs can be transferred into naive
hosts and profiled following viral infection (Sandu et al. 2020). While this approach is crucial to
remove the possible variability between TCR affinities and avidities, it nevertheless introduces into
the host an artificially high number of virus-specific CD8+ T cells expressing the same TCR. Similarly,
as thousands of transferred TCR transgenic T cells are introduced into naive mice, it is challenging to
relate clonal relationships to the dynamic phenotypes at the single-cell resolution.

While recent studies have leveraged bulk sequencing of the TCR beta (TRB) chain during acute,
chronic, and latent murine infections (Welten et al. 2020; Yermanos, Sandu, et al. 2020; Chang et al.
2020), these methodologies are inherently limited by the inability to accurately access clonal
expansion and further relate transcriptional profiles to those expanded TRB clones. Recent advances
in single-cell immune repertoire sequencing can link the complete TCR beta and alpha sequence
(VDJ) to gene expression (GEX) at the single-cell resolution (Yermanos, Neumeier, et al. 2021;
Yermanos, Agrafiotis, et al. 2021; Horns, Dekker, and Quake 2020). This technology has recently
demonstrated dynamic clonal and transcriptional profiles for virus-specific CD4+ T cells in the context
of acute LCMV infection (Khatun et al. 2021), however, it remains unknown how previously described
memory, effector, exhaustion, and inflationary phenotypes of virus-specific CD8+ T cells relate to
antigen-driven clonal selection. We therefore performed single-cell TCR repertoire sequencing to
investigate how the virus-specific CD8 T cell response varies across acute, chronic and persistent
infections, which resulted in infection-specific transcriptional fingerprints. We additionally discovered a
largely private and polyclonal T cell response in all three infection models, with chronic and latent
infection showing higher levels of clonal expansion. Finally, our results indicate that clonally expanded
T cells demonstrated transcriptional heterogeneity across all three infections, which was supported
both by transcriptional clustering and pseudotime analysis.

Results

Single-cell sequencing recovers diverse transcriptional signatures of virus-specific CD8+ T
cells
To profile the virus-specific CD8 T cell response, we leveraged three previously described models of
murine viral infection, namely acute LCMV (low-dose clone 13), chronic LCMV (high-dose clone 13),
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and latent MCMV (clone MCMV-ie2-gp33) infection (Welten et al. 2015; Kräutler et al. 2020). An
advantage of using these three viruses is that they all contain the gp33-42 (GP33) viral peptide epitope,
which enables isolation of endogenous virus-specific CD8+ T cells using MHC-tetramers. While the
GP33 peptide is naturally encoded in the LCMV genome, it has been engineered into the ie2 gene
locus of MCMV and gives rise to a population of virus-specific T cells termed inflationary T cells
(Welten et al. 2020, 2015). We therefore isolated GP33-specific CD8+ T cells from the spleen of mice
at 28 days post infection (dpi), separated into cohorts of either acute LCMV, chronic LCMV, or latent
MCMV-ie2-gp33 infection. While we intended to include GP33-specific CD8+ T cells following peptide
immunization with the GP33 peptide in CpG, we were unable to obtain sufficient numbers of
GP33-specific cells 28 dpi and therefore excluded this group for future sequencing (Figure S1A). The
virus-specific CD8+ T cells were then processed for single-cell sequencing of their TCR repertoires
and transcriptomes by following the 10X genomics workflow (5’ immune profiling with V(D)J and GEX
protocol) (Figures 1A, S1A). Following single-cell sequencing and alignment to the murine reference
transcriptome, we recovered GEX information from thousands of virus-specific CD8+ T cells from
each mouse (Figures 1B, 1C), with the median number of genes per cell ranging from 866 to 1210 for
all mice (Figure 1D), accompanied by comparable percentages of mitochondrial genes and
sequencing reads for all samples (Figures S1B, S1C).

Acute, chronic, and latent infections have been reported to have distinct phenotypes of virus-specific
CD8+ T cells, corresponding to memory, exhaustion, and inflationary subsets (Moskophidis et al.
1993; Wherry et al. 2007; Kaech et al. 2003; Kaech and Cui 2012; Klenerman and Oxenius 2016).
Performing unsupervised clustering based on total gene expression [excluding genes relating to
TCRs , i.e., V-, D-, J-, and constant region (C) genes] and subsequently visualizing the cells from all
mice revealed infection-specific clustering (Figures 1B, S1D, S1E). Quantifying the proportion of cells
in each cluster demonstrated that the transcriptional profiles were highly reproducible across
biological replicates (Figures 1E, S1C), with CD8+ T cells found in distinct clusters for acute LCMV
(clusters 0,1,3,4), chronic LCMV (5,6,7,8), and latent MCMV (0,1,2,6) infections. Further unbiased
investigation into the most expressed genes per cluster revealed a plethora of genes previously
reported in the context of viral infections, such as Il7r, Tcf7, Zeb2, Klrg1, Gzma, Gzmb, Gzmk, Vim,
Lgals3, Tox, Lag3, Pdc1, Id3. Together, these patterns of gene expression suggested the presence of
distinct memory (clusters 0, 3, 4), effector (clusters 1, 2, 5), exhausted (cluster 8), memory-like(cluster
7), proliferative (cluster 6) subsets, in addition to a small population of B cells present (cluster 9) in all
samples, suggesting minor contamination (Figure 1F).

Differential gene expression analysis, gene ontology, and gene set enrichment confirm
memory, effector, exhaustion, and inflationary T cells
We next performed differential gene expression and calculated most up and down-regulated genes to
determine if infection conditions would further separate transcriptional phenotypes (Figure 2A).
Genes characteristic of T cell exhaustion were upregulated in the chronic LCMV infection (e.g.,
Pdcd1, Tox, Lag3), whereas genes associated with memory formation and inflationary phenotypes
were upregulated in the acute LCMV (e.g., Il7r) and latent MCMV (e.g., Klrg1) infections (Figure 2A).
As many of these genes have been previously described in the context of viral infection, we

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450285doi: bioRxiv preprint 

https://paperpile.com/c/bMiOdy/QI0D+G2zXB
https://paperpile.com/c/bMiOdy/qOuN+QI0D
https://paperpile.com/c/bMiOdy/gYUb+DDdD+6Ema+413P+ADvm
https://paperpile.com/c/bMiOdy/gYUb+DDdD+6Ema+413P+ADvm
https://doi.org/10.1101/2021.06.29.450285
http://creativecommons.org/licenses/by-nd/4.0/


Kuhn et al. 4

investigated whether the expression of additional genes commonly used to differentiate populations
of CD8+ T cells could further differentiate infection types. Genes such as Cd8a and Cd3e were
expressed ubiquitously across all cells (Figure S2), whereas exhaustion markers such as Pdcd1,
Tim3, Lag3, and Ctla4 were preferentially localized to the cells arising from chronic infection (Figures
2B, S2, S3). We additionally observed a population of cells from chronically infected mice
coexpressing Pdcd1 and Tcf7 (Figures 2B, S2, S3), which has been described previously as
“stem-like”, “memory-like” or “progenitor-exhausted”, and serves to sustain the effector and
exhausted population in the context of chronic infection (Siddiqui et al. 2019; Utzschneider et al.
2016; Wang et al. 2019). Expression of Klrg1 was similarly localized to cells arising from the
MCMV-ie2-gp33 infection, consistent with the known effector-memory phenotype of inflationary CD8+
T cells (Welten et al. 2020) (Figures 2B, S2D).

To obtain an additional unbiased confirmation of the various virus-specific CD8+ T populations, we
used the 100 most upregulated genes from our previous differential gene analysis (Figure 2A) to
match gene signatures with gene ontology (GO) terms and pathway analysis, confirming distinct
CD8+ T cell phenotypes for the three infections (Figures S4, S5). Finally, we questioned whether
these differentially expressed genes were in agreement with previously published gene sets, in
contrast to our handpicked selection of phenotypic markers (Figures S6, Table S1). Together, this
further highlighted distinct transcriptional phenotypes arising from acute, chronic and latent infections.

Polyclonal but individualized CD8+ T cell clonal expansion following acute, chronic and latent
infection
After observing the transcriptionally diverse gene expression profiles following the different infection
types, we determined if TCR repertoires showed infection-specific features. By restricting our
analysis to cells containing only one TRA and one TRB sequence, we obtained information ranging
from hundreds to thousands of cells from each mouse (Figures 3A, S7A). Quantifying the number of
unique clones [defined by unique complementarity determining region 3 beta (CDRb3) + CDR3 alpha
(CDRa3) nucleotide sequence] revealed hundreds of clones for each mouse (Figures 3A, S7B),
indicating both a polyclonal GP33-specific repertoire in all three infection conditions and the presence
of clonal expansion. Next, we visualized the percentage of the repertoire comprised by each clone,
which demonstrated that mice which had received acute LCMV infection (and therefore had already
cleared the virus 28 dpi) had a higher fraction of clones supported by only a single cell barcode
(Figure 3A). Quantifying the Shannon evenness, a commonly used entropy metric that provides a
global view of clonal frequencies (Miho et al. 2018; Yermanos, Kräutler, et al. 2020; Greiff et al. 2017),
further confirmed the notion that acute LCMV infection resulted in relatively less clonal expansion
than the other two infection types, where antigen is still present (Figure S7C). A closer examination of
the 30 most expanded clones from each repertoire (Figure 3A) revealed that in many cases individual
clones were represented by hundreds of cells, particularly in chronically and latently infected mice,
and, in the case of a single latently infected mouse, more than a thousand cells (Figure 3B).

We next determined the extent of clonal convergence in the GP33-specific repertoire by quantifying
the number of identical TCRs found in each mouse, which revealed minimal overlap detected
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regardless of infection condition (Figure 3D). We observed no prominent relationship between clonal
expansion and clonal overlap, as performing a similar analysis restricted to expanded clones (clones
supported by two or more cells), including the 10 most expanded clones per mouse, did not reveal
any substantial overlap (Figures S7D, S7E). We subsequently questioned if signs of clonal
convergence could be detected by focusing the analysis on clones with similar, but non-identical TCR
sequences. We therefore constructed sequence similarity networks based on the edit distance of the
CDRb3 and CDRa3 sequences. Despite investigating a range of edit distance thresholds, we visually
failed to observe any infection-specific clustering (Figures 3D, S8). Formally quantifying the number
of edges shared either within the same or across different infection groups supported our visual
observation that infection-specific overlap was not present (Figure S8).

Stereotypic germline gene usage following acute, chronic and latent viral infection
After observing the low degree of sequence similarity across all mice, we determined if stereotypical
patterns of germline gene usage could be observed in any of the infection conditions, as previous
repertoire sequencing experiments investigating virus-specific T cells in the context of LCMV or
MCMV infection have demonstrated preferential germline use (Welten et al. 2020; Yermanos, Sandu,
et al. 2020). Leveraging the ability of our single-cell immune repertoire profiling, we could investigate
the variable (V) gene usage for both TRB and TRA chains, in addition to quantifying how often certain
pairings occured. Quantifying and visualizing the number of cells using a given germline pairing
revealed certain V genes dominated the repertoire across multiple mice in different infection
conditions, such as TRBV13-1, TRBV19, and TRBV29 (Figures 4A, S9A). Calculating pairwise
correlation coefficients for germline gene usage between all mice demonstrated that TRBV gene
usage loosely clustered repertoires by infection type (Figure 4B), although this effect was not
observed when both TRBV and TRAV genes were included into the calculation (Figure S9B). We
lastly questioned whether including repertoires lacking specificity to GP33 could provide contrast for
how similar the 6 repertoires were following acute, chronic, and latent infection. Including publicly
available data from either naive PBMCs (10x genomics) or CNS-resident T cells (Yermanos,
Neumeier, et al. 2021) demonstrated clear separation between the repertoires of GP33-specific T
cells and naive T cells (Figure 4C), further supporting the notion that the GP33-specific repertoire has
stereotypic germline gene usage irrespective of the infection condition.

Transcriptional heterogeneity within expanded virus-specific clones
We next integrated TCR sequence with transcriptomes at single-cell resolution. It has been previously
demonstrated that highly expanded clones upregulate effector molecules such as Nkg7, Ccl5, and
granzymes (Yermanos, Agrafiotis, et al. 2021; Yermanos, Neumeier, et al. 2021). Therefore, we first
focused our analysis on the 30 most expanded clones for each infection by quantifying the fraction of
cells present in each transcriptional cluster (Figure 5A). Cells arising from different infection
conditions occupied distinct transcriptional states, thereby suggesting transcriptional heterogeneity
within the majority of expanded clones (Figure 5A). Extending this analysis to all clones, regardless
of clonal expansion, would reveal differences between highly and lowly expanded clones. This
analysis showed that more expanded clones (thicker lines in Figure 5B) were predominantly
connected to clusters 5 and 2 for chronic and latent infections, respectively, whereas unexpanded
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clones (narrower lines) were often connected to clusters 7 and 0, respectively (Figures 5B, S10).
Quantifying the cluster membership demonstrated a clear trend consistent in all six mice that clones
with higher expansion were located in cluster 1 for acute, 5 for chronic, 2 for latent infection (Figure
5C), which characteristically expressed Zeb2, Tox, and Klrg1, respectively (Figures 1B, 1F, S2).
Conversely, unexpanded clones were more often located in clusters 4 and 7 (Figure 5C), which were
characterized by high expression of genes associated with memory phenotypes such as Id3, Sell,
and Tcf1 (Figures 1B, 1F, S2). Calculating the differentially expressed genes revealed that genes
such as Nkg7, Lgals1, Pdcd1, and Ccr2 were significantly upregulated in expanded cells in at least
one infection condition and demonstrated consistent trends in expression for all infection groups
(Figures 5D, S11A, S11B). Taken together, our findings support previously proposed models in which
clonally expanded T cells remain transcriptionally heterogeneous yet preferentially adopt effector-like
phenotypes.

Pseudotime analysis supports clonal heterogeneity
Until now, our single-cell analysis has investigated transcriptional signatures after integrating all cells
from the three infection types. We therefore next questioned whether first separating the cells by
infection type and leveraging pseudotime analyses would provide additional insight into differentiation
of repertoire and transcriptome features underlying clonal selection. We therefore realigned raw
sequencing reads to the reference transcriptome and supplied the subsequent alignment files to the
DropEst and Velocyto pipelines (La Manno et al. 2018; Petukhov et al. 2018). Performing
unsupervised Louvain clustering and UMAP on the output of DropEst and incorporating vector fields
from Velocyto highlighted transcriptional heterogeneity within each infection, with phenotypes
corresponding to memory, effector, exhausted, and inflationary T cells (Figures 6A, S12, S13, S14).
As Velocyto results in a vector field indicating cell-state differentiation by comparing ratios of
unspliced to spliced RNA (La Manno et al. 2018), we questioned whether overlaying the most
expanded clones would reveal interclonal differentiation trajectories. Visualizing both the Velocyto
vector fields and the most expanded clones from each mouse revealed clonal heterogeneity in
regards to location on the UMAP and transcriptional cluster, however, this suggested that clear
intraclonal trajectories could not be resolved outside of the clusters corresponding to proliferation
(Figures 6B, S15).

Despite the inability of Velocyto to infer clear trajectories for all three infections, we questioned
whether another method of calculating pseudotime, Monocle, could provide additional information
regarding the differentiation of the most expanded clones. We therefore quantified the pseudotime
state for the most expanded clones from each mouse and compared this to the remainder of cells
from the respective repertoires, which indicated that the most expanded clones were distributed
throughout multiple pseudotime states (Figures 6C, S16). After profiling the clonotype-specific
pseudotime calculated using all genes, we restricted our analysis to specific genes of interest to
compare the pseudotime heterogeneity with previously suggested differentiation states for acute,
chronic, and latent infection (Zander et al. 2019; Hudson et al. 2019; Beltra et al. 2020). For the most
expanded clones arising from acute LCMV infection, we observed a clear movement in pseudotime
from a more memory-like phenotype (Sell) to an effector-like phenotype (Cx3cr1) (Figure 6D),
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whereas expanded clones from chronic LCMV infection resulted in a trajectory involving initial
expression of Tcf7, then coexpression of Tcf7 and Pdcd1, with cells of a later pseudotime expressing
Cx3cr1 (Figure 6D). In the case of MCMV infection, we observed that expanded clones occupied
distinct states in pseudotime defined by expression of Il7r, Klrg1, and Tcf7 (Figure 6D). Taken
together, pseudotime analysis supported transcriptional heterogeneity of expanded clones yet also
failed to clearly elucidate distinct differentiation pathways when based on mRNA splicing from
Velocyto. Although this may be specific for our particular experimental setup, it is possible that either
time-resolved scSeq data or entirely distinct experimental setups would result in higher resolution
trajectories capable of quantifying differentiation at the single-clone resolution. We therefore
developed a publicly available bioinformatic pipeline, Clonotyme, to integrate repertoire features with
gene-expression based pseudotime inference (Figure S17). This workflow can take either the
resulting alignment necessary for RNA velocity or an already computed Seurat object and will
integrate clonal information to either method of pseudotime analysis. Upon specifying clonal features
(e.g., expansion rank), the user can visualize individual clones in pseudotime dimensions, both
relative to the global transcriptional landscape (e.g., directly on the UMAP) or for individual genes.
Together, Clonotyme supported a model in which clonally-related virus-specific CD8+ T cells were
located across diverse regions of pseudotime and can additionally expedite future time-resolved
scIRS studies.

Discussion
Here, we used single-cell TCR repertoire and transcriptome sequencing to investigate how T cell
clonal selection signatures vary across acute, chronic, and latent viral infection in mice. While the
recovered CD8+ T cells shared specificity to a common viral peptide, our results demonstrated
infection-specific transcriptional heterogeneity that was maintained across biological replicates
(Figure 1B). While previous reports have demonstrated that acute, chronic, and latent infections result
in T cells with a range of phenotypes and effector functions (Wherry 2011; Alfei et al. 2019; Zehn et
al. 2012; Utzschneider et al. 2016; Barnstorf et al. 2019; Hudson et al. 2019; Welten et al. 2020), a
comparison characterizing whole transcriptomes at the single-cell level has not yet been performed.
Our findings showcase the extensive T cell phenotypic diversity and similarly highlight the lack of
transcriptional overlap between CD8+ T cell phenotypes from the three models of infection.
Consistent with previous results, we could recreate the effector, memory, exhausted, and inflationary
expression signatures characteristic of acute, chronic and latent infection using both targeted and
unbiased computational analyses.

Previous experiments characterizing the endogenous GP33-specific TCR repertoire in the context of
LCMV infection have demonstrated varying degrees of polyclonality (Yermanos, Sandu, et al. 2020;
Chang et al. 2020). Leveraging TRB repertoire sequencing, both studies recovered multiple distinct
clones, ranging from 40 to hundreds of unique GP33-specific CD8+ T cell clones following chronic
and acute LCMV infection. The number of unique clones reported by both studies were comparable
to the number of GP33-specific CD8+ T cells found in naive CD8+ T cells of uninfected C57BL/6
mice (Malhotra et al. 2020; Obar, Khanna, and Lefrançois 2008; Kotturi et al. 2008). Importantly, both
TRB studies demonstrated high clonal overlap between the TCF1+ and TCF1- CD8+ T cell
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repertoires (Yermanos, Sandu, et al. 2020; Chang et al. 2020), which together supports a previously
proposed model in which TCF1+ CD8+ T cells feed into the TCF1- CD8+ T cell subset (Utzschneider
et al. 2016; Siddiqui et al. 2019). Similarly, a high degree of clonal overlap between the TCF1+ and
TCF1- repertoires was observed in the context of inflationary T cells following MCMV infection
(Welten et al. 2020). However, as these studies relied upon bulk TRB chain sequencing, relating
clonality to gene expression profiles was not possible.

Our single-cell sequencing approach allowed us to relate individual transcriptomes to the TCR
repertoire for thousands of cells, thereby providing insight into the relationship between gene
expression and clonality. While we could again confirm a polyclonal response through detecting
hundreds of unique GP33-specific clones following acute, chronic, and latent infections, we could, for
the first time, demonstrate a polyclonal and expanded GP33-specific TCR repertoire at the single-cell
resolution. We additionally discovered transcriptional diversity within individual clones that was
present in each infection condition. Here, we again observed that clonally expanded T cells are found
in both Tcf1+ and Tcf1- clusters, thereby supporting the previously reported model which implies a
clonal relationship between the TCF1+ and TCF1- T cells during chronic viral infection (Utzschneider
et al. 2016). While this hypothesis has been similarly described in the context of cancer (Siddiqui et
al. 2019) and MCMV infection (Welten et al. 2020), an extensive characterization of this hypothesis at
the polyclonal GP33-specific repertoire level was lacking.

In contrast to our previous findings (Yermanos, Sandu, et al. 2020; Welten et al. 2020), the
virus-specific CD8+ TCR repertoires were extremely personalized, with minor clonal overlap between
mice. This was true for both expanded and unexpanded clones, suggesting a stochasticity underlying
the selection and expansion of virus-specific clones. The findings presented here may contrast to
higher clonal overlap previously reported due to inherent differences in the repertoire sequencing
technologies. Specifically, the 10x genomics platform used in this study provides unique molecular
identifiers to reduce PCR and sequencing errors and additionally does not rely on multiplex primers,
which should improve the accuracy and reduce amplification biases. Although we did not observe a
high degree of clonal overlap, we observed that certain germline genes were used more often in
TCRs with a common specificity to a single, shared viral epitope. As the naive repertoires of these
mice are generated from identical TCR loci, our findings imply that the inflammatory context of distinct
infection does not dictate the germline gene selection and accompanying preferential expansion as
much as the exact specificity does.

Methods
Animal experiments
All animal experiments were performed in accordance with institutional guidelines and Swiss federal
regulations. Experiments were approved by the veterinary office of the canton of Zurich under animal
experimentation licenses 115/2017 and ZH058/20. 6-8 week old female C57BL/6 mice from Janvier
were housed under specific-pathogen-free conditions in individually ventilated cages with bedding
and nesting material for enrichment. Acute LCMV infections were infected intravenously (i.v.) with 200
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focus forming units (ffu) of LCMV clone 13 in the tail vein. Chronic LCMV infections were performed
i.v. with 2 x 106 ffu LCMV clone 13. Latent infections were established by injecting 2x105 pfu dose of
MCMV-ie2-gp33 i.v., which was obtained from Dr. L. Cicin-Sain and contains a functional m157 gene
as previously described (Welten et al. 2015). MCMV viral stocks were propagated on M2-10B4 cells
and purified by ultracentrifugation using a 15% sucrose gradient. LCMV clone 13 waas produced as
previously described (Sandu et al. 2020). Upon sacrifice with CO2 at 28 dpi, spleens were harvested
and single-cell suspensions were prepared by mashing the tissue through a 70 uM cell strainer and
rinsing with complete RPMI (RPMI-1640 supplemented with 10% fetal bovine serum, 2 mM
L-glutamine, 1% penicillin-streptomycin, 1 mM sodium pyruvate, 50 nM beta-mercapthoethanol, 0.1
mM non-essential (glycine, L-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-proline,
L-serine) amino acids, 20 mM HEPES). The single cell suspension was then incubated with CD8-PE
(clone 53-6.7, Biolegend), MHC class 1 tetramer for gp33-41 conjugated to APC diluted in FACS buffer
(PBS, 2 mmEDTA, 2% FCS) at room temperature for 30 minutes, as previously described (Altman et
al. 1996), and LiveDead nearIR. Tetramer positive cells were isolated via flow cytometric sorting
(FACSAria with FACSDiva software) and subsequently supplied as input for single-cell immune
repertoire sequencing.

Single-cell immune repertoire sequencing
Single-cell immune repertoire sequencing was performed as according to the 10x Genomics
Chromium Single Cell V(D)J Reagents Kit (CG000166 Rev A) as previously described (Neumeier et
al. 2021). In brief, single cells for all six samples were simultaneously encapsulated with gel emulsion
microdroplets (10x Genomics, 1000006) in droplets using 6 lanes of one Chromium Single Cell A
Chip (10x Genomics, 1000009) with a target loading of 13,000 cells per reaction. cDNA amplification
was performed using 14 cycles and subsequently split for downstream GEX and VDJ library
preparation. GEX libraries were amplified using the Chromium Single Cell 5’ Library Kit (10x
Genomics, 1000006). TCR libraries were amplified using the Chromium Single Cell V(D)J Enrichment
Kit, Mouse T Cell (10x Genomics, 1000071). Final libraries were pooled and sequenced on the
Illumina NovaSeq S1 using a concentration of 1.8 pM with 5% PhiX.
Paired-end sequencing files for GEX and VDJ libraries were aligned to the murine reference genome
(mm10) and V(D)J germlines (GRCm38) using 10x Genomics cellranger (v4.0.0) count and vdj
arguments, respectively. The filtered feature matrix directory was supplied as input to the
automate_GEX function in the R package Platypus (v2.0.5) (Yermanos, Agrafiotis, et al. 2021), which
uses the transcriptome analysis workflow of the R package Seurat (Satija et al. 2015). Only those
cells containing less than 20% of mitochondrial reads were retained in the analysis. Genes involved in
the adaptive immune receptor (e.g., TRB, TRBV1-1), were removed from the count matrix to prevent
clonal relationships from influencing transcriptional phenotypes. Gene expression was normalized
using the “scale.data” argument in automate_GEX, which first performs log-normalization with a
scaling factor of 10000 and then scales mean expression and variance to 0 and 1, respectively. 2000
variable features were selected using the “vst” selection method and used as input to principal
component analysis (PCA) using the first 10 dimensions. Graph-based clustering using the Louvain
modularity optimization and hierarchical clustering was performed using the functions FindNeighbors
and FindClusters in Seurat using the first ten dimensions and a cluster resolution of 0.5. UMAP was
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similarly inferred using the first ten dimensions. The FindMarkers function from Seurat was used
when calculating differentially expressed genes (both across groups or across clusters) with both the
minimum log fold change and the minimum number of cells expressing each gene set to 0.25.
Mitochondrial and ribosomal genes were removed when either visualizing DE genes or supplying the
top DE genes as input to gene ontology and gene set enrichment analyses. Gene ontology and gene
set enrichment analysis was performed using the GEX_GOterm and GEX_GSEA functions in
Platypus by supplying either the top N or bottom N genes as input. In the case of GEX_GSEA, the C7
immunological signatures gene set from the Broad institute was supplied as input to the function
(Subramanian et al. 2005). The GEX_GSEA function uses the R package fgsea (Korotkevich,
Sukhov, and Sergushichev 2019) to conduct gene set enrichment analysis and GEX_GOterm is
based on the R package edgeR (Robinson, McCarthy, and Smyth 2010).
For TCR repertoire analysis, the output directory of 10x Genomics cellranger vdj function was
supplied as input to the VDJ_analyze function in Platypus maintaining the default clonotyping strategy
(CDRa3+CDRb3 nucleotide sequence) as performed by cellranger. Those clones not containing
exactly one TRA and one TRB chain were removed from the analysis. Clonal frequency was
determined by counting the number of distinct cell barcodes for each unique CDR3. Overlap matrices
were calculated by first appending the CDRa3 and CDRb3 nucleotide sequences and then
quantifying the exact matches across repertoires. Similarity networks were calculated based on the
VDJ_network function in Platypus, which first calculates the edit distance separately for TRB and
TRA CDR3s, and then draws edges between those clones with a distance below the specified
threshold. Circos plots were created using the VDJ_circos function in Platypus with a label.threshold
of 5. Those cells in clones supported by only one cell were considered unexpanded clones, whereas
those clones supported by two or more cells were considered expanded. Pseudotime analysis was
performed by aligning the output bam files from cellranger using DropEst (Petukhov et al., 2018).
Cells with nCount_spliced less than 1000 and more than 20% mitochondrial genes, as well as genes
involved in the adaptive immune receptor were filtered out and the object loaded as a Seurat object
analogously to the automate_GEX() funcion using “scale.data” as a normalisation method for gene
expression, log-normalisation with a scaling factor of 10000, 2000 selected variable features using
the “vst” selection method and the first 10 dimensions used as input to principal component analysis
(PCA) and UMAP. Clustering was conducted as described previously. Subsequently velocyto.R
(Kharchenko 2018) was run using the RunVelocity function from the SeuratWrappersR package
(Satija et al. 2020). Following parameters were used: deltaT = 1, kCells = 25 and fit.quantile = 0.02.
The resulting Seurat object was transformed to a Cell Data Set using the as.cell_data_set function
from the SeuratWrappers package and was subsequently supplied as input to Monocle3 to calculate
infection specific trajectories (Trapnell et al. 2014, Qiu et al. 2017, Cao et al. 2019, McInnes 2018),
with the clusters containing central memory genes (2 for acute, 2 for chronic, and 2 for latent) set as
the root of the trajectories. Clusters containing B cells (cluster seven for acute, seven for chronic, and
ten for latent) were excluded from this analysis. The density distribution of the two most expanded
Clonotypes for each sample across monocle-based pseudotime was visualized using the R package
ggridges. The expression level of selected genes across monocle-based pseudotime was inferred
using the plot_genes_in_pseudotime function of Monocle 3.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450285doi: bioRxiv preprint 

https://paperpile.com/c/bMiOdy/uRlNe
https://paperpile.com/c/bMiOdy/WQB0
https://paperpile.com/c/bMiOdy/WQB0
https://paperpile.com/c/bMiOdy/4qNX
https://doi.org/10.1101/2021.06.29.450285
http://creativecommons.org/licenses/by-nd/4.0/


Kuhn et al. 11

Data visualization: Heatmaps displaying differential gene expression were produced using the
DoHeatmap function in the R package Seurat (v4.0.1) (Butler et al. 2018). Gene enrichment analysis
was performed using the GEX_GOterm function in Platypus, which is based on the analysis pipeline
in edgeR (Robinson, McCarthy, and Smyth 2010). Enrichment plots were produced using the R
package ggplot (Wickham and Wickham 2007). Gene set enrichment analysis was performed using
the GEX_GSEA function in Platypus (v3.1) under default parameters, which utilizes fgsea (v1.12),
tibble (v2.1.3), and the C7 gene set from the molecular signatures database MSigDB (Korotkevich,
Sukhov, and Sergushichev 2019; Liberzon et al. 2015). Similarity networks were produced using the
R package igraph (Csardi, Nepusz, and Others 2006). Circos plots were produced using the
chordDiagram function of the R package Circlize (Gu, 2014). All other figures were produced using
Prism v9 (Graphpad).
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Figure 1. Single-cell immune repertoire sequencing recovers thousands of transcriptomes of virus-specific CD8+ T cells.
A. Experimental overview. B. Uniform manifold approximation projection (UMAP) split by sample. Each point represents a
cell and color corresponds to transcriptional clusters. All cells from all samples were integrated in this single UMAP. C.
Number of cells with gene expression information for each mouse. D. Median number of genes per cell for each mouse.
E. Fraction of cells in a particular transcriptional cluster for each sample. F. Top five significant genes defining each cluster
ranked by average log fold change.
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Figure 2. Virus-specific T cells have infection-specific phenotypes. A. Differentially expressed genes between acute and
chronic LCMV infection (left), acute and MCMV-ie2-gp33 infections (middle), and chronic and MCMV-ie2-gp33 (right)
infections. The upper 15 genes (from top to bottom) correspond to the highest positive average log fold change. Genes
16-30 represent those genes with the lowest average log fold change. All genes displayed have adjusted p values < 0.01.
B. Normalized expression for select differentially expressed genes. Each uniform manifold approximation (UMAP)
contains cells from all mice.
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Figure 3. Virus-specific T cells are clonally expanded and personalized. A. Distribution of clonal expansion. Clone was
defined by identical CDRb3-CDRa3 nucleotide sequence. Each section corresponds to a unique clone and the size
corresponds to the fraction of cells relative to the total repertoire. Unexpanded clones were those clones supported by
only one unique cell barcode. B. Clonal frequency for the top 30 most expanded clones in each repertoire. C. Number of
identical clones found between mice. D. Similarity network of virus-specific CD8+ T cell clones. Nodes represent a unique
CDRb3-CDRa3 from each mouse. Edges connect those clones separated by an edit distance of 5 amino acids or less.
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Figure 4. Stereotypic germline gene usage. A. Circos plots depicting the relationship between TRB and TRA V genes.
Color corresponds to TRA gene usage. Connections illustrate the number of cells using each particular combination. B.
Correlation heatmap quantifying the fraction of unique clones using a particular TRB V gene. Intensity corresponds to the
Pearson correlation of the V gene usage vector between two samples. Clone was defined as an identical CDRb3-CDRa3
nucleotide sequence. C. TRB V gene usage compared to other single-cell immune repertoire sequencing datasets
containing naive T cells.
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Figure 5. Transcriptional phenotypes relate to clonal expansion. A. Transcriptional cluster membership for the top 15 most
expanded clones for each infection group. Clone was defined as identical CDRb3-CDRa3 nucleotide sequence. B. Circos
plots relating cluster membership to clonal expansion. Numbers surrounding the circle indicate the number of cells within
the specific clone. C. Transcriptional cluster membership for expanded (+) and unexpanded (-) clones for each mouse.
Unexpanded clones were those clones supported by only one unique cell barcode. D. Violin plots for differentially
expressed genes between expanded vs unexpanded cells for each infection condition.
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Figure 6. Pseudotime inference supports transcriptional heterogeneity for expanded virus-specific clones A. Uniform
manifold approximation projection (UMAP) performed separately for virus-specific T cells from acute, chronic, and latent
infections. Each point represents a cell and color indicates transcriptional cluster, unique to each UMAP. UMAP was
created using DropEst and Velocyto. B. Pseudotime vector fields for each of the infection conditions. Points correspond to
the most expanded clone found in each infection type. Clone was defined by identical CDRb3-CDRa3 nucleotide
sequence. C. Monocle-inferred distribution of pseudotime for the most expanded clones in each mouse. Each point
represents a cell. D. Monocle-inferred pseudotime for select genes for the most expanded clones in each mouse. Each
point represents a cell.
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Figure S1. Single-cell sequencing of virus-specific CD8+ T cells. A. Flow cytometry plots of tetramer-sorted GP33-specific
cells for all 6 mice. Pre-gated on lymphocytes, singlets, alive+ CD8+ cells. Due to the low number of cells, single-cell
sequencing of the GP33 + CpG group was not performed. B. Percentage of mitochondrial genes per cell. C. Uniform
manifold approximation projection (UMAP) colored by infection group. Each point represents a cell and color corresponds
to transcriptional clusters. All cells from all samples were integrated in this single UMAP. D. Uniform manifold
approximation projection (UMAP) colored by transcriptional cluster.
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Figure S2. Normalized gene expression for select genes of interest. All cells from all samples were integrated into a single
uniform manifold approximation projection (UMAP).
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Figure S3. Normalized gene expression for select genes of interest split by infection type.
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Figure S4. Gene ontology (GO) term enrichment of the 10 most upregulated genes from either acute versus chronic
LCMV infection (top), acute LCMV versus MCMV-ie2-gp33 infection (middle), or chronic versus MCMV-ie2-gp33 (bottom)
infection. The color of each dot corresponds to adjusted p value. The size of the dot corresponds to the number of genes.
Ratio corresponds to the number of differentially genes relative to the number of total genes corresponding to each GO
term.
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Figure S5. Pathway enrichment of the 10 most upregulated genes from either acute versus chronic LCMV infection (top),
acute LCMV versus MCMV-ie2-gp33 infection (middle), or chronic versus MCMV-ie2-gp33 (bottom) infection. The color of
each dot corresponds to the adjusted p value. The size of the dot corresponds to the number of genes. Ratio corresponds
to the number of differentially genes relative to the number of total genes corresponding to each pathway.
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Figure S6. Gene set enrichment (GSEA) plots based on the C7 immunological signatures from the Broad institute. The
upregulated genes from either acute versus chronic LCMV infection or acute versus MCMV-ie2-gp33 infection were
supplied as input.
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Figure S7. T cell receptor repertoire features of virus-specific CD8+ T cells following acute, chronic, and latent viral
infection. A. Number of recovered GP33-specific cells containing exactly one T cell receptor beta (TRB) and T cell
receptor alpha (TRA) B. Number of unique clones per repertoire. Clone was defined by identical CDRb3-CDRa3
nucleotide sequence. C. Shannon evenness quantifying the distribution of clonal frequency for mice infected with either
acute (A1, A2), chronic (C1, C2), or latent (L1, L2) infection. D. Heatmap showing pairwise clonal overlap for the top 10
most expanded GP33-specific T cell clones from each mouse. E. Heatmap showing pairwise clonal overlap for those
clones supported by two or more distinct cell barcodes.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450285
http://creativecommons.org/licenses/by-nd/4.0/


Kuhn et al. 25

Figure S8. Similarity networks with diverse amino acid edit distance thresholds. A. Similarity network of virus-specific
CD8+ T cell clones. Nodes represent a unique CDRb3-CDRa3 from each mouse. Edges connect those clones separated
by an edit distance of N amino acids or less. B. The number of edges between nodes of mice either in the same infection
group or with different infection groups normalized by the number of possible connections.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450285
http://creativecommons.org/licenses/by-nd/4.0/


Kuhn et al. 26

Figure S9. Germline gene usage of GP33-specific CD8+ T cell receptors. A. Circos plots depicting the relationship
between TRB and TRA V gene usage. Color corresponds to TRA gene usage. Connections illustrate the number of
clones using each particular combination. Clone was defined as an identical CDRb3-CDRa3 nucleotide sequence. B.
Correlation heatmap quantifying the fraction of unique clones using a particular V gene. Intensity corresponds to the
Pearson correlation of the V gene usage vector between two samples.
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Figure S10. Supporting information for cluster membership. A. Transcriptional cluster membership for the top 15 most
expanded clones for each infection group. Clones were defined as identical CDRb3-CDRa3 nucleotide sequence. B.
Circos plots relating cluster membership to clonal expansion. Color corresponds to each unique clone. Connections
illustrate the number of clones using each particular combination. Clone was defined as an identical CDRb3-CDRa3
nucleotide sequence. C. Uniform manifold approximation projection (UMAP) showing expanded (>1 cell) and unexpanded
(1 cell) clones. Each point is a cell and cells from all infection conditions and mice were pooled. D. UMAP visualizing
expanded and unexpanded clones but colored by infection type.
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Figure S11. Expanded clones have distinct transcriptional profiles. A. Normalized gene expression for select genes of
interest split by infection type and clonal expansion. Clone was defined as an identical CDRb3-CDRa3 nucleotide
sequence. Expanded refers to those clones supported by more than one unique cell barcode. B. Differential gene
expression between expanded and unexpanded cells in the three infection conditions. Points in red indicate significantly
differentially expressed genes.
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Figure S12. Normalized gene expression for select genes of interest. All cells from two mice infected with acute LCMV
were integrated into a single uniform manifold approximation projection (UMAP).
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Figure S13. Normalized gene expression for select genes of interest. All cells from two mice infected with chronic LCMV
were integrated into a single uniform manifold approximation projection (UMAP).
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Figure S14. Normalized gene expression for select genes of interest. All cells from two mice infected with MCMV-ie2-gp33
were integrated into a single uniform manifold approximation projection (UMAP).
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Figure S15. Pseudotime vector fields for each of the infection conditions. Colored points correspond to the most expanded
clone found in a single mouse per infection type (Acute 2, Chronic 2, Latent 2). Clone was defined by identical
CDRb3-CDRa3 nucleotide sequence.
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Figure S16. Uniform manifold approximation projections (UMAP) for cells isolated from mice infected with acute LCMV
(acute), chronic LCMV (chronic), or MCMV-ie2-gp33 (latent). Each point indicates a cell and intensity corresponds to

Monocle-calculated pseudotime. Solid lines indicate pseudotime trajectories.
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Figure S17. Clonotyme workflow. Clonotype information can be integrated with Monocle3 or Velocyto frameworks to
investigate either global pseudotime properties or individual genes.
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