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Abstract 
 
We report Hierarch, a Python package to perform hypothesis tests and compute confidence 
intervals on hierarchical experimental designs. Using a combination of permutation resampling 
and bootstrap aggregation, Hierarch can be used to perform hypothesis tests that maintain 
nominal Type I error rates and generate confidence intervals that maintain the nominal coverage 
probability without making distributional assumptions about the dataset of interest. Hierarch 
makes use of the Numba JIT compiler to reduce p-value computation times to under one second 
for typical datasets in biomedical research. Hierarch also enables researchers to construct user-
defined resampling plans that take advantage of Hierarch’s Numba-accelerated functions. 
Hierarch is freely available as a Python package at https://github.com/rishi-kulkarni/hierarch.  
 
Introduction 
 
Typical experimental design in the life sciences produces hierarchical data (or clustered, nested, 
multilevel, etc.)1–3 For example, a researcher might image multiple fields of view from the same 
coverslip in an imaging experiment or record multiple trials from the same animal in a behavioral 
study (Scheme 1). Despite the ubiquity of this type of experimental design, strategies for 
computing p-values for these experiments are hugely inconsistent in the literature. Common 
approaches range from "pseudoreplication" strategies that treat different fields of view as 
independent samples, to "summary statistic" approaches that aggregate the fields of view before 
performing a t-test or ANOVA.4–6 These approaches can produce wildly different p-values on the 
same datasets because they do not consider the hierarchical nature of the experimental design. 
The p-value is commonly misunderstood to be a measure of the compatibility of the null 
hypothesis with the observed data; however, the p-value is more accurately defined as a measure 
of the compatibility of the entire statistical model (including ALL assumptions made by the 
hypothesis test) with the observed data.7 If a researcher wishes to compute a useful p-value for 
a hierarchical dataset, the experimental design must factor into the statistical model in some 
manner. 
 
One approach to analyzing hierarchical data is using a linear mixed model (or hierarchical 
model).8,9 Linear mixed models represent hierarchical data by being hierarchical themselves - the 
regression coefficients and intercept are themselves represented by another regression model. 
As flexible and powerful as they are, most studies employing linear mixed models involve very 
large numbers of clusters (>20), while studies in biomedical research typically have fewer than 
seven clusters and most often three to five.10,11 Simulation studies have shown that linear mixed 
models fail to control Type I error (false positive) rates with such a small number of clusters, 
becoming conservative or liberal depending if the effect of interest is within-clusters or between-
clusters.4,12 Furthermore, the process of selecting parameters for a linear mixed model can be 
challenging – specifying the structure of a given data set is nontrivial, but failure to do so correctly 
completely invalidates the p-values computed by the model. 
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Ideally, researchers could analyze hierarchical data using a hypothesis test that incorporates data 
from every level of hierarchy, does not make any distributional assumptions about the dataset, 
and can be easily applied to a wide range of experimental designs. Randomization (or 
permutation) tests can be used to calculate p-values and confidence intervals while making only 
very weak assumptions about the nature of the data.13,14 By accounting for each level of hierarchy 
in the resampling plan, a hierarchical randomization test can control false positive rates while 
achieving good statistical power. Furthermore, resampling-based tests can be "distribution-free" 
in the sense that they typically make weaker assumptions regarding the population distributions 
underlying the samples.15–17 This has the added benefit of producing a p-value that does not 
depend on unverifiable assumptions about the data-generating process.18 Despite the good 
properties of resampling-based tests, they come with a few drawbacks. One major drawback of 
this approach is that for a given dataset, the script executing the resampling plan is often bespoke 
and computationally intensive. Furthermore, incorrectly specifying the resampling plan can result 
in inflated Type I error rates the same way that choosing the wrong traditional hypothesis test can 
inflate Type I error rates. Nonetheless, biological experiments often are by their very nature 
hierarchical, and demand a statistical approach that keeps hierarchy in mind.  
  
To address these challenges, we present Hierarch, a Python-based module for hierarchical 
hypothesis testing. Hierarch is a lightweight Python module for nonparametric hierarchical 

 

Scheme 1. Hierarchical experiments are common in biomedical research. An example of a 
hierarchical experiment is an imaging experiment, where cells are isolated from donors, which are then 
treated in separate wells, which are then imaged under a microscope. These experimental designs are 
common in many fields of research, but especially so in molecular biology, imaging, and neuroscience.  
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bootstrapping and permutation testing based on NumPy19 and Numba.20 In this paper, we validate 
the Type I and Type II error rates of hierarchical randomization tests in Hierarch against 
asymptotic tests and walk readers through their usage.  We compare the properties of these tests 
in simulation studies with the small sample sizes typical of biological experiments (n = 3 to 4 
clusters), with different underlying population distributions, and with varying levels of hierarchy. 
We conclude that hierarchical resampling-based hypothesis tests are powerful, maintain better 
control of Type I error rates than asymptotic tests in a wide variety of conditions, and enable 
researchers to smoothly include multiple levels of clustering beyond the classic "biological 
replicate" and "technical replicate" dichotomy.  

  
How can you tell if your data is hierarchical? 
  
Hierarchical data arises from one (or both) of 
two design issues (Scheme 2).21 The first issue 
to consider is hierarchical sampling, in which the 
sampled entities and the treated entities are not 
the same. For example, a researcher studying 
macrophages collects those macrophages by 
drawing a random sample of blood from a 
random sample of mice, then applying 
treatments to different wells in a 6-well place of 
the macrophages. The researcher has to 
account for the fact that random errors are 
introduced by both the mouse and the well – 
each mouse has different genetics and a 
different immune system, which introduces 
random errors to the measurement. Similarly, 
each well is delivered a slightly different number 
of cells and a slightly different amount of drug. 
Failure to account for both of these levels of 
hierarchy can result in unwarranted precision in 
the estimate of a treatment effect, which can fail 
to reproduce when the experiment is repeated 
in other mice. 
 
The second design issue to consider is 
hierarchical assignment of treatment groups – 
or when the treated entities and the observed 
entities are not the same.21 For example, the 
researcher divides each mouse’s macrophages 
into six different wells and treats three of them with Treatment A, while the other three are treated 
with Treatment B. Then, the researcher performs an imaging experiment in which they look at 
several macrophages in each well. Because two macrophages in the same well are subjected to 
the same random errors in environment and treatment, they are much more similar than two 
macrophages in different wells. Again, failure to account for these levels of hierarchy can result 
an overly precise estimate of the treatment effect that disappears upon replication.   
 
Under this framework, the vast majority of molecular biology and neuroscience experiments have 
at least three, if not four levels of hierarchy. Unfortunately, these design issues are difficult (and 
sometimes impossible) to avoid due to reasons of cost, ethics, or sample availability. However, 

Scheme 2. Hierarchy arises during sampling 

and treatment assignment. Hierarchy due to 

sampling occurs when the sampled entities and 

the treated entities are not the same. Hierarchy 

due to treatment occurs when the treatment 

entities and the observed entities are not the 

same.  
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by using statistical tools that understand hierarchical data, researchers can compute robust effect 
sizes that do not over- or under-estimate their confidence. 
 
Strategy for non-parametric analysis of hierarchical data 
 
Permutation tests are a natural way to test the null hypothesis that a treatment has no effect, and 
the two samples are drawn from the same distribution, or the strong null hypothesis. Rather than 
using a theoretical null distribution, a permutation test builds a null distribution by shuffling the 
treatment labels in the data and recomputing the value of the test statistic. A permutation test 
assumes global exchangeability – that is, each observation was randomly assigned to one 
treatment or the other. Importantly, the null distribution in a permutation test is only conditioned 
on the observed data and the experimental design, so no unverifiable assumptions are made 
about the underlying data-generating process. For this reason, design-based permutation tests 
have been called the "platinum standard"17 of statistical analysis that ought to be given the "right 
to first refusal"13 when choosing an analysis for a given experiment. Permutation tests are 
computationally intensive; however, they have become more and more practical as personal 
computers have gotten faster.  
  
Permutation tests face two key challenges when performed on hierarchical data. First, hierarchical 
data violates the basic assumption of global exchangeability.22 That is, while the labels of 
"treatment" vs. "control" are exchangeable under the null hypothesis, cells from different wells are 
not exchangeable. Again, this is because cells in the same well are subject to the same random 
errors at the well level and are expected to be more similar than cells from different wells. This 
problem can be avoided by only permuting on exchangeable levels (Scheme 3a). When analyzing 
experimental data, this means permuting the level at which the treatment was administered. This 
leads us to the second problem. When there are only a small number of available permutations 
and the researcher wishes to perform a two-tailed test, the empirical null distribution is too coarse 
for the p < 0.05 significance level. For example, with n = 3 in each group for a two-tailed hypothesis 
test, the smallest false positive rate that can be achieved is 0.1. At n = 4 per treatment, the only 
alpha below 0.05 is 0.028. Only at n = 5 per treatment or more can the experimenter control alpha 
at values close to 0.05. We note that the most robust way around this issue is to perform 
experiments with at least n = 5 per treatment. However, it is sometimes impossible to acquire 
more samples, for example in cases where samples are sourced from human subjects. Ordinarily, 
this leaves the researcher stuck between a rock and a hard place - either they have to go with the 
strong assumptions of an asymptotic test (which, at n = 3 per treatment condition, are doing at 
least as much work as the data is) or accept that they cannot achieve p < 0.05 with a 
nonparametric test.  
 
In this example, a traditional cluster permutation test would involve summarizing the observations 
in each well by taking the average, then permuting the treatment labels to form a null distribution. 
With only 6 total wells, however, there are only 20 possible permutations, so the minimum two-
tailed p-value that can be computed is 2/20, or 0.1. Instead, we propose a test that shuffles 
posterior distributions of the cluster means rather than merely the point estimates of the cluster 
means (Scheme 3b). To estimate these posterior distributions, we utilize another resampling-
based method. The nonparametric bootstrap, developed by Efron23 and extended by many 
others,2,24–26 is an attractive method to nonparametrically estimate the posterior distribution of 
each cluster mean in this situation. The bootstrap procedure involves resampling the within-
cluster observations with replacement and recomputing the mean many times (say, 1000), 
resulting in a distribution of means that, importantly, reflect the standard error and skew of the 
original observations. Then, each set of bootstrap means is shuffled some number of times (in 
this case, 20) and the test statistic is recomputed with every shuffle. The p-value is the fraction of 
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these t statistics that are as or more extreme than the observed t statistic. This strategy, which is 
performs bootstrap aggregation of several permutation tests,27 enables researchers to incorporate 
the observed within-cluster variability into the hypothesis test and control alpha at 0.05 for 
datasets with as few as 6 clusters. 
 

 
Description of the hierarchical randomization test 
 
To explain our algorithm, we consider again the above dataset consisting of two treatments, three 
wells each, and three images each (Figure 1a). The researcher seeks to test the null hypothesis 
that the treatment had no effect on the mean fluorescence intensity of each image. 

1. First, calculate the observed value of the test statistic. For a difference-of-means test, we 
use Welch’s t statistic. 
2. Then, for each biological replicate, draw a bootstrapped sample (resampling with 
replacement) from its technical replicates.  
3. Then, permute the "treatment" labels and calculate a test statistic. Repeat this step a 
number of times (in this example, 20 times). 
4. Repeat steps 2 and 3 a large number of times (>500) to generate the empirical test 
statistic distribution. 
5. Determine what fraction of the empirical test statistic distribution is as or more extreme 
than the observed test statistic. This number is the two-tailed p-value. 

 

 

Scheme 3. Hierarchical randomization combines permutation and bootstrapping to perform a 
hypothesis test.  a) By averaging, traditional cluster-based permutation tests shuffle discard 
information from the levels of hierarchy that arise due to treatment assignment. b) Hierarchical 
randomization tests use bootstrapping to compute posterior distributions of the mean for each treated 
sample, thereby using all of the data collected to compute a p-value. 
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A traditional cluster permutation test would only be able to produce a null distribution containing 
at most 20 possible values (Figure 1b), but hierarchical randomization generates a full null 
distribution without making distributional assumptions about the data (Figure 1c). More generally, 
the algorithm deals with each level of hierarchy in one of two ways. For hierarchy arising due to 
treatment assignment, the algorithm uses nonparametric bootstrapping to estimate the sampling 
distribution of the mean. For hierarchy due to sampling, the algorithm restricts the number of 
possible permutations such that only "within-cluster" permutations are possible. This procedure 
mimics the data-generating process under the null hypothesis (that is, the hypothesis that the 
treatment did nothing at all). First, each well is resampled from its fields of view and then randomly 
assigned to one of the two "treatment" labels. Using Hierarch, this procedure is fully automatic - 
once the researcher has specified their experimental design by organizing their data, the 
algorithm will produce a p-value without requiring any further input. Moreover, the algorithm infers 
the correct resampling plan for any hierarchical experimental design. If a researcher pre-commits 
to using hierarchical randomization as their analysis tool of choice, they have eliminated an 
important researcher degree of freedom - choice of hypothesis test - whilst retaining the flexibility 
to analyze a wide range of experimental designs. 
 
Caveats 
 
The most important assumption this test makes is that the labels being shuffled are exchangeable 
under the null hypothesis. In other words, it assumes that the clusters attached to the labels were 
assigned randomly. The second, weaker assumption is that the observations have similar 
distributions (though not necessarily normal). This is a weak assumption because by using an 
approximately pivotal test statistic (such as the t statistic),16,28 the assumption of homogeneity of 
variances does not have to be fulfilled for this test to maintain control of Type I error rate. However, 
with very few clusters, this test can be sensitive to heterogeneity of variances (see simulation 
study below). 
 
An important consideration with this approach is that bootstrapping is only appropriate when the 
within-cluster data points represent a random sampling of possible within-cluster values. For 
example, an imaging experiment might involve taking images of several fields of view within a 
well and measuring some per-cell quantity in each image. In this case, the fields of view are 
randomly sampled from all fields of view in the well (as there are fields of view that were ignored) 
and therefore can be resampled, but cells within each field of view are not randomly sampled (as 

 

Figure 1. Hierarchical randomization uses bootstrapping to construct the empirical null 
distribution. a) Simulated data corresponding to an experiment in Scheme 3. b) A traditional cluster 
permutation test would only have twenty possible permutations, resulting in the smallest calculable two-
tailed p-value being 0.1. c) Hierarchical resampling constructs a full empirical null distribution, resulting 
in a p-value of 0.0429.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.29.450439doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450439
http://creativecommons.org/licenses/by-nc-nd/4.0/


every cell in a given field of view is measured) and therefore should not be resampled via 
bootstrapping. For a deeper discussion of this, see van der Leeden, et al.9 
 
Another consideration to using these resampling techniques is that the permutation test is no 
longer exact - there are usually a much larger number of possible resamples than can reasonably 
be calculated (though in this simple case, it is possible). However, by performing a large number 
of resamples and using an appropriate test statistic, this approximate test will have size close to 
0.05 and good power while not requiring the researcher to make distributional assumptions about 
their dataset. To demonstrate the flexibility of hierarchical randomization tests, we will discuss the 
analysis of three datasets. 
 
Example 1: Three-Level Mouse Socialization Experiment 
 
First, we consider the behavioral assay shown in Figure 2a. Here, the researcher has a control 
group and treatment group of four mice each. Each mouse performs 500 trials of a behavioral 
assay to test the hypothesis that the treatment causes an increase in socialization duration. The 
multilevel design (treatment -> mouse -> trial) of this experiment lends itself to a hierarchical 
hypothesis test. Furthermore, given that the units of the measurement (seconds) are bounded by 
zero, we have good motivation to try a test that does not assume normality. We consider the 
following data-generating model: 
  

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗  𝛽 +  𝑀𝑜𝑢𝑠𝑒 +  𝑇𝑟𝑖𝑎𝑙 =  𝑆𝑜𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛.  (1) 
  
The researcher seeks to estimate the treatment effect β and calculate a p-value against the null 
hypothesis that the treatment effect is 0. Each mouse, however, has an individual random 
constant that reflects mouse-to-mouse variation in baseline socialization duration. While the terms 
in the model can be written in any order, it can be helpful to structure the equation in the same 
order as the actual hierarchical experiment. In this case, treatments are assigned to mice, which 
are measured 500 times each. Simulated data for this experiment is shown in Figure 2b, c with 
a true effect size of 1 second. The researcher can organize their data into the "long" format 
presented in Figure 2b (visualized in Figure 2c), where each column corresponds to one of the 
terms in the model (treatment, mouse, trial number). Given that the input data is organized such 
that the column order mimics the experimental design, Hierarch’s hypothesis_test function will 
conduct the appropriate resampling plan by default.  
  
According to the hierarchical randomization algorithm, treatment labels are permuted only at the 
"mouse" level - individual behavioral trials are never exchanged between different mice. This 
ensures that the test does not break the dependence structure that exists in the dataset. Instead, 
uncertainty in the mouse-level mean for the behavioral trials is represented via bootstrapping. 
Hierarch performs 35,000 resamples (500 bootstraps with 70 permutations each) in less than 200 
milliseconds and generates a two-tailed p-value of 0.037, indicating a statistically significant 
difference. In this case, we note that the hierarchical randomization p-value is similar to the p-
value calculated by a two-sample t-test after averaging the 500 trials for each mouse (p = 0.038). 
Given the large number of trials, the standard error of the mean for each mouse is quite low, so 
computing an average socialization duration for each mouse does not throw away much 
information. Rather, we use this as an illustrative example to show that even when another test 
might be appropriate, hierarchical randomization produces a similar p-value, but can be applied 
to more complicated datasets without much trouble.  
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While p-values are useful, they are best paired with a measure of effect size.29,30 Generally 
speaking, accompanying the effect size with a confidence interval gives readers more information 
with which to interpret experimental results. One trouble with computing confidence intervals for 
effect sizes is that few methods actually maintain the nominal coverage when sample sizes are 
small – 95% confidence intervals often do not contain the true value exactly 95% of the time.31–33 
Hierarchical randomization tests can be inverted to form confidence intervals that are very close 
to exact. This is a key advantage over the t-test for non-normal data – t-intervals, which are quite 
robust for small samples, tend to be conservative for non-normal data and will produce too-wide 
confidence intervals. As we will show in the simulation study below, the 95% confidence intervals 
produced by Hierarch’s confidence_interval function do indeed contain the true effect size 95% 
of the time, even for datasets with as few samples as this one. In this case, Hierarch’s 95% 

 

Figure 2. Using hierarchical randomization to analyze a mouse behavioral study. a) Simulated 
data corresponding to an experiment with two treatments, four mice each, 500 trials each. b) A table of 
raw data collected in this study. By organizing the input data into columns corresponding to the 
experimental design, Hierarch can automatically infer the correct resampling plan for the dataset. c) 
Violin plots illustrating the skewed nature of the dataset. p = 0.037, hierarchical randomization, p = 
0.038, Student’s t test.  
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confidence interval on the effect size is (0.179, 2.697) while the corresponding t-interval is 
(0.0166, 2.607). This is an interval around the beta coefficient in equation 1, which we simulated 
with a value of 1.  
 
Example 2: Four-Level Imaging Experiment 
 
Next, we consider the motivating example from above: a paired experimental design common in 
molecular biology and neuroscience. Here, the researcher is interested in testing the effects of a 
drug on neuronal firing rate in a culture model. From each of three pregnant mice, the researcher 
prepares six separate neuronal cultures in a six-well plate. In each plate, the researcher treats 
three wells with the drug of interest and gives three a vehicle control. Then, the researcher 
performs a current-clamp experiment to measure the firing rate of three neurons in each well 
(Figure 3a, b). We consider a data-generating model as follows: 
  

𝑀𝑜𝑢𝑠𝑒 +  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗  𝛽 +  𝑊𝑒𝑙𝑙 +  𝐶𝑒𝑙𝑙 =  𝐹𝑖𝑟𝑖𝑛𝑔 𝑅𝑎𝑡𝑒.  (2) 
  
The researcher seeks to estimate the fixed 
treatment effect β and calculate a p-value 
against the null hypothesis that β is 0. We 
simulated the data in Figure 3b with an effect 
size of 11. Unlike the previous experiment, 
there is an additional constant term - we 
assume that not only does each well have a 
random baseline, but each mouse also has a 
random baseline. Despite how common this 
experimental design is, it is not immediately 
clear how best to calculate a p-value with a 
traditional approach. Should the researcher 
perform a Student's t-test with n = 9 wells in 
each treatment group? If each mouse has a 
different baseline firing rate, however, the 
between-mouse variance would erode the 
power of the test. Furthermore, the t test 
assumes that the treatment effect is fixed and 
neglects the fact that, at least on one level, the 
data is paired. On the other hand, aggregating 
the firing rates up to the treatment level and 
performing a paired t test with n = 3 also has 
little power by virtue of reducing the sample size 
to 3.  
 
Two traditional options can be used in this 
situation: either treating each mouse as a 
separate experiment and combining the data in 
a manner analogous to an individual participant 

data meta-analysis or fitting a mixed effect model.34–36 Both of these approaches require 
researchers to make distributional assumptions about their datasets, however. Hierarchical 
randomization provides a natural way to test a single hypothesis and generate a single p-value 
on the combined experiments - bootstrap the mean firing rate for each well from its neurons, then 
permute the treatment labels on the wells within mice.37 In this example, there are many more 
possible permutations (20^3 = 8,000), so the researcher can choose to run a subset of them (100 

 

Figure 3. Analyzing a four-level imaging 
experiment. a) An experiment with three mice, 
two treatments each, three wells each, and three 
neurons each. b) Violin plots visualizing the 
dataset. p = 0.027, hierarchical randomization, p 
= 0.101, pooled Student’s t test.  
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bootstraps, 4,000 permutations each). This results in a p-value of 0.027 and a 95% effect size 
confidence interval of (1.157, 14.916), which contains the true value of 11. Pooling all of the data 
and performing a t test gives a p-value of 0.101 and a 95% confidence interval of (-2.009, 17.305). 
By accounting for sampling hierarchy, hierarchical randomization can be more powerful than other 
non-meta-analytic approaches. 
 
Given that we have assumed a fixed treatment effect, the experiments (mice) are automatically 
weighted by their sample size. However, hierarchical randomization makes it simple to analyze 
data from a random treatment effect perspective, as well. If the researcher suspects there may 
be significant heterogeneity in treatment effects - perhaps the donor mice are heavily outbred, or 
the donors are humans – they can incorporate this heterogeneity as an interaction effect (Figure 
4a).38 The equation can be written as follows: 
 

𝑀𝑜𝑢𝑠𝑒 +  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗ (𝛽 + 𝑀𝑜𝑢𝑠𝑒) +  𝑊𝑒𝑙𝑙 + 𝐶𝑒𝑙𝑙 =  𝐹𝑖𝑟𝑖𝑛𝑔 𝑅𝑎𝑡𝑒. 
  
The Mouse term in the interaction is not the same value as the Mouse baseline constant – rather, 
it represents the fact that in this model, we are allowing each mouse to have a unique slope for 
the treatment effect. Distributing this equation gives: 
 

𝑀𝑜𝑢𝑠𝑒 + 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗ 𝛽 + 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗ 𝑀𝑜𝑢𝑠𝑒 +  𝑊𝑒𝑙𝑙 + 𝐶𝑒𝑙𝑙 =  𝐹𝑖𝑟𝑖𝑛𝑔 𝑅𝑎𝑡𝑒. (3) 

  
This equation splits the treatment effect into two terms – an average treatment effect (Treatment 
x β) and a random interaction effect (Treatment x mouse). Updating the raw data to include this 
additional term is all that is necessary for Hierarch to carry out the appropriate resampling plan 
for the random treatment effect model. This is most easily done by simply duplicating the 
“treatment” column in the raw data (Figure 4b), which communicates to Hierarch that an 
interaction term is present. 
 
Accounting for treatment effect heterogeneity increases the p-value (0.118) and widens the 
confidence interval (0.478, 23.45, 90% confidence interval). This makes sense in the context of a 
random-effect model - in order to make a precise estimate of effect size, both the "within-mouse" 
sample size and the number of mice must be large. Performing a large number of samples within 
a single mouse may yield a very precise estimate of the effect size in that mouse, but if the effect 
varies mouse to mouse, the overall average effect can only be accurately estimated by studying 
several mice. Furthermore, when assuming random treatment effects, reporting a confidence 

 

Figure 4. Incorporating heterogeneous treatment effects. a) Adding a mouse-treatment interaction 
term to the experiment design describes heterogeneity of treatment effects. b) By duplicating the 

“Condition” column in the input data, Hierarch will account for this interaction.  
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interval on the effect size is more important than ever because the average treatment effect is 
entirely dependent on the mix of donors. Given that, summarizing the effect size with a single 
point estimate is too reductive – after all, there is no single number that can describe the true 
effect of the drug. 
  
Example 3: Four-Level Rat Behavioral Study with Multiple Time Points 

  
Finally, we consider an experimental design with several treatments that seeks to test a single 
hypothesis. A researcher is interested in measuring changes in a neural population over the 
course of learning a task. The researcher has four rats, who are each measured on four days in 
the learning process. On each day, the rat attempts the task 500 times, during which some 
population of neurons is recorded via electrodes implanted in the rat's skull. From each recording, 
the researcher computes some neural population-level metric (Figure 5a, b). The researcher 
considers the following model: 
 

𝑀𝑜𝑢𝑠𝑒 +  𝐷𝑎𝑦 ∗ 𝛽 +  𝐷𝑎𝑦 ∗ 𝑀𝑜𝑢𝑠𝑒 +  𝑇𝑟𝑖𝑎𝑙 =  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑒𝑐𝑡. (4) 
   

 

Figure 5. Analyzing an experiment with multiple treatment conditions testing a single 
hypothesis. a) An experiment with four mice, two treatments each, three wells each, and three 
neurons each. b) Violin plots visualizing the dataset. p = 0.024 (hierarchical randomization) for the 
hypothesis that there is a day-to-day increase in the population effect. 
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We include an interaction effect to account for day-to-day variation in the population effect due to 
electrode drift and other changes in the mouse that are unrelated to the task at hand. As above, 
we want to perform a hypothesis test against the null hypothesis that β = 0.  
 
The experimental design poses another challenge, however - there are four different days. One 
approach could be to perform several two-sample tests between each day and the next day. 
However, this approach only considers a subset of the dataset at a time, and as a result loses a 
lot of power – none of the day-to-day comparisons are significant. Upon closer examination, this 
logic behind this approach is unclear – if we have a single hypothesis (that β ≠ 0), why perform 
multiple hypothesis tests? Another option is fitting a simple linear regression or a mixed model – 
but we have no reason to think the errors of the neural population measure are normally 
distributed and, as usual, we do not have many clusters. This example motivates the construction 
of a new studentized covariance test statistic that can be used to perform a single hypothesis test 
against the null hypothesis that β = 0 when there are multiple treatment groups with a 
hypothesized linear relationship. 
 
This test statistic can be calculated on every shuffled dataset in a hierarchical randomization test, 
which provides a test against the null hypothesis that the slope for a given regressor in a linear 
model is equal to zero. For two-sample datasets, this test statistic has a linear relationship with 
the t-statistic and therefore will calculate the same p-value, which is demonstrated in the 
simulations below. In this instance, hierarchical randomization computes a p-value of 0.0236 and 
a 95% confidence interval of (0.42, 3.622), which contains the true, simulated value of β = 2.  
 
Construction of a studentized covariance test statistic 
 
When constructing a randomization test for some parameter, the test is only guaranteed to be 
exact for the null hypothesis of the distributions being equal. To maintain a Type I error rate of 5% 
for the more general null hypothesis that the parameter is equal, the test statistic must be at least 
approximately pivotal – that is, its distribution does not depend on unknown parameters, such as 
the population standard deviation. Approximately pivotal statistics can be constructed following 
the procedure of Janssen,16 which was expanded by Chung and Romano and others.28,39–41 This 
is done by dividing the comparison of interest by an estimate of its standard error. As an illustrative 
example, we will discuss the construction of the t statistic. We consider a linear equation 
describing a data-generating process. 

 
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗  𝛽  +  𝐶𝑙𝑢𝑠𝑡𝑒𝑟 +  𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝐷𝑎𝑡𝑎. (5) 

 
When there are only two treatment groups, β can be estimated using equation 6, 

𝛽 = 𝐵̅ − 𝐴̅  (6) 

▪ 𝐴̅,  𝐵̅ are the means of group A and B, respectively. 
 
Student’s t test is a hypothesis test against the null hypothesis that β = 0. The t test is based on 
the t statistic, which is given by the following equation,  

𝑡 =  
𝐵̅ −𝐴̅

√
𝑠𝐵

2

𝑛𝐵
+

𝑠𝐴
2

𝑛𝐴

 (7) 
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▪ 𝐴̅,  𝐵̅ are the means of group A and B, respectively. 

▪ 𝑠𝐴
2,  𝑠𝐵

2  are the sample variances of group A and B, respectively. 

▪ 𝑛𝐴,  𝑛𝐵 are the number of samples in group A and group B. 
 
This is equivalent to the following expression: 
 

𝑡 =  
𝛽

𝑠. 𝑒. (𝛽)
 

 
▪ 𝛽 is the estimator for the slope in equation 5. 
▪ 𝑠. 𝑒. (𝛽) is the standard error of the estimator 𝛽. 

 
This is a general approach for constructing an asymptotically normally distributed test statistic (or 
a Wald-like statistic). Because of this property, when a Wald-like statistic is used as the test 
statistic in a randomization test, the test gains asymptotic validity against unequal variances 
between treatment conditions and gives the researcher the ability to make directional conclusions. 
However, the t statistic can only be used as a test of β = 0 when there are only two samples. 
Instead, we can express β as a ratio between the covariance of X and Y and the variance of X: 
 

𝛽 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝑉𝑎𝑟(𝑋)
 

 
▪ 𝑋, 𝑌 are the treatment condition and observed data, respectively. 

 
In a randomization test, we are merely shuffling the relationship between X and Y. Therefore, the 
variance of X is constant during the shuffling procedure. We can therefore construct a Wald-like 
test statistic for β using the covariance of X and Y, which is based on the work of DiCiccio and 
Romano:42 
 

𝑇 =  
𝑄

√𝑆2(𝑄)
  (5) 

 
▪ 𝑄 is the sample covariance of X and Y. 

▪ √𝑆2(𝑄) is standard error of the sample covariance of X and Y, or the square root of the 

sample variance of the sample covariance of X and Y. 
 
The sample covariance of X and Y, Q, is given by equation 6: 
 

𝑄 =  
𝑛𝜇1,1

𝑛−1
 (6) 

 
▪ n is the number of total observations. 
▪ µ1,1

 is the population covariance of X and Y, otherwise known as the first product central 
moment of X and Y. This is computed with equation 7: 

 

𝜇𝑟,𝑡 =  
1

𝑛
∑ (𝑋𝑖 − 𝑋̅)𝑟(𝑌𝑖 − 𝑌̅)𝑡𝑛

𝑖=0    (7) 

 
To compute the sample variance of Q, it is helpful to start with the population variance. For any 
distribution with defined moments, the population variance of the sample covariance is expressed 
by equation 8: 
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𝜎2(Q) = −
(−2+𝑛)𝜇1,1

2

(−1+𝑛)𝑛
+

𝜇0,2𝜇2,0

(−1+𝑛)𝑛
+

𝜇2,2

𝑛
   (8) 

 
▪ n is the number of total observations. 
▪ µr,t represent product central moments of X and Y given by the equation 7. 

  
Equation 8 represents a biased estimator for the variance of Q, however. The unbiased estimator 
for the variance of Q, or the sample variance of Q, is prone to numerical instability (SI Appendix 
1), so instead, we use the following bias-corrected approximation for the sample variance of Q, 

 

𝑆2(Q) =
1

𝑛−
3

2

(−
𝑛2(n−2)𝜇1,1

2

(n−1)(𝑛−
7

4
)

2 +
𝑛2𝜇0,2𝜇2,0

(𝑛−1)3 +
𝑛𝜇2,2

𝑛−√2
) (9) 

 
▪ n is the number of total observations. 
▪ µr,t represent product central moments of X and Y given by the equation 7. 

 
Using equation 9 as an estimator for the variance of the sample covariance of X and Y, we can 
use the Wald-like statistic in equation 5 as the basis of a hierarchical randomization test. In the 
simulation study below, we will investigate the properties of this test against nonnormality and 
heteroscedasticity. 
  
Simulation Study 
 
In this section, we demonstrate that hierarchical randomization successfully controls Type I error 
rates without being sensitive to the underlying distribution of the dataset. We were particularly 
interested in small studies typical in biomedical research, so we chose to consider experiments 
structured similarly to the case studies detailed above. For larger datasets, there are numerous 
other simulation studies in the literature demonstrating the good properties of randomization 
tests.13,28,41 
 
Methods 
 
All hierarchical randomization tests were performed using Hierarch version 1.1.1 
(https://github.com/rishi-kulkarni/hierarch). All simulation code is available at 
https://github.com/rishi-kulkarni/hierarch-simulations. For Type I error rate control studies, p-
values for t tests and linear regression were computed using scipy.stats. For confidence interval 
simulations, parametric confidence intervals were generated using the statsmodels package. We 
performed between 20,000 and 100,000 resamples per test depending on the total number of 
available permutations. The largest tests (100,000 resamples) took less than 200 milliseconds 
each. In each test, we set alpha to 0.05 and simulated 10,206 datasets (729 on each of 14 cores 
of an Intel i9-9940X CPU) according to one of the two following data-generating models: 
  

𝐷𝑎𝑡𝑎 =  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗  𝛽  +  𝐶𝑙𝑢𝑠𝑡𝑒𝑟 +  𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 
 

𝐷𝑎𝑡𝑎 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 +  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∗  𝛽  +  𝐶𝑙𝑢𝑠𝑡𝑒𝑟 +  𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 
  
In each simulation, we generated the cluster baseline and the individual values with either normal, 
lognormal, Pareto, or gamma random variables. To demonstrate the general applicability of 
hierarchical hypothesis testing, we varied the ratio of within-cluster variance to total variance 
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(intraclass correlation). The results of these simulations were evaluated for Type I error rate 
control – essentially, what percentage of the simulated datasets and hypothesis tests returned a 
p-value below 0.05 when there was no true difference between the datasets? 
 
Confidence intervals are calculated using the test inversion procedure discussed in Manly.43 
Briefly, the bounds of the hypothesis test’s rejection region are found using an iterative approach. 
These bounds are then unstudentized back to the units of the β coefficient. Each iteration was 
allowed to perform between 1,000 and 10,000 shuffles with a maximum of 10 total iterations per 
bound. These simulations were repeated for varying values of β. The results of these simulations 
were evaluated for coverage probability – essentially, what percentage of the 95% confidence 
intervals contain the true value of β? 
 
Results 
  
First, we examined both types of hierarchical randomization tests (using the t statistic and using 
the studentized covariance statistic described in equation 5). We simulated datasets with two 
treatment groups in which the effect size (β) was set to zero (Figure 6). For each set of 
simulations, the fraction of hypothesis tests that returned a significant result was plotted on the y-
axis. The shaded region represents the 95% confidence interval around a 5% Type I error rate, 
which each test should ideally remain in. As expected, the Student’s t test is only able to robustly 
maintain a 5% Type I error rate when the underlying data is normally distributed, while Welch’s t 
test is conservative in all cases.  We observed that when there are 8 total clusters, the hierarchical 
permutation test allows good control of Type I error rate without regard for the underlying 
distribution. Even for very asymmetric distributions (such as the power law distribution) type I error 
rate could be acceptably controlled via hierarchical randomization. For 6 clusters, the hierarchical 
permutation test performed similarly well, but over-rejects the null for certain distributions when 

 

Figure 6. Type I error rate for hierarchical randomization test based on the t statistic 
compared to Student’s t test and Welch’s t test. Both treatment groups have equal variance. 
Shaded area represents the 95% binomial confidence interval around a 5% type I error rate. 
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the between-cluster variance is much greater than the within-cluster variance. Using studentized 
covariance as the test statistic gave similar results (SI Figure 1), which is expected as both 
statistics test for a difference in means. 
  
Next, we investigated Type I error rate in identical conditions as above, but with unequal variances 
between treatment groups (1:1.5). Again, we found that the hierarchical randomization test 
afforded better control of Type I error rates than either t-test in most cases, though the 
performance is slightly worse for very few clusters (Figure 7). The usage of a pivotal test statistic 
gives hierarchical randomization only asymptotic validity against the weak null hypothesis28 - as 
the number of treated samples increases, the better the test performs when the variances of the 
two samples are different. Again, the performance of the hierarchical randomization test based 
on studentized covariance was essentially identical to the performance of the hierarchical 
randomization test based on the t statistic in these conditions (SI Figure 2). 

 
To validate the performance of the hierarchical randomization test with multiple treatment 
conditions, we simulated data under identical conditions as above, but with 3 or 4 treatment 
groups (Figure 8). We found that unlike the standard Wald test, hierarchical randomization 
maintains Type I error rate control when presented with non-normal errors and maintains good 
control in the presence of heteroscedasticity (SI Figure 3). 
 
 

 

Figure 7. Type I error rate for hierarchical randomization test based on the t statistic, 
Welch’s t test, and Student’s t test given unequal between-cluster variance. Shaded area 
represents the 95% binomial confidence interval around a 5% type I error rate. 
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Figure 8. Type I error rate for hierarchical randomization test and the Wald test. Shaded 
area represents the 95% binomial confidence interval around a 5% type I error rate. 

 

Figure 9. Coverage probability of 95% confidence intervals generated by test inversion. 
Shaded area represents the 95% binomial confidence interval around a 95% coverage probability. 
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Finally, we examined the confidence intervals generated by hierarchical randomization. We 
simulated data with a range of mean differences to monitor the coverage probability of 95% 
confidence intervals computed by hierarchical randomization (Figure 9). We found that inverting 
a hierarchical randomization test produces 95% confidence intervals that maintain nominal 
coverage without regard for the underlying distribution.  The studentized covariance test statistic 
performs similarly well for datasets with multiple treatment groups (Figure 10). 
 

   
In short, hierarchical randomization is a flexible strategy for performing hypothesis tests and 
computing confidence intervals that can handle many levels of data while maintaining robustness 
to non-normal errors and heteroscedasticity. Furthermore, we find the construction of the test to 
be pedagogical - despite our reliance on null hypothesis testing, many researchers have only a 
fuzzy conception of what a p value is telling them. By generating an empirical null distribution by 
resampling in a manner mimicking the experimental design, hierarchical permutation tests open 
the black box of hypothesis testing and make the meaning of a two-tailed test and the resulting p 
value intuitive: taking it as a given that the treatment had no effect, what are all the possible values 
of the test statistic that can be generated by shuffling the "treatment" labels on the data? What 
fraction of those possible test statistics are as or more extreme than the observed test statistic? 
 
Discussion 
  
Hierarchical randomization tests enable researchers to analyze a wide variety of experimental 
designs while retaining good control of Type I error rate and freedom from distributional 
assumptions. By using a mix of permuting and bootstrapping, these tests incorporate all of the 
information in a dataset without unnecessary summarization steps. In this manner, hierarchical 
randomization tests have an element of a Bayesian approach - rather than summarizing 
information from lower levels using point estimates, the randomization test is performed on the 

 

Figure 10. Coverage probability of 95% confidence intervals generated by test inversion. 
Shaded area represents the 95% binomial confidence interval around a 95% coverage probability. 
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full posterior distribution of each cluster. We use simulation studies to confirm that this approach 
controls the two-tailed Type I error rate at 0.05 when there are as few as eight total clusters and 
when the intra-class correlation is sufficiently low for six clusters, which is impossible for traditional 
cluster permutation tests.  
  
Despite their excellent statistical properties, randomization tests have historically been restricted 
to certain subfields.44–46 We feel this is in part because setting up a randomization test often 
requires custom code, which results in a high computational burden and slow analyses. The 
software package presented in this work, Hierarch, makes setup and execution of a hierarchical 
test much simpler for practicing researchers. Not only can Hierarch infer the design of an 
experiment from the layout of the input data, but it is quite fast - every test described in this work 
(which use up to 10x the number of permutations necessary to compute a precise p-value) can 
be performed in under a second on a wide range of personal laptop computers.  
  
We also introduce a covariance-based test statistic based on the work of DiCiccio and Romano 
to construct a randomization test that can be applied to linear regression problems.42 This test 
statistic is approximately pivotal and, in the two-sample case, is linearly related to the t-statistic. 
We use simulation studies to confirm that this studentized covariance randomization test retains 
the t-statistic’s Type I error rate control under homoscedasticity, and also has the desired 
asymptotic validity under heteroscedasticity. Notably, the test performs well even when the data 
is drawn from the heavily asymmetric power law distribution under heteroscedastic conditions. 
Even when the test fails, the Type I error rate is quite close to 5%. We demonstrate that 
hierarchical randomization tests based on both the t statistic and studentized covariance can be 
inverted to form effect size confidence intervals that maintain nominal coverage regardless of the 
underlying distribution.  
  
Hierarchical randomization hypothesis tests are much like the jackknife – they can be applied to 
a wide variety of experimental designs while maintaining better control of Type I error rates than 
asymptotic tests. While another statistical test may perform better for datasets that fulfill the 
assumptions of that test, these assumptions are often unverifiable – hierarchical randomization 
tests can be applied to any hierarchical dataset and produce an answer that does not depend on 
unverifiable assumptions. They do this by including multiple levels of clustering without discarding 
information from any level of the experimental design. These tests have good small-sample 
properties and are valid for several nested experimental designs common to biological research. 
In most cases, hypothesis testing with Hierarch can achieve the "platinum standard" of 
significance analysis without requiring researchers to produce custom code or to wait minutes or 
hours for their computers to produce a p-value. 
 
Code Availability 
 
The Hierarch source code is available at https://github.com/rishi-kulkarni/hierarch. The 
simulations performed in this manuscript are available as Jupyter Notebooks at 
https://github.com/rishi-kulkarni/hierarch-simulations.  
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