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1 Supplementary figures32

Additional spike rasters for the computations on spike times33

Figure S1: Spiking activity on the computations on spike times task. The model cor-
rectly assigns the input to class 1.
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Figure S2: Spiking activity on the computations on spike times. The model correctly
assigns the input to class 2.
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Figure S3: Spiking activity on the computations on spike times. The model correctly
assigns the input to class 4.
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Responses of the four different synapse types34

Figure S4: The temporal dynamics Isyn(t) of the four different synapse types, as used in
[1].
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Connection probabilities for ant, including connections of input and35

output neuron types36

Figure S5: Full connection probabilities of the probabilistic skeleton on the ant task.
Note, that input types were restricted to only connect to one exclusive re-
current type.

Illustration of population coding.37

Figure S6: Illustration of population coding.
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2 Supplementary notes38

2.1 Continuous neuron model39

For a given neuron j ∈ {1, . . . , N} of type J we denote by Vj : R → R the membrane40

potential and by Ij : R → R the input current. We used different parameters for41

excitatory and inhibitory neurons that were based on experimental data, see below.42

Hence these parameters depend for a neuron of type J on whether this is an excitatory or43

inhibitory neuron type. But for simplicity we will drop in our notation the dependence44

of the neuron model on the neuron type J until the section below on parameters for45

neuron and synapse models.46

For example, for the membrane conductance we could write CJ
m ∈ R. Since we will

assume for the whole section that we use the same type J we will drop this superscript
to simplify the notation, hence

Cm = CJ
m.

We denote by τ ∈ R the membrane time constant and by EL ∈ R the resting potential.
The classic leaky integrate-and-fire linear differential equations reads

τ
d Vj(t)

dt
= −(Vj(t)− EL) +

1

Cm

Ij(t). (1)

If the voltage is above the threshold vth the parameters get updated by

Vj(t+)← Vr; j = 1, · · · , N, (2)

where Vr ∈ R is the reset voltage.47

2.2 Synapse model48

The time course of a postsynaptic current is modeled like in [1] by a linear increase
followed by an exponential decay:

Isyn(t) =
e

τsyn
t δt e

− tδt
τsyn , t ∈ N. (3)

τsyn is the synaptic time constant after which the current amplitude will be at its max-49

imum. Note that τsyn depends on the types of the pre- and postsynaptic neurons. The50

exact values of τsyn have been set to 5.5 ms for excitatory-to-excitatory synapses, 8.5 ms51

for inhibitory-to-excitatory synapses, 2.8 ms for excitatory-to-inhibitory synapses and52

5.8 ms for inhibitory-to-inhibitory synapses, according to [1]. The current will be neg-53

ative for synapses from inhibitory neurons. The resulting postsynaptic currents can be54

seen in Figure S4.55

These currents Isyn(t) are scaled for each synapse by a general scaling factor w equal
to win, wE, or wI , depending on whether the presynaptic neuron is an input neuron,
or some other excitatory or inhibitory neuron. Furthermore, they are multiplied for a
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synaptic connection from neuron i to neuron j by the number mij of synaptic connections
from i to j. Hence, the current from neuron i to neuron j at time t can be written in
terms of the spike train zi(s) of the presynaptic neuron as

Iij(t) =
t−1∑
k=0

w mij zi(k)

τsyn
e(t− k) δt e

− (t−k)δt
τsyn . (4)

The input current Ij(t) for neuron j at time t is defined as the sum of these currents56

over all presynaptic neurons i.57

Note, that there is a transmission delay from the creation of a spike until the arrival58

at a synapse. For excitatory neurons this transmission delay is 3ms and for inhibitory59

neurons it is 2ms.60

2.3 Computation of the neuron prevalence61

For the optimization of probabilistic skeletons it is convenient to define neuron preva-62

lences as real values: pI of type I is a real value that correlates to the fraction of neurons63

which will belong to type I in a generic minicolumn. In order to compute a correspond-64

ing assignment of the neurons in a minicolumn to the neuron types we procede as follows:65

We apply the softmax function, followed by an adjustment procedure which makes sure66

that every type has at least one neuron per column and that the total number of neurons67

stays constant.68

The exact algorithm used to obtain the number of neurons per type can be found in69

algorithm 2.70

Algorithm 2 Algorithm for computing the number of neurons per type using the preva-
lence p, the number of minicolumns mncol and the total number of recurrent neurons
Nrec = (K + 3) · nmcol (For the contrast enhancement task it is Nrec = (K + 2) · nmcol.
The floor function rounds its argument down to the next integer, the maximum function
returns the higher valued argument, argsort returns a list of sorted indices, pointing to
the highest elements in the argument array first, and the + = operator increments a
variable by the amount on the right side.

Require: p, Nrec, nmcol,
frac = softmax(p)
nnpt = frac · Nrec

nnpt = floor(nnpt/nmcol)
nnpt = maximum(nnpt, nmcol)
diff = frac · Nrec - nnpt
max idx = argsort(diff)
overlap = floor((Nrec - sum(nnpt)) / nmcol)
for k = 1, . . . , overlap do

nnpt[max idx[k]] += nmcol

end for
return nnpt
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2.4 One-hot encoding71

To convert the target label y to a one-hot encoded vector one first creates a vector with72

a length equal to the number of classes consisting only of zeros. Then at the position73

y − 1 the value 1 is entered.74

For example, if one considers a setting with four classes and the target class is y = 375

this would yield a vector of:76 
0
0
1
0

 . (5)

2.5 Derivation of the expected number of synaptic connections of a77

single neuron78

To derive the expected number of outgoing synapses ST (i) a neuron i can form, we79

consider an infinitely large grid of minicolums. To obtain the desired estimate one can80

consider neighboring minicolumns to be located on concentric squares around the source81

neuron i.82

Let the function f(k) denote the number of columns in the kth concentric square:83

f(k) =

{
1 if k = 0

8k else
. (6)

Then the expected number of outgoing synapses from neuron i can be written as:84

ST (i) =
∞∑
k=0

∑
J

f(k)MJSpI→Je
−(αkσ )

2

. (7)

, where the first k will sum over all concentric squares, MJ is the number of neurons85

of type J in a minicolumn, S = 8 is the maximum number of synapses between two86

neurons, α = 60µm, and σ accounts for the distance decay. Note, using α = 60µm will87

yield an upper bound, as the distance to most minicolumns on the concentric square k88

will be larger than αk.89

An upper bound of this equation is of interest and can be derived:

ST (i) =
∞∑
k=0

∑
J

f(k)MJSpI→Je
−(αkσ )

2

(8)

= S
∑
J

MJpI→J

∞∑
k=0

f(k)γk
2

(9)

, where90

γ = e(
α
σ )

2

. (10)
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Breaking up the function f(k) yields:

ST (i) = S
∑
J

MJpI→J

(
1 + 8

∞∑
k=1

kγk
2

)
. (11)

We get an upper bound by using a standard estimate for the geometric series:

S
∑
J

MJpI→J

(
1 + 8

∞∑
k=1

kγk
2

)
< S

∑
J

MJpI→J

(
1 + 8

∞∑
k=1

kγk

)
(12)

= S
∑
J

MJpI→J

(
1 + 8

γ

(1− γ)2

)
. (13)

Note that this upper bound does not contain anymore an infinite sum.91

2.6 Expected wire length92

An upper bound for the expected wire length can be computed in a similar fashion. The93

expected wire length per neuron can be written as:94

WL(i) =
∞∑
k=1

f(k)
∑
J

αkMJpI→J

(
1−

(
1− e−(αkσ )

2)S)
(14)

Note, that although there can be up to S synapses between two given neurons, but95

the wire distance is only counted once, based on the assumption that multiple synaptic96

connections to the same neuron are implemented by axonal connections that branch only97

locally, so that the additional wire length caused by the branching can be neglected.98

A similar upper bound can be computed for the wire length, when one assumes S = 1:

WL(i) =
∞∑
k=1

∑
J

αkf(k)MJpI→Je
−(αkσ )

2

(15)

= α
∑
J

MJpI→J

∞∑
k=1

kf(k)γk
2

(16)

, where99

γ = e(
α
σ )

2

. (17)

Replacing the function f(k) yields:

WL(i) = 8α
∑
J

MJpI→J

(
∞∑
k=1

k2γk
2

)
. (18)
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We get an upper bound by using a standard estimate for the geometric series:

8α
∑
J

MJpI→J

(
∞∑
k=1

k2γk
2

)
< 8α

∑
J

MJpI→J

(
∞∑
k=1

k2γk

)
(19)

= 8α
∑
J

MJpI→J

(
γ(γ + 1)

(1− γ)3

)
. (20)

. Note that this upper bound does not contain anymore an infinite sum.100

For a more general upper bound where S > 1 one can consider S RSNNs superimposed,
resulting in:

WL(i) ≤ 8αS
∑
J

MJpI→J

(
γ(γ + 1)

(1− γ)3

)
. (21)

101

102

Sparsity and wire length of RSNN samples: Table 1 shows the average values of con-103

nection sparsity and the total wire length from RSNNs generated by the probabilistic104

skeletons for each tasks. The sparsity refers to the fraction of synaptic connections105

between neurons i and j that are realized, i.e. mij > 0..106

Task # of neurons Sparsity Avg. # synapses Wire length
Spike interval classification 304 24.6% 47,700 1.27m
Spike pattern classification 148 37.8% 30,500 0.595m
Contrast enhancement 200 16.03% 4,810 0.505m
Coincidence detection 375 15.44% 54,000 1.47m
Ant 458 11.24% 52,700 0.79m

Table 1: Number of neurons, average connection sparsity, average number of synapses
and wire length of RSNNs emerging from the probabilistic skeletons on the
different tasks. On the contrast enhancement and the coincidence detection
task the RSNNs consisting of 25 minicolumns were considered. Note that the
number of synapses in an RSNN will vary between different samples from the
same probabilistic skeleton. Hence, the average over 5 RSNN samples has been
considered for this value.

2.7 Population coding107

Each continuous-valued input value is encoded by the spiking activity of an excitatory
population of Npop input neurons. An input variable x can only take values in the
bounded interval (a, b] ⊂ R. We define points a = x1, . . . , xM = b such that the subin-
tervals (xk, xk+1], k = 0, . . . , Npop are of equal lengths b−a

Npop−1 and disjointly overlap the

interval. The neurons are chosen such that there is a positive linear dependency between
the input values and the spatial position of the neurons. On these subintervals gaussian
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density functions are used to model the probability that a neuron i spikes for a given
input x ∈ (a, b] by first defining

hk(x) =
1

σpop
√

2π
exp

{
−1

2

(
x− xk
σpop

)2
}

(22)

for k = 1, . . . , Npop, where σpop ∈ R. In the experiments it is chosen to be σpop =108

xk+1−xk−1

2
, such that ∼ 68.27% of spiking activity for this type happens in the interval109

(xk−1, xk+1] and ∼ 95.45% happens in the interval (xk−2, xk+2] for suitable k. Since this110

is modeled by a density function it is necessary to normalize the values of hk to obtain111

spike probabilities for each neuron. A schematic plot of the population coding is given112

in Figure S4.113

The spike train zi : R → R for an input neuron i and an input value x is therefore
given as

zi(t) =

1 with probability hi(x)
max
x∈[a,b]

hi(x)

0 else.
(23)

2.8 Hardware specifications114

Most of our experiments were conducted using 2 × AMD EPYC Rome 7402 CPUs with115

2×24 cores and 2.8 GHz, 4 × NVIDIA A100 GPU and 4 × 40 GB HBM2e (Juwels116

Booster)117
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