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ABSTRACT 

Identity and functions of plant cells are influenced by their precise cellular location within the 

plant body. Cellular heterogeneity in growth and differentiation trajectories results in organ 

patterning. Therefore, assessing this heterogeneity at molecular scale is a major question in 

developmental biology. Single-cell transcriptomics (scRNA-seq) allows to characterize and 

quantify gene expression heterogeneity in developing organs at unprecedented resolution. 

However, the original physical location of the cell is lost during the scRNA-seq procedure. To 

recover the original location of cells is essential to link gene activity with cellular function and 

morphology. Here, we reconstruct genome-wide gene expression patterns of individual cells in a 

floral meristem by combining single-nuclei RNA-seq with 3D spatial reconstruction. By this, gene 

expression differences among meristematic domains giving rise to different tissue and organ 

types can be determined. As a proof of principle, the data are used to trace the initiation of 

vascular identity within the floral meristem. Our work demonstrates the power of spatially 

reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral 

meristem 3D gene expression atlas can be accessed at http://threed-flower-

meristem.herokuapp.com  

 

INTRODUCTION 

Characterizing gene expression dynamics and heterogeneity at single cell resolution is essential 

to understand the molecular mechanisms underlying cellular differentiation in multicellular 

organisms. Technologies based on cell dissociation (e.g. Denyer et al. 2019) or nuclei isolation 

(e.g. Sunaga-Franze et al. 2021) combined with high-throughput transcriptome sequencing 

(scRNA-seq/snRNA-seq) allow to characterize the transcriptomes of hundreds of thousands cells 

at single-cell resolution. However, the physical location of these cells is lost during the 

experimental process. In plants and other multicellular organisms, cell fate strongly depends on 

its precise position within the developing organism (Xu et al. 2021). Therefore, it is essential to 

characterize gene expression patterns of each cell in their native physical context to fully 

understand the link between gene activity and organ development. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450319doi: bioRxiv preprint 

http://threed-flower-meristem.herokuapp.com/
http://threed-flower-meristem.herokuapp.com/
https://doi.org/10.1101/2021.06.30.450319
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

In recent years, there has been a strong development in the field of spatial transcriptomics (Marx 

2021; Waylen et al. 2020). However, to date, only one study in plants has been published using 

an early version of the 10x Visium technology with limited cellular resolution (Giacomello et al. 

2017). This lack of technological adaptation of spatial transcriptomics to plants may be because 

of the difficulties with the enzymatic permeabilization of the cell wall. Single molecule FISH 

(smFISH) and other high-resolution FISH experiments are also rarely used in plant studies (e.g.      

Duncan et al. 2016; Solanki et al. 2020) due to the endogenous autofluorescence of many plant 

cells (Duncan et al. 2016).  

Computational inference of spatial locations of cells by mapping scRNA-seq transcriptomes into 

a computationally binned representation of the studied structure provides an alternative for 

spatial reconstruction of omics data. In an early study, spatial reconstruction was performed by 

integrating the expression of nearly 100 reference genes using a mixture model (Stuart et al. 

2019). Allowing better resolution, DistMap (Karaiskos et al. 2017) assigns scRNA-seq cells to 

individual cells of a computationally generated spatial map containing the expression of ~80 

reference genes using Matthews correlation coefficient. Other methods aim to combine scRNA-

seq with high-throughput spatial maps (e.g. MERFISH, Slide-seq) that collect the expression of 

thousands of reference genes. They are based on the projection of the scRNA-seq and the spatial 

map transcriptomes into a common latent space (SEURAT (Satija et al. 2015), Liger (Welch et al. 

2019), Harmony (Korsunsky et al. 2019), gimVI (Lopez et al. 2018), SpaGe (Abdelaal et al. 2020)). 

In general, there is a tendency to develop computational methods that require a large number 

of reference genes, which limits these tools to organisms with extensive spatial transcriptomics 

resources. 

In plants, spatio-temporal gene expression patterns are usually established using traditional in 

situ hybridization or by confocal microscopy of promoter fusions to fluorescent reporters. 

Confocal microscopy has the advantage that it can be used to reconstruct 3D structures by 

combining several z-stack images (Vijayan et al. 2021; Hernandez-Lagana et al. 2021; Wolny et al. 

2020; Bravo González‐Blas et al. 2020; Refahi et al. 2021). In addition, combined with live image 

microscopy the temporal dynamics of gene expression and morphology development can be 

reconstructed (Refahi et al. 2021; Valuchova et al. 2020). In this way, Refahi et al. (2021) 
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combined the information on spatio-temporal expression patterns of 28 regulatory genes into 

3D reconstructed Arabidopsis flower meristems, ranging from initiation to stage 4 of flower 

development. These methods are limited by the low number of genes profiled per experiment, 

Therefore, tools to integrate scRNA-seq with expression data of defined, limited sets of 3D 

reference gene expression patterns need to be developed for spatial reconstruction single cell 

transcriptomes in plants.  

Here, we adapted novoSpaRc (Nitzan et al. 2019), a methodology for spatial reconstruction of 

single cell RNA-seq data, to generate a 3D single-cell transcriptome atlas of a floral meristem by 

integrating single nuclei RNA-seq and a 3D reconstructed flower meristem (Refahi et al. 2021). 

NovoSpaRc reconstruction aims to explicitly preserve the transcriptome similarity among closely 

located scRNA-seq cells in the spatial map, while maximizing the transcriptome similarity 

between the scRNA-seq cells and the cells of the spatial map to which they are assigned. In such 

a way, novoSpaRc performance is less affected by the number of reference genes than other 

methods, and, in theory, it can also be used without any reference gene (Nitzan et al. 2019). 

However, novoSpaRc was developed to make use of spatial 2D continuous reference gene 

expression maps, while the 3D expression spatial map of floral meristem generated by Refahi et 

al. 2021 is binary. We adapted the methodology for reconstructing single-cell transcriptomes in 

3D making use of binary reference gene expression data. By this, we were able to generate an 

atlas of gene expression in different meristematic domains and spatially trace the earliest stages 

of tissue differentiation within the Arabidopsis flower. In summary, these results provide a primer 

for future initiatives to generate plant organ 3D atlases of gene expression. 

 

RESULTS 

snRNA-seq of Arabidopsis floral meristems 

In order to obtain genome-wide gene expression profiles in the floral meristem at single cell level, 

we use a system for synchronized floral induction (pAP1:AP1-GR ap1-1 cal-1; (Kaufmann et al. 

2010) to maximize the collection of plant material from the desired developmental stage. We 

chose to study stage 5 of flower development because of the availability of several –omics 
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datasets from this stage (e.g. Pajoro et al. 2014; Wuest et al. 2012; Ó’Maoiléidigh et al. 2013), 

which are needed to validate the performance of the method. At stage 4-5 (Smyth, Bowman, and 

Meyerowitz 1990), the whorled organization of the flower gets established, and homeotic gene 

activity defines domains within the meristem that will give rise to different floral organ types, 

therefore being an excellent stage to study the initial steps of floral organ specification.  

We performed single nuclei RNA-seq (snRNA-seq), where nuclei were collected by fluorescence-

activated DAPI-stained nuclei sorting (FANS), and snRNA-seq datasets were created using the 10x 

Chromium system. In this way, Cell Ranger v3.1.0 identified 7,716 single nuclei transcriptomes 

with a median of 1,110 genes expressed per nucleus. The low number of reads mapping to 

mitochondria genes (<5%) indicates a low organelle contamination (Sup Fig 1). Fig 1A shows that 

snRNA-seq is able to recapitulate (R=0.88) the expression profile of bulk RNA-seq data obtained 

from the same stage and tissue type. Analysis of the data using Seurat v3.2.3 identified 12 main 

clusters and the marker genes defining these clusters (Sup Table 1). To annotate the clusters, we 

identified the top 20 marker genes specific for each cluster and we plotted the expression of 

these marker genes in publically available bulk RNA-seq datasets of different tissues and floral 

stages (Fig 1D, and Sup Fig 2). In addition, we calculated the average expression of known floral 

meristem marker genes in the 12 snRNA-seq clusters (Fig 1C). 
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Figure 1. Single-nucleus RNA-sequencing of Arabidopsis floral meristems. A) Reproducibility (R= 

0.88) of the gene expression estimated from computationally pooling all nuclei from our snRNA-

seq compared to bulk-RNA-seq of stage 5 flower meristem (average of 3 biological replicates). B) 

UMAP plot and clustering snRNA-seq analysis of Arabidopsis floral meristems obtained by Seurat 

analysis. C) Average expression of known floral markers on the identified snRNA-seq clusters. D) 

Average expression of the top 20 marker genes for each snRNA-seq cluster (y-axis) on domain-

specific shoot apical meristem bulk RNA-seq datasets profiled by (Tian et al. 2019) (x-axis). See 

Sup. Figure 2 for expression profiles in other plant domains/stages. 

 

We were able to recover the main tissue types present in the meristem, including different 

epidermal as well as vascular tissue types. The four epidermis clusters (0, 9, 10 and 11) show 

specific expression of MERISTEM LAYER 1 (ATML1) (Sessions, Weigel, and Yanofsky 1999) and 

PROTODERMAL FACTOR 1/2 (PDF1/2) (Abe et al. 2003) (Sup Table 1, Sup Fig 3). Clusters 0 and 9 
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are distinguished by the expression of individual marker genes such as TRIPTYCHON (TRY) (Pesch 

and Hülskamp 2011), TRICHOMELESS1 (TCL1) (Wang et al. 2007), and genes involved in wax 

composition which indicates epidermal cells that will develop trichomes (cluster 0) or not (cluster 

9). Cluster 10 and 11 represent dividing epidermal cells, marked by the expression of genes 

coding for histones which is characteristic of the S-phase and genes involved in cell division (Sup 

Table 1, Sup Fig 3). 

Clusters 1, 8 and 12 can be classified as vasculature (Fig. 1D). More specifically, cluster 1 

corresponds to vascular stem cells, as marked by cambium (Sup Fig 2C) expressing markers genes 

such as PHLOEM INTERCALATED WITH XYLEM (PXY) and SMAX1-LIKE 5 (SMXL5) (Shi et al. 2021) 

(Sup Fig 3). Cluster 12 contains cells that are associated with phloem, containing the marker 

genes ALTERED PHLOEM DEVELOPMENT (APL) (Shi et al. 2021; Bonke et al. 2003) (Sup Fig 3). 

Cluster 8 is enriched for vascular xylem parenchyma genes, for example CYTOCHROME P450, 

FAMILY 708 (CYP708A3) (Shi et al. 2021) (Sup Fig 3), and shows signatures of cell expansion and 

cellulose biosynthesis. It should be noted that in this dataset, no mature xylem vessels or phloem 

sieve elements can be expected, because these structures lack a nucleus.  

The analysis of marker genes of cluster 2 shows an enrichment on genes involved in starch 

catabolic process as well as genes expressed in the cortex such as  CHALLAH (CHAL)  (Uchida et 

al. 2012; Sup Fig 3) and JACKDAW (JKD) (Hassan, Scheres, and Blilou 2010), which indicates that 

cluster 2  represents cortex . Cluster 4 represents the floral meristem, containing specific markers 

such as APETALA3 (AP3)  (Jack, Brockman, and Meyerowitz 1992), REPRODUCTIVE MERISTEM 34 

(REM34) (Mantegazza et al. 2014) (Sup Fig. 3). Cluster 7 corresponds to cells that differentiate 

into mesophyll, e.g. in sepals or pedicel, and it shows specific expression of marker genes such as 

LIPOXYGENASE 2 (LOX2) (Jensen, Raventos, and Mundy 2002) (Sup Fig 3) and REDUCED 

CHLOROPLAST COVERAGE (REC1) (Larkin et al. 2016).  

Clusters 3, 5, 6, 10, and 11 denote dividing cells (Sup Fig 3). Cluster 3 is a cluster showing enriched 

expression of several cell-cycle associated genes. Cluster 5 shows specific activation of many 

histone genes whose activity is associated with the S-phase of the cell cycle, as well as some 

genes involved in cell proliferation and cell growth (e.g. AINTEGUMENTA (Mizukami and Fischer 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450319
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

2000)). Cluster 6 is enriched in cell cycle markers, in particular CELL DIVISION CYCLE 20.2 

(CDC20.2) which accumulates in the nucleus from prophase until cytokinesis (Yang, Wightman, 

and Meyerowitz 2017). Cluster 10 and 11 are epidermal cells in different cell cycle phases as 

described before. 

One of the major drawbacks of this unsupervised clustering approach is that it identifies groups 

of cells depending on their transcriptome variance, and therefore it may miss cell types of 

biological interest without sufficient biological variance in the system. For example, we were not 

able to distinguish clusters representing individual floral whorls, likely because the transcriptome 

variance between tissue types such as epidermis and vasculature is much greater than between 

different whorls, at least at this stage of development. In addition, the correspondence of each 

cell cluster to a particular homogeneous physiological cell type is not guaranteed. For example, 

cluster 1 represents vascular (pro)cambium, but close inspection of this cluster (Sup Fig 3) reveals 

specific expression of PXY (marker of proximal cambium) and SMXL5 (marker of distal cambium) 

in separate regions of the cluster. This provides additional justification for the development of a 

method to map the snRNA-seq transcriptomes to a physical representation of the plant 

tissue/organ at study. In the next sections, we describe how we map snRNA-seq data to a spatial 

expression map of the floral meristem that will enable the selection of the group of cells-of-

interest (e.g. floral whorls). 

 

Reconstructing gene expression by snRNA-seq and microscopy image integration. 

We used novoSpaRc (Nitzan et al. 2019) to integrate snRNA-seq data and a published 3D 

reconstructed Arabidopsis stage 4 floral meristem (“spatial map”) that has information on the 

expression pattern of 28 genes (“reference genes”) (Refahi et al. 2021). To adapt novoSpaRc to 

map single nuclei transcriptomes to the 3D floral meristem map with binary expression of the 

reference genes, we implemented three main modifications:  

1) Filtering: snRNA-seq was performed on the with ‘cauliflower-like’ meristem plant material, 

which may contain cells from regions (e.g. short pedicels and stems) that were not present in our 

spatial map. Therefore, we set up a filtering procedure to eliminate snRNA-seq transcriptomes 
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that were too dis-similar to the transcriptomes of the spatial map (see Material and Methods for 

details). 

2) Genes used for calculating snRNA-seq transcriptome distances: The original novoSpaRc 

pipeline calculates the distance between snRNA-seq transcriptomes using a set of genes selected 

depending on their variability across the snRNA-seq transcriptome (highly variable genes). 

Because in our dataset these highly variable genes were not enriched among the known flower 

marker genes, we also used the top 100 genes with the highest expression correlation with the 

reference genes, which included very well-known floral regulator genes, to calculate this 

distance.  

3) Distance used to calculate dissimilarity between spatial map and snRNA-seq transcriptomes: 

The original novoSpaRc pipeline calculates distances between transcriptomes from the spatial 

map and snRNA-seq data using the Euclidean distance. Because our spatial map data is binary, 

we also employed two other distances commonly used for binary data: Hamming and Jaccard 

distances. 

 

Subsequently, we studied the performance of these modifications by calculating the area under 

the receiver operating characteristic (AUROC) for predicting the expression of each reference 

gene when this gene was removed from the spatial map during the data integration step. Sup. 

Figure 4 shows the general good performance (AUROC) of our method for each gene and 

parameter combination tested. Three genes, HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), 

AUXIN RESPONSE TRANSCRIPTION FACTOR 3 (ARF3, ETTIN) and CLAVATA3 (CLV3), had very low 

performance independently of the parameters used (see next paragraph for an explanation). 

Therefore, we calculated the overall performance of the method as the average AUROC of all 

genes except AHP6, ETTIN, CLV3 and WUSCHEL (WUS). WUS was excluded due to the low number 

of cells (n=8) where it was expressed in the spatial map. In general, modifications improved the 

performance of the original novoSpaRc pipeline (Sup Fig 5). In particular, using the Jaccard 

distance had a positive impact on the performance of the method in this particular dataset (Sup 

Fig. 5). In our hands, other datasets show different optimal parameter settings, but filtering 
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always improves the performance. For visual comparison, Figure 2 shows the reconstructed 

expression of representative genes when our modifications are applied or not. In particular, 

APETALA3 (AP3) and SEPALATA3 (SEP3) are the genes showing the biggest differences (see also 

Sup Fig 4). For the final prediction, modifications and the parameter values which maximized the 

average AUROC were used to reconstruct gene expression using the whole spatial map dataset 

(see Material and Methods). 

 

 

Figure 2. Examples of reconstructed expression patterns for representative genes in Arabidopsis 

floral meristem. Top row shows the reference expression obtained from the reference spatial map. 

Second and third row is the reconstructed expression using the parameters that maximize the 

average AUROC when the gene to be predicted is removed from the data integration step and the 

original novoSpaRc pipeline (second row) or our modified pipeline (third row) is used. Bottom row 

is the final reconstructed expression using all the spatial map data. To facilitate visual 

comparison, we standardized the expression of each gene to have mean 0 and variance 1. The 

expression of other genes can be visualized at http://threed-flower-meristem.herokuapp.com 
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As mentioned before, three genes (ETTIN, AHP6 and CLV3) had low performance (AUROC close 

to 0.5) for any set of parameter values used when these genes were removed from the spatial 

map during the data integration step. We hypothesized that this is because cells expressing these 

genes are not expressing any of the other reference genes used, and therefore, these cells cannot 

be correctly mapped. We measured this expression-dependency as the maximum Spearman 

correlation value of a particular gene against any other gene from the reference list in the snRNA-

seq data. We call this value the Predicted Estimation Performance (PEP) for a particular gene. 

Indeed, there is a strong correlation between the performance of the method (AUROC) and PEP 

for each gene (Sup Fig 6A), which indicates that we can use it as a predictor of the performance 

of the method for each particular gene. As we sequentially eliminate genes from the spatial map 

prior to gene expression reconstruction, starting with the highest correlated reference gene, and 

therefore decreasing the PEP value of that reconstructed gene, we see a drop in the performance 

(AUROC) (Sup Fig 6B). However, when we sequentially eliminate reference genes starting with 

the lowest correlated reference gene, there is no evident decrease of performance (Sup Fig 6C).  

Based on Sup Fig 6A, we chose a PEP threshold of 0.13 to decide which genes (n=1,306) we 

consider to have a reliable expression prediction. We obtained this threshold as the point in Sup 

Fig 6A where the AUCROC starts to be bigger than 0.5. As the PEP value is estimated without 

using the spatial map, it can be used to select a set of reference genes for future experiments in 

order to maximize the number of correctly predicted genes. The number of genes with high PEP 

values (n=1,306 for PEP>0.13) is mainly influenced by the number of reference genes in the 

spatial map. Therefore, when using a higher number of reference genes higher PEP values are 

obtained per gene (Sup Fig 7).  

To validate the predictions of spatial gene activity in the floral meristem, we analyzed expression 

patterns of a set of genes by reporter gene analysis in planta (Fig 3). In brief, promoter-GFP 

fusions were stably expressed in A. thaliana and stage 4-5 floral meristems were analyzed using 

confocal laser scanning microscopy. As expected, in vivo expression patterns highly correlated 

with reconstructed expression patterns of genes used as reference genes (ETTIN; SHOOT 

MERISTEMLESS, STM and MERISTEM LAYER 1, ATML1) as well as genes with high PEP scores, e.g.  

AT1G62500 (CO2, PEP = 0.17), while there was lower overlap with reconstructed expression 
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patterns of genes with low PEP scores, such as SHORT ROOT (SHR, PEP = 0.15), and PIN-FORMED 

1 (PIN1, PEP = 0.14). In general, the prediction broadly recovered the cells and tissues that show 

activities of the genes, but some gene expression patterns were more restricted in the reporter 

gene analyses (e.g. SHR, PIN1). This could be explained by the limited set of reference genes that 

was used for the prediction, but also by the possibility that the reporter gene constructs do not 

contain all regulatory elements needed for correct spatial expression of the genes.  

 

 

Figure 3: Validation of reconstructed gene expression patterns with reporter gene assays. Upper 

part in A-F shows the predicted expression of ETTIN, STM, ATML1, CO2, SHR and PIN1 from the 

top and cross section view of stage 4 flower meristems. Titles include gene symbol and PEP score 

for the predicted 3D expression profile. The lower part in A-F shows the GFP expression pattern 

(green) for plant lines under the control of the respective promoter, as detected by confocal laser 

scanning microscopy in A. thaliana stage 4 flower meristems. Confocal images show the flower 

meristem from the top (left) as well as different orthogonal sections (right). Cell walls were 

stained using propidium iodide (red). Scale bars indicate 20 µm. 
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Gene expression reconstruction of floral meristem domains. 

Next, we evaluated the performance of spatial expression reconstruction to study quantitative 

gene expression in particular domains that give rise to the different organ types in the flower. In 

Arabidopsis flower development, the identities of different organ types are determined by floral 

homeotic transcription factors. In particular, sepals are specified by the activity of APETALA1 

(AP1), petals are defined by the combination of AP1 and APETALA3 (AP3), stamens are specified 

by AP3 and AGAMOUS (AG), and the carpels is determined by AG activity.  

We estimated the expression of a gene in the AP3- and AG- domains of the 3D reconstructed 

meristem, as the average expression of that gene in the cells which had a positive expression of 

AP3 or AG reference genes, respectively. To validate these results we generated sorted nuclei 

RNA-seq (FANS-RNA-seq) from floral meristems expressing nuclear targeting fusion protein (NTF) 

(Deal and Henikoff 2011) in AP3 vs. AG expression domains. The GFP-containing NTF protein was 

transcribed under the control of AP3 promoter (pAP3::NTF) and the second intron of AG 

(pAGi::NTF) in the floral induction system (pAP1:AP1-GR ap1-1 cal-1; Kaufmann et al. 2010). The 

expression patterns of pAP3::NTF and pAGi::NTF were visualized by confocal microscopy (Sup Fig 

8), and the nuclei of AP3- or AG-expression  domains were sorted based on the positive GFP signal 

in FANS. 

Transcriptomes retrieved from the spatially reconstructed AP3 and AG domains in the floral 

meristem showed a high correlation with the domain-specific bulk RNA-seq expression (Rho=0.89 

for AP3- and Rho=0.88 for AG- domain when using genes with a PEP higher than 0.13). This was 

close to the correlation obtained among the bulk RNA-seq biological replicates (Rho=0.95 for AP3 

and Rho=0.93 for AG) when using the same set of genes (Fig. 4) which indicates a very good 

performance of the method. Even more interesting, the reconstructed expression was able to 

recover the log2 fold-change gene expression between both domains (Sup Fig 9A, Rho=0.37) 

when using genes with a PEP higher than 0.13 (n=1,306). In particular, the obtained correlation 

was very close to the correlation of the log2 fold-change gene expression obtained from the bulk 

RNA–seq biological replicates when using the same set of genes (Rho=0.47, Sup Fig 9C). This 

indicates that spatially reconstructed transcriptomes are able to predict domain-specific 
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differential gene expression. The correlation between gene expression prediction and domain-

specific bulk RNA-seq increases with increasing PEP scores (Sup Fig 9B), which is in agreement 

with the notion of the PEP score being an indicator of the quality for the predicted 3D expression.  

 

 

Figure 4. Prediction of AP3 and AG domain gene expression. Scatterplot showing the gene 

expression for AP3 (A) and AG (B) domain predicted by our method (y-axis) and observed by our 

FANS bulk RNA-seq data (x-axis) when using genes with PEP value>0.13 (n=1,306). Bottom row 

shows the scatterplot for the gene expression of both biological FANS bulk RNA-seq replicates for 

AP3 (C) and AG (D). 
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In this way, we detected a large number of genes with specific expression (Sup Table 2) in the 

different floral whorls as determined by the (combined) expression of AP1 (sepal), AP3-AP1 

(petal), AP3-AG (stamen) and AG (carpel). For example, we predict a higher expression of 

APETALA2 in the sepal domain, which is in line with its known role in sepal specification together 

with AP1 (Kunst et al. 1989). We predict PETAL LOSS (PTL) expression in the AP1 and AP1-AP3 

domain, which is consistent with previous findings that PTL is expressed in sepal margins while 

controlling petal development (Brewer et al. 2004). In the other hand, we predict PERIANTHIA to 

be strongly induced in the three inner whorls, as expected from the literature (Chuang et al. 

1999), while we predicted UNUSUAL FLORAL ORGANS (UFO) to be expressed in the AP3-AG and 

AP3-AP1 domain which fits with the observed expression in the petal and stamen whorls (Samach 

et al. 1999). This exemplifies the power of the method to identify whorl-specific genes. The 

predicted floral whorl-specific expression is significantly related to direct DNA-binding of flower 

domain-specific TFs in their regulatory regions (Sup Table 2, Sup Fig 10). 

It is worth to note that we could apply a similar methodology directly to the snRNA-seq data (w/o 

3D reconstruction), where average domain-specific expression is calculated as the average 

expression among the snRNA-seq transcriptomes of nuclei that have a positive expression of AP3, 

or AG for each domain respectively. However, the obtained fold-change expression has low 

agreement with the domain-specific bulk RNA-seq data (Rho=0.04 pv<0.14, Sup Fig 11) when 

using the same genes as before (PEP > 0.13). This indicates that the advantage of integrating the 

4,395 transcriptomes of the snRNA-seq data into a physical map of 1,331 cells has the additional 

benefits of obtaining a more accurate estimate of gene expression per cell as it is calculated since 

it combines the information from several snRNA-seq transcriptomes. 

In summary, the presented data demonstrates that our method can be used to create a genome-

wide 3D gene expression atlas of a plant organ, and to correctly predict gene expression and gene 

fold change expression of particular morphological regions that was not possible with the snRNA-

seq data alone.  

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450319
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

The origin of vascular cell identity in the floral meristem 

Spatial reconstruction of transcriptomics data can be used to pinpoint the spatial location of cells 

characterized with a particular transcriptome signature (e.g. snRNA-seq cell clusters, ploidy levels 

(Bhosale et al. 2018), vascular cells (Shi et al. 2021)) by using an expression similarity-based 

method. For example, the initial establishment of vascular stem cell identity in the apical 

meristems is not well known (Sanchez, Nehlin, and Greb 2012). The transcriptomes of vascular 

tissues in inflorescence stems have been characterized by FANS bulk RNA-seq (Shi et al. 2021), 

including SMXL5 (distal cambium) and PXY (proximal cambium). Therefore, assuming that the 

vascular tissues have similar transcriptomes in the inflorescence stem and in the floral meristems, 

we could predict the location of vascular stem cells on the reconstructed 3D meristem even when 

they cannot be distinguished anatomically. We indeed obtained a distinct distribution pattern of 

vascular stem cells (Sup Fig 11), where the cambium (PXY and SMXL5) localizes in the cell layers 

adjacent and just below the floral meristem with a radial disposition. Confocal imaging confirmed 

that PXY and SMXL5 expression is initiated in cells just adjacent/below the apical meristem, but 

in a specific subset of cells (Sup Fig 12). This discrepancy could be due to the low number of 

reference genes used, which may not allow to have the needed resolution. Once these cells have 

been located, their transcriptome can be estimated as explained before, obtaining a good 

correlation (Rho=0.34-0.42; Sup Fig 13) when compared with the FANS bulk RNA-seq data. This 

information can be used in future work to characterize the molecular control and regulatory 

networks of initiation of vascular identity in the floral meristem. 

NovoSpaRc outputs the probability of each snRNA-seq transcriptome as corresponding to a 

particular cell in the spatial map. Therefore, we can map the location of the identified snRNA-seq 

clusters (https://threed-flower-meristem.herokuapp.com) and visualize their physical location. 

In particular, cluster 1-(pro)cambium shows the same location adjacent/below the apical 

meristem as the one estimated by transcriptome similarity.  

In summary, this shows the potential to integrate different features (e.g. cells differentiating to 

vascular tissues) into a common spatial map which can be used to associate with the spatial 

expression profiles. 
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DISCUSSION 

The identity and function of plant cells is strongly influenced by their precise location within the 

plant body (Xu et al. 2021). Therefore, to understand plant development at the molecular level, 

it is important not only to characterize the molecular status and dynamics of each individual cell 

but also to know their physical location in the plant. As stated in the introduction, spatial 

genomics in plants have been limited to profile only a limited number of genes per experiment. 

Here, we provide a proof of concept for a methodology to overcome this limitation by combining 

scRNA-seq/snRNA-seq with a 3D microscope-based reconstructed floral meristem. In this way, 

we are able to reconstruct the spatial expression of a large number of genes (>1,000) in their 

native spatial context. Moreover, we were able to quantitatively estimate the expression of these 

genes in particular morphological regions of the floral meristem. Future work should develop 

more dedicated statistical methods to test for gene expression differences on the 3D 

reconstructed structure. One possibility is to apply a re-sampling approach to the snRNA-seq 

data. We envision that by independently mapping multiple subsamples of the snRNA-seq data to 

the reference map, we will be able to estimate the variance of the gene expression which is 

needed to test for differential gene expression in different (groups of) cells. 

The number of high-quality genes predicted is heavily dependent on the number and identity of 

genes present in the reference spatial map. Thus, we provide a PEP score that can be used to 

estimate the performance of the predicted expression for each gene, even before having 

generated the reference spatial map. In this way, this score can be used to select the minimum 

set of reference genes needed to obtain a good prediction of the spatial expression of a desired 

group of genes. Hence, this score helps in planning the design of a spatial genomics experiment 

whose data will be used as a spatial reference to predict the spatial expression of a set of genes. 

This methodology has the potential to be applied to other types of -omics experiments. For 

example, we are already applying it to map scATAC-seq experiments into the 3D reconstructed 

floral meristem (data not shown). This offers the additional benefit to be able to integrate 

multiple single cells -omics data in their natural physical context. Indeed, an important problem 
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is how to integrate multiple single cell -omics experiments (e.g. scRNA-seq and scATAC-seq data). 

The typical approach (Stuart et al. 2019) is to find anchors between genes and ATAC-seq regions 

that allow us to link the cells profiled independently in both types of experiments. We envision 

that independently mapping the scRNA-seq data and the scATAC-seq to a common spatial map 

will be an alternative way to integrate both types of experiments. In addition, we have shown 

that we can map transcriptional signatures of particular features (e.g. cells differentiating to 

vascular tissues) to the reconstructed spatial map, allowing to annotate or integrate additional 

experiments/data in the spatial map.  

Furthermore, time-series scRNA-seq datasets could also be tackled with this approach. For 

example, when live imaging has been used to reconstruct the spatial map at different time points 

and cell segmentation and lineage tracking have been used to infer cell lineage in the spatial map 

(e.g. Refahi et al. 2021), the inferred cell lineage can be used to link the cells at different time 

points. Alternatively, when the plant structure at the different time points considered has similar 

morphology, the scRNA-seq data could be mapped to the spatial map of one particular time 

point. Otherwise, computational alignment of the spatial maps at each time-point will be 

required. 

In summary, these results provide a primer for future initiatives to generate plant organ 3D 

atlases and for studies aiming to understand single cell -omics studies with respect to plant 

morphology and development. 

 

MATERIALS AND METHODS 

Plant material 

pAP1:AP1-GR ap1-1 cal-1 plants were grown at 22 °C under long-day conditions (16 h light, 8 h 

dark) on soil. After plants bolted and reached the height of 2 cm to 5 cm, they were induced daily 

by applying the DEX-induction solution (2 μM Dexamethasone and 0.00016% Silwet L-77) to their 

main inflorescences. Around 20 inflorescences were collected and snap-frozen in liquid nitrogen 

on the fourth day after the first induction. 
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Nuclei isolation 

Inflorescences were gently crushed to pieces in liquid nitrogen using a mortar and a pestle and 

then transferred to a gentleMACS M tube. After liquid nitrogen evaporated totally, 5 ml of Honda 

buffer (2.5% Ficoll 400, 5% Dextran T40, 0.4 M sucrose, 10 mM MgCl2, 1 μM DTT, 0.5% Triton X-

100, 1 tablet/50 ml cOmplete Protease Inhibitor Cocktail, 0.4 U/μl RiboLock, 25 mM Tris-HCl, pH 

7.4) was added to the tube. Nuclei were released at 4 °C by homogenizing the tissue on a 

gentleMACS Dissociator with a running program as described previously (Sunaga-Franze et al. 

2021). The resulting homogenate was filtered through a 70 μm strainer, and another 5ml Honda 

buffer was applied onto the filter to collect the remaining nuclei. Nuclei were then pelleted by 

centrifugation at 1000 g for 6 min at 4 °C and then resuspended gently in 500 μl Honda buffer. 

The nuclei suspension was filtered again through a 30 μm strainer, diluted by adding 500 μl PBS 

buffer, and stained with 2 μM DAPI. Ambion RNase Inhibitor and SUPERaseIn RNase Inhibitor 

were added to a final concentration of 0.4 U/μl and 0.2 U/μl, respectively. 200,000 events of 

single nuclei were selected on DAPI signals by a BD FACS Aria Fusion into a 1.5-ml tube with 

landing buffer (15 μl 4% BSA in PBS with 80 U Ambion RNase Inhibitor and 80 U SUPERaseIn 

RNase Inhibitor). Sorted nuclei were counted in Neubauer counting chambers under a Leica DMi8 

fluorescent microscope. 

 

Preparation of snRNA-seq libraries 

Single-nuclei RNA-seq library was prepared from 10,000 freshly-isolated plant nuclei with the 

Chromium Single Cell 3ʹ Reagent Kits v3 according to the manufacturer’s instructions. 14 PCR 

cycles were used for cDNA amplification, and 13 PCR cycles were used for final amplification of 

the constructed libraries. The average fragment size of the snRNA-seq library was checked with 

an Agilent High Sensitivity D1000 ScreenTape, and the concentration was measured with Qubit 

1X dsDNA HS Assay Kit. Sequencing was performed on a HiSeq 4000 (Illumina) platform. 
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Preparation of domain-specific RNA-seq libraries 

Nuclei were from pAP1:AP1-GR ap1-1 cal-1 transgenic plants expressing a GFP labeled nuclei 

envelope protein driven by tissue-specific promoters (Deal and Henikoff 2011). We used AP3 

promoter and AG 2nd intron plus a minimal 35S promoter element as promoters for the 

constructs to mark AP3 and AG expressing domains in flowers, respectively. After nuclei isolation, 

as described in the previous paragraph, nuclei were sorted into a 1.5-ml tube with 15 μl of 4% 

BSA in PBS and 6 μl of RiboLock RNase Inhibitor by a BD FACS Aria III. The GFP channel was set 

using pAP1:AP1-GR ap1-1 cal-1 as a negative control, and then nuclei were selected by gating on 

the DAPI peaks under the GFP positive events. After sorting, nuclei were pelleted at 1500 g for 

10 min at 4 °C, and the supernatant was then removed. Nuclei were lysed by vortex in 350 μl RLT 

buffer with 2-Mercaptoethanol, and RNA was then isolated with Qiagen RNeasy Micro Kit. After 

RNA isolation, cDNA synthesis was done with SMART-Seq® v4 Ultra® Low Input RNA Kit following 

the manufacturer’s instructions. cDNA was sheared to 200–500 bp size by Covaris AFA system 

and constructed with sequencing adaptors by ThruPLEX DNA-Seq Kit. 

 

Confocal imaging 

GFP expressing plant lines under the control of the CO2 (AT1G62500), PIN1 (AT1G73590) and SHR 

(AT4G37650) promoters were obtained from the Nottingham Arabidopsis Stock Centre (NASC, 

UK) as part of the SWELL line seed collection (BREAK line set N2106365), which was previously 

described in roots by Marquès-Bueno et al. (2016). To generate plant lines driving GFP expression 

from the ETT/ARF3 (AT2G33860) promoter, we inserted a 3 kb long promoter fragment into the 

pK7GW-INTACT_AT vector (Ron et al., 2014) using gateway cloning. Similarly, the 6.1 kb promoter 

of STM (AT1G62360) and the 5 kb promoter of ATML1 (AT4G21750) were introduced into the 

pK7GW-INTACT_AT vector. A. thaliana Col-0 wild type plants were transformed by floral dip 

method (Clough and Bent, 1998). Plant lines expressing HISTONE 4 (H4)-coupled GFP under the 

control of the PXY (AT5G61480) and the SMXL5 (AT5G57130) promoters (PXY:H4-GFP/SMXL5:H4-

GFP) were previously described in Shi et al. 2021. For GFP expression analysis, plants were grown 

on soil at 22 °C and 16/8 h light/dark cycles using daylight led lights (200 μmol·m−2·s−1). 
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GFP expression was detected by confocal laser scanning microscopy using the Zeiss LSM 800 

confocal microscope equipped with a Plan-Apochromat 20x/0.8 M27 or a C-Apochromat 40x/1.2 

W Korr objective. GFP was excited at a wavelength of 488 nm with an argon laser, while emission 

was filtered by a 410-532 nm band pass filter. Propidium iodide (Sigma-Aldrich) was used to stain 

cell walls. It was excited at a wavelength of 305 nm and detected in a range of 595-617 nm. Z-

stack images were median corrected and merged to orthogonal projections using the ZEN 

imaging software (Zeiss). 

 

snRNA-seq data analysis 

Fastq files were processed with CellRanger v3.1.0 with default parameter values and using the 

Araport11 gene annotation (Cheng et al. 2017), obtaining 7,716 nuclei transcriptomes as a read 

count matrix. Genes encoded in the organelles were removed. Next, read count normalization 

and clustering were done with the R package Seurat v3.2.3 (Stuart et al. 2019). In particular, 

nuclei transcriptomes with less than 1,000 expressed were removed and SCT-normalization was 

applied within the SEURAT package setting the parameter variable.features.n to 3,000 and other 

parameters to default values. Next, the optimal number of PCAs was chosen to be the first 9 

principal components by plotting the standard deviations of the principal components using the 

RunPCA and ElbowPlot functions. UMAP dimensionality reduction was obtained with the 

runUMAP function using the parameters values dims = 1:9, reduction = 'pca', n.neighbors = 50, 

min.dist = 0.01, umap.method = "uwot", metric = "cosine". In order to identify clusters in the 

UMAP space, we used FindNeighbors and FindClusters functions with parameter values 

resolution = 0.04, algorithm = 1 and default values for other parameters. Marker genes for each 

cluster were identified with the function FindAllMarkers and parameter values: only.pos = TRUE, 

assay="SCT", slot="scale.data", min.pct = 0.25, logfc.threshold = 0.25. In order to annotate the 

identified clusters, the average relative expression of the top 20 cluster marker genes in different 

publically available RNA-seq (see bulk RNA-seq analysis) and microarray samples were visualized 

in heatmaps in order to help to annotate the clusters. Expression values for GSE28109 (Yadav et 

al. 2014) were downloaded directly from GEO omnibus (file: 
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GSE28109_averaged_mas5_data.txt). Heatmaps showing the expression of markers genes were 

calculated as the average relative expression across all nuclei for each cluster. Relative expression 

was calculated as the normalized read count expression of a gene minus the average expression 

of this gene across all samples/nuclei considered. 

 

Bulk RNA-seq analysis 

Fastq files from publicly available bulk RNA-seq data were downloaded from Sequence Read 

Archive (SRA; https://www.ncbi.nlm.nih.gov/sra). The next analysis was done for each dataset 

independently. The analyzed datasets were: PRJNA314076 (Klepikova et al. 2016), PRJNA471232 

(Tian et al. 2019); PRJNA595605 (Shi et al. 2021), and the AG- and AP3- domain specific bulk RNA 

seq data generated in this project. Fastq files were trimmed from adapters using Trimmomatic 

v0.36 (Bolger, Lohse, and Usadel 2014). The reads were then mapped to the TAIR10 Arabidopsis 

genome using STAR v2.7.0b (Dobin et al. 2013) with parameter values --alignIntronMax 10000 --

outFilterMultimapNmax 1 --outSJfilterReads Unique and other parameters with default values. 

featureCounts (Liao, Smyth, and Shi 2014) was used to count the number of mapped reads per 

gene (in exon and introns) with default parameters. Next, reads mapping to genes encoded in 

the organelles were removed. Only genes with more than 10 reads mapped in at least 2 samples 

were considered in the further analyses. Read count data was analyzed with DESeq2 v1.24.0 

(Love, Huber, and Anders 2014), in particular normalized expression was calculated with 

varianceStabilizingTransformation function using default parameters.  

 

snRNA-seq and spatial gene expression map data integration 

snRNA-seq data was processed as described in the previous section, which results in a matrix of 

normalized expression values of 6,104 nuclei and 19,718 genes, genes expressed in less than 30 

cells were removed (n=2,890) with the exception of WUS and CLV3 which were kept in the 

dataset due their biological importance. Data of the spatial map containing positional 

coordinates of 1,451 cells, their associated cell growth, cell volume, lineage and expression of 28 
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genes for the reconstructed 3D stage 4 floral meristem was downloaded from Refahi et al. 2021. 

First, cells (n=52) with expression of none of the 28 reference genes were removed. Next, genes 

(n=5) with the same expression in all nuclei or not present in the normalized snRNA-seq dataset 

were removed as they are not informative for the data integration procedure. Cells from the 

spatial map (n=68) were removed when they had less than 3 reference genes expressed, or when 

the combination of genes expressed in one particular cell was present in less than 4 other cells. 

This resulted in a spatial map of 1,331 cells and 23 genes. Next, nuclei from the snRNA-seq 

datasets not expressing any of the 23 genes considered in the reconstructed meristem were 

removed. At this step, the snRNA-seq contained 5,910 nuclei and 16,828 genes. The resulting 

snRNA-seq dataset and the reconstructed floral meristem were integrated using NovoSpaRc 

v0.4.1 (Nitzan et al. 2019). As described in the main text, 3 modifications were considered:  

1) Filtering. When this modification was applied, distances between all the transcriptomes of the 

snRNA-seq and the spatial map were calculated. Only the top 50 snRNA-seq transcriptomes with 

closest distance to each cell of the spatial map were kept in order to eliminate nuclei that were 

not present in the spatial map (e.g. cauline leaves, pedicel...). The final number of snRNA-seq 

nuclei depends on the distance used. 

2) Genes used for calculating distance among the snRNA-seq transcriptomes. The standard 

NovoSpaRc procedure uses the highly variable genes identified by the program to analyze the 

snRNA-seq data in order to calculate the distances among the snRNA-seq transcriptomes. We 

modified this option to use the top 100 genes with the highest pearson correlation value in the 

snRNA-seq space to the 23 genes considered in the spatial map. In our case, this results in 1,709 

unique genes.  

3) Distance. By default, NovoSpaRc used the Euclidean distance between the snRNA-seq and 

spatial map transcriptomes. We also included Jaccard and Hamming distances for binary data. 

When these distances were used, the snRNA-seq data was binarized as non-expressed when the 

normalized expression of a gene was zero and as expressed when the normalized expression was 

bigger than zero. When using the Euclidean distance, we include the optional binarization of the 

snRNA-seq expression data. 
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The best set of modifications and parameter value sets was chosen as the ones minimizing the 

average AUCROC of the genes from the spatial map except AHP6, ETT, WUS and CLV3, we 

excluded these 4 genes because their performance was always poor independently of the 

parameter values used and/or because the low number of cells where they were expressed in 

the spatial map. The final parameter set was using all three proposed modifications, in particular 

using the Jaccard distance, and with values for the NovoSpaRc parameters: 

num_neighbors_source=2, num_neighbors_target=5, epsilon = 0.05, alpha =.1, max_iter=5000 

and tol=1e-9. As output, NovoSpaRc provides a matrix (Gromoth-Wasserstein matrix, GW) 

containing the probabilistic assignment of each nucleus from the snRNA-seq to each of the cells 

of the spatial map. For numerical reasons (to avoid long decimals), the GW matrix was multiplied 

by 105. It also outputs the predicted expression of each gene considered in the spatial map space. 

 

PEP score calculation 

The Spearman correlation coefficient for a particular gene against each reference gene was 

calculated in the scRNA-seq data after the filtering step. The highest Spearman correlation 

coefficient was chosen as the PEP score for that particular gene. 

 

Localization of the vascular stem cells into the spatial map 

FANS RNA-seq data (Shi et al. 2021) was analyzed as explained above. After, the data was log2 

transformed, and the expression of each gene was normalized to have mean 0. The same 

procedure was applied to the gene expression profiles of the spatial map. Pearson correlation 

was calculated between each FANS RNA-seq dataset to transcriptome of each cell of the spatial 

map. Only genes (n=1,281) defined as vascular markers in (Shi et al. 2021) were used to calculate 

the correlation. P-values were calculated by testing if the correlation was higher than zero.  
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Localization of the snRNA-seq clusters into the spatial map 

NovoSpaRc outputs the probability of each snRNA-seq transcriptome as corresponding to a 

particular cell in the spatial map (GW matrix). Once obtained, the GW matrix was transformed so 

that columns (corresponding to cells in the spatial map) sum to 1. The score of one cell of the 

spatial map belonging to a particular cluster was calculated as the sum of the probabilities of all 

snRNA-seq transcriptomes of one particular cluster belonging to that particular cell in the spatial 

map.  

 

DATA STATEMENT 

The snRNA-seq and bulk RNA-seq data have been deposited in the GEO database under accession 

number GSE174599 and GSE174656, respectively. 

 

FUNDING 

The work was supported by DFG (grant no. KA 2720/5-1 to X.X, K.K, and grant KA 2720/9-1 to M.M. 

K.K.), by an ERC Consolidator grant (PLANTSTEMS, #647148) to T.G. 

  

CONFLICT OF INTEREST 

The authors declare no competing interests. 

  

ACKNOWLEDGEMENTS 

We thank Johanna Müschner for their technical support. This work was supported by the BMBF-

funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI). 

 

SUPPORTING INFORMATION 

Supplementary Tables: 

Supplementary Table 1. List of marker genes and annotation of the snRNA-seq clusters. 

Supplementary Table 2. Gene expression prediction in the floral whorls.  

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450319
http://creativecommons.org/licenses/by-nc/4.0/


26 
 

SUPPLEMENTARY FIGURES AND LEGENDS 

 

 

Sup Figure 1: Summary of main statistics of the snRNA-seq. A) Number of expressed genes 

(containing at least one read) per nucleus. B) Number of mapped reads per nucleus. C) Percentage 

of reads mapping to the mitochondrial genome. D) Percentage of reads mapping to the 

chloroplast genome. 
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Sup Figure 2. Average expression of the top 20 marker genes in publically available bulk RNA-seq 

datasets. Heatmaps show the expression of the top 20 significant marker genes for each snRNA-

seq cluster in different publically available bulk expression profiles of: several flower organs and 

developmental stages (Klepikova et al. 2016) (A), shoot apical meristem domains (Tian et al. 2019) 

(B), and vascular tissues of inflorescence stems (Shi et al. 2021) (C).  
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Sup Fig 3 Expression of selected marker genes of snRNA-seq clusters on the UMAP plot. 
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Sup Fig 4. Gene-based performance of the method for gene expression reconstruction. Heatmaps 

show the performance (AUROC) for each reference gene when that particular gene was removed 

from the spatial map during the data integration step. Four models were tested: A) Filtering out 

snRNA-seq nuclei too dissimilar to the spatial map in the transcriptomic space (see Material and 

Methods) and using genes with high correlation with the reference genes in order to calculate 

transcriptomic distance among snRNA-seq nuclei (see Material and Methods). B) Applying no 

filter to the snRNA-seq and using genes with high correlation with the reference genes in order to 

calculate transcriptomic distance among snRNA-seq nuclei. C) Filtering out snRNA-seq nuclei too 

dissimilar to the spatial map in the transcriptomic space, and using the set of high variable genes 

defined by SEURAT to calculate transcriptomic distances between snRNA-seq. D) Applying no filter 

to the snRNA-seq data and using the set of high variable genes defined by SEURAT to calculate 
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transcriptomic distances between snRNA-seq, this is the original option in novoSpaRc. The number 

between parentheses after the gene symbol indicates the number of cells where the particular 

gene is expressed in the spatial map. Legend indicates the different parameter values used for 

running novoSpaRc. 
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Sup Fig 5. Average performance of our method for gene expression reconstruction. Violin plots 

show the average AUROC values across all reference genes except ETTIN, AHP6, CLV3 and WUS, 

which were excluded because of their consistent low performance or because of the low number 

of cells where they are expressed. Four distances were tested: Jaccard (A), Hamming (B), Euclidean 

using snRNA-seq continuous expression (C) and Euclidean when the snRNA-seq data was 

binarized. For each distance, four models were tested: 1) Filtering out snRNA-seq nuclei too 

dissimilar to the spatial map in the transcriptomic space (see Material and Methods) and using 

genes with high correlation with the reference genes in order to calculate transcriptomic distance 

among snRNA-seq nuclei (mFmH). 2) Applying no filter to the snRNA-seq and using genes with 

high correlation with the reference genes in order to calculate transcriptomic distance among 

snRNA-seq nuclei (oFmH). 3) Filtering out snRNA-seq nuclei too dissimilar to the spatial map in 

the transcriptomic space, and using the set of high variable genes defined by SEURAT to calculate 

transcriptomic distances between snRNA-seq (mFoH). 4) Applying no filter to the snRNA-seq data 

and using the set of high variable genes defined by SEURAT to calculate transcriptomic distances 

between snRNA-seq, this is the original option in novoSpaRc (oFoH). 
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Sup Fig 6. Performance of the reconstructed expression depends on PEP. A) Relationship between 

PEP and the performance (AUROC) of the gene expression estimation when the estimated gene 

was not included in the spatial map. Red line indicates the value 0.13. B) Performance (AUROC) 

of the prediction for each gene (grey points) when x genes from the spatial map with highest co-

expression values with the predicted gene were sequentially removed. C) Performance (AUROC) 

of the prediction for each gene (grey points) when x genes from the spatial map with lowest co-

expression values with the gene with the gene evaluated are removed. In B and C, the number of 

genes (x) removed is shown in the x-axis, and the drop in AUROC is shown in the y-axis; the red 

line represents a smoothing function (LOESS) applied to the average relative AUROC. Error bars 

indicate standard deviation. 
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Sup Fig. 7: Increasing the number of reference genes increases the number of genes with 

PEP>0.13. A) PEP score distributions when using a random set on n reference genes (x-axis). B) 

Average number of genes with a PEP-score>0.13 depending of the number of reference genes 

used (x-axis). 

 

Sup Fig 8. GFP signals in pAGi::NTF (A) and pAP3::NTF(B) domain specific lines used for FANS. 

Scale bars indicate 50 μm.  
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Sup Fig 9. Prediction of AP3 vs AG domain-specific log2FC expression. A) Scatterplot showing the 

predicted change in expression between the AP3 and AG domain predicted by our method (y-axis) 

and observed by our bulk FANS RNA-seq data (x-axis) when using genes with PEP>0.13 (n=1,306). 

Continuous black line indicates the diagonal line. The associated Spearman correlation is 0.37. 

The associated spearman correlation for other values of PEP can be seen in B). Bottom row shows 

the scatterplot for the observed change in expression of both biological FANS bulk RNA-seq 

replicates for AP3 versus AG. Color in B and C indicates the number of genes predicted at this level 

of PEP. Vertical red line indicates the value of 0.13. 
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Sup Fig 10. Gene expression distribution in the floral meristem whorls depending on TF binding. 

Gene expression was standardized to mean 0 variance 1, after average expression was calculated 

for each gene in the different floral whorls. Floral whorls are defined as: carpel: cells expressing 

AG but not AP3 neither AP1; stamen: cells expressing AG and AP3 but not AP1, petals: cells 

expressing AP3 and AP1 but not AG; sepals: cells expressing AP1 but not AG neither AP3. Four 

groups of genes were considered: A) genes with a AG binding in the gene body or the 2 kb regions 

around, B) genes with AG and AP3 binding, C) genes with an AP3 binding, D) genes with an AP3 

and AP1 binding, E) genes with an AP1 binding and F) genes without any AG, AP3, or AP1 binding. 

Note that binding events of several TFs to the same gene does not necessitate that these TFs bind 

as part of the same complex, their binding could be independent and occur in different cells. 
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Sup. Figure 11. Prediction of AP3 vs AG domain-specific log2 FC expression directly from snRNA-

seq. A) Scatterplot showing the predicted change in expression between the AP3 and AG domains 

predicted directly by the snRNA-seq (y-axis) or observed by our bulk RNA-seq data (x-axis) when 

using genes with PEP>0.13 (n=1,306). The associated Spearman correlation is 0.04 (pv< 0.14; not 

significant). The associated spearman correlation for other values of PEP can be seen in B). 

Vertical red line indicates the value of 0.13. 
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Sup Fig 12. Localization of the vascular stem cells in the flower meristem. Predicted location of 

the vascular stem cells was calculated by the -log10 p-value of the Pearson correlation for 

different vascular FANS RNA-seq datasets (PXY: A, and SMXL5: B) to the reconstructed 

transcriptomes of each cell of the spatial map. C and D show H4-GFP expression (green) driven by 

the PXY and by the SMXL5 promoter, respectively. Images display side views of an inflorescence 

(left) and a stage 4 flower (right). For improved visualization of the GFP signal within the pedicel, 

the top layers of the Z-stack were removed from the orthogonal projection. Cell walls were stained 

using propidium iodide (red). Scale bars indicate 50 µm. 
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Sup Fig 13. Prediction of vascular domain-specific expression. Scatterplot showing the gene 

expression for SMXL5 (A), and PXY (B) domain predicted by our method (y-axis) and observed by 

publicly available FANS bulk RNA-seq data (x-axis) when using genes with PEP value>0.13 

(n=1,306). Bottom row shows the scatterplot for the gene expression of both biological FANS bulk 

RNA-seq replicates for SMXL5 (C), and PXY (D). 
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