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ABSTRACT 

Revealing the genetic effects of phenotypic variation is frequently challenging 

because of genetic redundancy, condition-specific requirements for genes, 

and/or changes in physiology or development that are too subtle to detect. Such 

effects can potentially be detected by measuring plant fitness, which reflects the 

cumulative effects of genetic changes over the lifetime of a plant. However, 

fitness is challenging to measure accurately, particularly in species with high 

fecundity and relatively small propagule sizes such as Arabidopsis thaliana. Here, 

we evaluated the performance of an image segmentation-based (ImageJ) and a 

transfer learning-based approach where a pre-trained model for detecting 

unrelated objects was repurposed for measuring two Arabidopsis fitness traits: 

seed and fruit counts. Although ImageJ was straightforward to use, the Pearson’s 

Correlation Coefficient (r) between true and predicted seed counts was only 0.92 

because seeds touching each other were undercounted. In contrast, the transfer 

learning-based approach yielded near perfect seed counts (r=0.9998). Using the 

latter approach, we were also able to detect and count fruits (r=0.99), although 

undercounting remains an issue for images with large numbers of fruits. Through 

data augmentation, we generated images of different resolutions, contrasts, 

brightness, and blurriness and used them to establish final models robust to 

differences in image properties. Beyond providing models to facilitate the 

investigation of Arabidopsis fitness traits, this study exemplifies how pre-trained 

models for different purposes can be reused for plant biology applications 

through transfer learning and machine vision.    
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INTRODUCTION 

A major goal of biology is to understand the molecular basis for development of 

organisms and their adaptation to different environments (Mcdonald, 1983). One 

approach to identify loci contributing to organism development/adaptation is to 

evaluate the effects of genetic variants on phenotypes. However, it is often 

challenging to investigate such effects because gene functions may be masked 

by genetic redundancy (Bouché and Bouchez, 2001) and/or be condition-specific 

(Hirsch et al., 1998; Meissner et al., 1999); the physiological or developmental 

changes caused by loss of gene function may also be too subtle to detect. This 

challenge can be alleviated by measuring the effects of genetic variations on 

fitness (i.e., the ability of an individual to survive and reproduce) because it 

reflects the cumulative effects of genetic changes over the lifetime of a plant. 

Accurate estimates of fitness are therefore valuable for several fields of study, 

including plant genetics, evolution, and plant breeding.  

The increasing availability of genomics resources for model plants such as 

Arabidopsis thaliana has made it possible to systematically identify genomic 

regions that contribute to fitness (Külheim et al., 2002; Ganeteg et al., 2004; 

Fournier-Level et al., 2011; Ågren et al., 2013; Kerwin et al., 2015; Taylor et al., 

2019). Among fitness measures, the most direct measure is the number of 

progenies produced (Thomson and Hadfield, 2017). In Arabidopsis, a 

predominantly selfing plant, the total number of seeds produced per plant is a 

particularly good estimate of fitness because it incorporates both male and 

female contributions. However, because Arabidopsis seeds are small (area 

ranging from ~0.1–0.2 mm2; Jahnke et al., 2016) and produced in large numbers 

(up to thousands of seeds per plant Boyes et al., 2001; Morales et al., 2020), it is 

difficult to obtain accurate seed counts. As a consequence, fruit (silique) number 

(Busoms et al., 2015) and total fruit length (Roux et al., 2004; Kerwin et al., 2015) 

are often used to measure fitness. Both measures have been shown to be 

correlated with seed production but with highly variable correlations across 

studies, ranging from r2=0.960 for fruit number (Mauricio and Rausher, 1997) and 
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r2=0.988 (Roux et al., 2004) to r2=0.256 (Gnan et al., 2014) for fruit length. In 

addition, fruit numbers (up to 450 per plant, Hamidinekoo et al., 2020) are 

typically counted manually, and can be error-prone. Thus, to better measure 

fitness of plants, both fruit and seed numbers should be evaluated using methods 

that are not hindered by propagule size or number. 

Several programs have been designed to increase the efficiency and accuracy of 

seed analyses. Some are aimed at measuring the properties of individual seeds 

rather than obtaining high throughput seed counts, e.g., seed size and shape 

(Herridge et al., 2011; Tanabata et al., 2012; Moore et al., 2013). These 

approaches typically require that seeds be separated before capturing seed 

images, which increases the time needed for processing. Other systems have 

been designed to separate seeds mechanically. For example, the phenoSeeder 

device separates seed using a “pick-and-place” robot (Jahnke et al., 2016); 

Morales et al. (2020) used a large-particle flow cytometer to separate seeds, and 

counted an average of 12,000 seeds per hour with high accuracy (relative error < 

2%). Approximately 10,000 seeds can be processed per hour using the BELT 

imaging system combined with the phenoSEED algorithm, which acquires 

images of individual seeds as they pass through an imaging chamber (Halcro et 

al., 2020). Nonetheless, a drawback of these methods is that they require 

specialized equipment, hindering their widespread adoption.  

Another approach that has been increasingly used in plant biology is machine 

vision, the application of machine learning algorithms to image analysis (Mochida 

et al., 2019). Deep learning approaches, in particular Convolutional Neural 

Network (CNN)-based frameworks, such as Single Shot Detector (SSD) (Liu et 

al., 2016), Faster Region Based CNN (Faster R-CNN) (Ren et al., 2017), and 

You Only Look Once (Yolo) (Redmon et al., 2016), have been developed to 

detect vastly different objects (e.g., cats, cars) in images. These frameworks can 

be applied to other tasks such as fruit and seed counting using transfer learning 

methods (Yang et al., 2020), whereby knowledge (i.e., prediction models) from 

one task is transferred to a new task. For example, starting from the pre-trained 
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residual network ResNet101 (He et al., 2016), the seeds of rice, lettuce, oat, and 

wheat, were detected with 96% recall and 95% precision using Mask R-CNN 

(Toda et al., 2020). However, the detection of much smaller objects using CNN-

based approaches remains challenging (Cao et al., 2019). This is likely because 

CNNs create low-level abstractions of the images, and if the objects are too 

small, the resulting abstractions are too simple to be used to distinguish whether 

the object is present or not. Although the CNN-based models developed by Toda 

et al. (2020) detected seeds with high accuracy, the smallest seeds tested were 

lettuce seeds, which have areas ranging from 1.5–3.6 mm2 (Penaloza et al., 

2005) and are ~10 times larger than Arabidopsis seeds. Another consideration is 

that the most convenient way to count all the seeds from an Arabidopsis plant, 

which can produce thousands of seeds (Boyes et al., 2001; Morales et al., 2020), 

would be to put all the seeds in a single image, thus resulting in a relatively small 

ratio of seed size to image size. However, due to the small image size 

(1024*1024 px2 or 2000*2000 px2) used in Toda et al. (2020), the ratio of seed 

size to image size was relatively large (>5000 px2 per barley seed), and the 

number of seeds that could be included in an image was also limited. Therefore, 

it is important to assess how well the CNN-based approaches perform in 

detecting objects as small as Arabidopsis seeds in an image containing 

thousands of them.  

CNN-based approaches have also been used in fruit counting. For example, 

using R-CNN, wheat spikes can be detected, counted, and analyzed to estimate 

yield based on images captured in the field (correlation between true and 

predicted counts: R2=0.93 with slope of 1.01, Hasan et al., 2018). Starting from 

two pre-trained models (ResNet and ResNext), Afonso et al. (2020) applied the 

Mask R-CNN approach to detect and count tomato fruits from images captured in 

the greenhouse, obtaining an F1 of 0.94 when fruits were only partially 

overlapping with each other. Using the LeNet and DenseNet-Basic models as a 

starting point, DeepPod was developed to effectively count Arabidopsis fruits but 

had a high number of false negatives at higher numbers of fruits (R2=0.90 with a 

slope of ~0.70, Hamidinekoo et al., 2020) In addition, when using DeepPod the 
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inflorescences need to be harvested before the seeds are mature when the fruits 

are still green, preventing the harvesting of seeds for future propagation or 

analysis. Thus, it is important to develop tools or models to detect and count 

mature fruits when seeds need to be saved for future experiments. Because 

Arabidopsis fruits shatter easily when dry, such tools should ideally be able to 

count fruits at different stages, including intact fruits and those that have already 

dehisced and released seed, when measuring fruit and seed production of plants 

grown to maturity (Conner and Rush, 1997). 

In this study, with the goal of comprehensively measuring Arabidopsis fitness, we 

evaluated two existing approaches—segmentation with ImageJ (Schneider et al., 

2012) and a deep learning approach, Faster R-CNN (Ren et al., 2017)—for 

counting seeds. Faster R-CNN has been widely used for detecting multiple types 

of objects, including those related to plant-based applications such as tomato 

disease types (Wang et al., 2019) and seedlings growing in the field (Jiang et al., 

2019). Using the transfer learning framework (Yang et al., 2020), a pre-trained 

model, faster_rcnn_inception_v2_coco for general image classification, was 

adopted as a starting point for training seed and fruit detection and counting 

models. All the seeds an Arabidopsis plant produced were counted at once. We 

also applied Faster R-CNN to count fruits in whole plant images that were 

captured after seeds were mature. To be able to measure seed and fruit 

numbers robustly in diverse images, we established Faster R-CNN models using 

input images with varying resolution, contrast, brightness, and blurriness. The 

final seed and fruit models are provided along with extensive documentation so 

that they can be readily used by the research community. 

RESULTS 

Seed Counting Using ImageJ  

Because the “Analyze Particles” function of ImageJ is widely used for analysis of 

seed morphology (Cervantes et al., 2016), we first attempted to develop a 

pipeline for seed counting that incorporated ImageJ analysis based on 
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segmentation of seed areas. With our seed scanning setup (see METHODS), 

when fewer than 200 seeds were placed on the plate lid and separated using 

forceps, seeds were detected and counted with high accuracy (Pearson’s 

Correlation Coefficient [PCC] between true and predicted seed counts was 

0.998, slope=0.9998, 60 images, Figure 1, Table S1). Our ImageJ pipeline 

allowed the detection of about 52 template images (each containing 12 plate lids, 

thus a total of 624 plate lids) per hour with a typical laptop (Intel(R) Core i7-

7500U CPU, 16GB RAM).  

However, when seeds were placed on plate lids without separation, big clumps of 

seeds were not counted by ImageJ, and small clumps where a small number of 

seeds were touching each other were recognized as single seeds (Figure 2A). 

The prediction accuracy of ImageJ drops off as the number of seeds increases 

(Figure 2C, Table S2); this is because the more seeds there are on the plate lid, 

the more likely it is that seeds touch each other, leading to an increase in the 

false negative rate of prediction. Moreover, the detection of seeds could be 

disrupted by scratches or letters on the plate lids, and seeds outside the 

predefined circular search regions were not detected (purple arrowheads in 

Figure S1). Thus, to obtain accurate counts based on segmentation, it is 

necessary to separate seeds and confine them to the center of the plate lid, 

which is time consuming and not amenable to high-throughput analysis.  

Improved Seed Counting by Faster R-CNN  

Next, we evaluated the performance of the deep learning approach Faster R-

CNN in seed counting. Since it is very time-consuming to annotate a large 

number of small objects for model training, we first split the 256 whole-plate 

images into 1024 quarter-plate images, and then manually labeled a subset (180) 

of these quarter-plate images to speed up the training process. A total of 160 

labeled quarter-plate images (Training image set 1 in Figure 3A) were used to 

build the models. The other 20 labeled quarter-plate images were set aside as 

the validation set (validation image set in Figure 3A). Three hyperparameters 
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were tested to optimize the model performance: proposals—the number of 

detected regions (i.e., seeds) in an image; scales—relative sizes of detected 

regions; and aspect ratios—shapes of the detected regions (Figure S2). The 

established models were then applied to the validation set to evaluate the 

performance of models based on different hyperparameter combinations. Model 

performance was measured using the F-measure (F1)—harmonic mean of 

precision (proportion of the detected areas that are true seeds) and recall 

(proportion of true seeds that are detected).  

We first examined 63 hyperparameter combinations: three proposal numbers 

(100, 500, and 1000), three scales (A to C), and seven aspect ratios (A to G, 

Figure S3; for scale and aspect ratio values see Table S3), resulting in 63 

models (Modelseed 1–63). We found that models with 100 proposals had the least 

accuracy with F1 < 0.750 (Figure S3A), while models with 500 and 1000 

proposals had much improved performance, with F1 values around 0.970 

(Figure S3B,C). This is because the seed counts in most of the quarter-plate 

images in the validation set were larger than 100 (Table S4). For models with 

500 or 1000 proposals, scale-B and scale-C had higher F1 values than scale-A, 

but there were no differences between the F1 values of the seven different 

aspect ratios (Figure S3B,C). Because the computational efficiencies were 

higher for scale-B and aspect ratio-A than for other hyperparameter combinations 

(Figure S4), the combination of scale-B and aspect ratio-A was used for 

downstream model building. Three additional models were also established 

based on scale-B and aspect ratio-A with 3000, 5000, and 10,000 proposals 

(Modelseed 64-66) with no improvement in F1 values compared with models with 

500 and 1000 proposals (Figure S3D). Even though building Faster R-CNN 

models with a higher number of proposals requires more computational 

resources (Ren et al., 2017), we opted to use 10,000 proposals for further model 

building to allow detection of a large number of seeds in an image. 

Modelseed 66—built with 10,000 proposals, scale-B, and aspect ratio-A—was 

used to detect seeds in the remaining 844 quarter-plate images to produce “in 
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silico” seed annotations for the second-round modeling (Figure 3A). The 

predicted coordinates of seeds for a set of four quarter-plate images were 

combined and converted to the corresponding coordinates in the original whole-

plate image. The seed coordinates in the whole-plate images were manually 

corrected (i.e., false negatives were manually labeled, and false positives were 

removed) to produce a new set of seed annotations, resulting in 211 labeled 

whole-plate images. Then a new model, Modelseed 67, with the same parameters 

as Modelseed 66, was built using 161 (Training image set 2 in Figure 3B) out of 

these 211 images (Figure 3). The remaining 50 labeled whole-plate images 

(Test image set in Figure 3B) were used to evaluate the performance of 

Modelseed 67, which had an average F1 of 0.992 (Table S2). When further 

examining the seeds detected in detail, we found that in contrast to the ImageJ 

approach, Modelseed 67 correctly predicted seeds regardless of whether they 

were in contact with each other or not (Figure 2B). In addition, in contrast to the 

ImageJ approach (Figure 2C), the prediction accuracy was not influenced by the 

total number of seeds in an image (PCC=0.9998, p=1.7e-83, Figure 2D), and the 

differences between true and predicted seed counts were close to zero, much 

smaller than those in ImageJ analysis (Figure 2E). Furthermore, Modelseed 67 

allowed the detection and counting of seeds in about 240 whole-plate images per 

hour using 1 GPU (Nvidia Tesla K80) with 4 GB of GPU memory in a UNIX 

cluster, or about 33 images per hour using a laptop with 16 GB of memory. 

These results suggest that our Faster R-CNN-based models provide highly 

accurate Arabidopsis seed counts and can be used for large-scale fitness 

studies.  

Impact of Seed Density on the Faster R-CNN Model 

The number of seeds in an image has a detrimental effect on the performance of 

ImageJ, but not on that of Faster R-CNN, as the correlation between the true and 

predicted numbers of seeds is nearly perfect (Figure 2D). This suggests that the 

Faster R-CNN model performance was not affected by the seed density. To 

verify this, a measure of seed density is needed. This is because the same 
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number of seeds can be evenly distributed on a plate lid, or crowded in a specific 

area so that seed density is very high in some parts of the lid but low in others. 

Thus, we generated a seed density index (SDI) to measure seed density in an 

image by drawing a circle with a radius of 30 pixels (corresponding to 0.62 mm) 

from the center of a seed, then calculating how many seeds had their central 

points located within the circle. We choose 30 pixels because it is approximately 

the total length of two seeds. Finally, the average number of seeds per circle in a 

whole-plate image was defined as the SDI (Figure 4A).  

Using this strategy, we calculated the SDIs of the test set images and determined 

the PCC value between SDI and the performance of Modelseed 67 (Figure 4B). 

Example whole-plate images with different SDIs are shown in Figure S5. The 

results showed that the higher the seed density, the lower the model 

performance (PCC between SDI and F1 was -0.581, p=9.8e-06, Figure 4B; for 

the correlation between SDI and other performance measures see Figure S6). 

Nevertheless, the effect of seed density on the performance of Modelseed 67 was 

small, as the F1 only dropped from 1.000 for an SDI of 1.157 to 0.971 for an SDI 

of 3.100 (Figure 4B, Table S2). An F1 of 0.971 with a recall of 0.968 indicates 

that for an image with 1000 seeds, there would only be 32 false negatives (seeds 

not detected) and 25 false positives (seeds detected in an image area with no 

seeds or a seed area counted more than once). Consistent with this, there was 

no significant correlation between the SDI and the difference between true and 

predicted seed counts (PCC=-0.206, p=0.15), in contrast to the significant 

negative correlation observed for ImageJ (PCC=-0.886, p=1.2e-17, Figure 2F). 

In addition, we calculated the SDIs for the predicted seed coordinates and found 

that the PCC value between true SDIs and prediction-based SDIs was 0.997 

(p=1.5e-54; Figure 4C), demonstrating that our Faster R-CNN model also 

predicts the location of seeds very well.  

Model Improvement through Data Augmentation 
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Our goal is to provide a seed counting model that can be widely used by different 

researchers, who may have seed images with different properties. Thus, we 

investigated the utility of Modelseed 67 for seed counting using images with four 

varying attributes: resolution, contrast, brightness, and blurriness (Figure 5A). 

These modified seed images were created by modifying the properties of the test 

set images (Figure 3B, for the image property settings see Table S5). Note that 

the test set images have not been used for training or validating Modelseed 67. 

Thus, they are ideal for testing the model independently. In the modified test set, 

there were 1750 images in total, including the original test set images (50) and 

modified images with 34 different attributes (34x50, light green box, Figure 3B). 

A slight but significant decrease in F1 was observed when the brightness of the 

images was ≤ 0.60 (p=0.01, one-sided Wilcoxon signed-rank test) relative to the 

original images, while the F1 dropped dramatically when the relative brightness 

was ≥ 1.20 (p=6.4e-08, Figure 5B). A significant decrease in F1 was also 

observed when the relative contrast of images (relative to the original image) was 

≤ 0.50 (p=1.0e-07) or ≥ 1.75 (p=5.0e-4), the relative blurriness was ≥ 1.50 

(p=6.7e-10), or the relative resolution was ≤ 0.50 (p=9.1e-10, Figure 5B). These 

results suggest that although Modelseed 67 is suitable for a range of image 

qualities, the seed detection accuracy will decrease dramatically when the image 

properties deviate from the training images beyond a certain point. 

To improve the robustness of Modelseed 67, we applied data augmentation, in 

which the size and properties of training datasets are increased so better 

prediction models can be built (Shorten and Shorten, 2019). To accomplish this, 

we used 20 of the 161 training set 2 images to produce additional images with 21 

different property settings (21 x 20, darker green box, Figure 3B, for the image 

property settings see Table S5). These 420 additional images, together with the 

original 161 images, were used to build the new Modelseed 68 (Figure 3B), with 

the same hyperparameter settings as Modelseed 67. Modelseed 68 was then used 

to detect seeds in the modified test set images (again, these were not used in 

any step of the training process). Although there was a slight decrease in F1 

when the relative blurriness was ≥ 3.00 (p=0.04, median F1 decrease=0.002) or 
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when the relative resolution was ≤ 0.30 (p=0.02, median F1 decrease=0.003, 

Figure 5B), Modelseed 68 (blue, Figure 5B) performed better than the non-

augmented Modelseed 67 in all situations (red, Figure 5B) and thus, the 

augmented model is robust to different image properties.  

Fruit Counting Using Faster R-CNN Models 

Compared with seed number, total fruit count is an even more frequently used 

proxy for fitness. When scoring total Arabidopsis fruit counts, an important 

consideration is that, because dry fruits shatter easily, it is not always possible to 

harvest all fruits produced by a single plant after seeds have matured, especially 

for plants growing in the field. In this case, the best method would be to count all 

fruits (including dehisced ones) and count seeds per fruit for a subset that 

haven’t dehisced, and then calculate total seed number by multiplying the 

number of seeds per fruit with the total fruit number. Thus, to obtain more 

accurate estimates of seed production per plant, it is necessary to record the 

numbers of both intact and shattered fruits. With these considerations in mind, 

we developed Faster R-CNN models to count all fruits without harvesting the 

fruits first. When capturing the images for fruit counting, a pink background was 

used to maximize the contrast between the background and the dark, dry fruits 

and the pale replum of shattered fruits that remained after the valves fell from the 

fruit (Figure 6A,D). Because there were much fewer fruits in each image than the 

number of seeds when performing seed counting, and the fruits were much 

larger, we manually labeled the fruits in 120 images without using the two-step 

strategy used for seed counting.  

Eighty, 20, and 20 images were randomly selected and used as training, 

validation, and test sets, respectively (Figure 6A). Different combinations of 

hyperparameter values (Table S6) were evaluated (Modelfruit 1-75, Figure 6A). 

Surprisingly, all models built with different hyperparameter combinations 

performed similarly on images in the validation set, with an average F1 of 0.925 

(Figure S7). Thus, to minimize the computational cost (lower scales or aspect 
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ratios) while maximizing the number of fruits detected per plant (more proposals), 

the model built with scalefruit-A, aspect ratiofruit-A, and 500 proposals (Modelfruit 

21) was used. Modelfruit 21 was applied to the test set images, resulting in an 

average F1 of 0.914 (Table S7). This F1 value translates into 1 false positive and 

15 false negatives for an image with 100 fruits. Although the PCC between true 

and predicted fruit counts was 0.990 (p=6.7e-17), the detection error increased 

with an increasing number of fruits in an image and, because the fitted line had a 

slope of 0.785, the error was mostly due to undercounting or false negatives 

(Figure 6B,C). Upon further examination, we found that the majority of the false 

negatives were unopened fruits, especially those overlapped with the stem or 

with each other. One potential reason for errors in detection of these fruits is that 

they are similar to the stem in color and shape. Another reason may be the 

relatively small number of labeled intact fruits (543) compared with the number of 

pale replums (2082) in our training images. Thus, our model can potentially be 

improved by increasing the number of the intact fruits in the training set.  

To assess the robustness of our model on images with different qualities, we 

applied Modelfruit 21 on test set images with different image properties (Figure 

6D, modified test set, 700 images in total, for the image property settings see 

Table S5). Significant decreases in F1 were observed when the relative image 

brightness was ≤ 0.70 (p=0.04) or ≥ 1.40 (p=0.02), the relative contrast was ≤ 

0.50 (p=0.02) or ≥ 1.50 (p=0.03), the relative blurriness was ≥ 2.0 (p=0.002), or 

the relative resolution was ≤ 0.6 (p=0.05) (Figure 6E). By including images with 

different properties (Table S5) in the training set (1840 images in total), a new 

model, Modelfruit 76, was established and applied to the modified test set. A 

significant but slight decrease in the resulting F1s was only observed when the 

relative resolution was ≤ 0.3 (p=0.02, median F1 decrease=0.01) (Figure 6E), 

indicating the robustness of Modelfruit 76. Using this model 180 images could be 

processed per hour using a UNIX node with 1 GPU and 4 GB graphics memory 

or 90 images per hour could be processed using a laptop (1 CPU, 16 GB 

memory). 
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DISCUSSION 

Fitness upon loss of function of a gene is one of the best measures of gene 

functionality because it reflects the ability of a plant to survive and reproduce 

given all the phenotypic effects of the mutation over the lifetime of the individual. 

For  self-pollinating species such as Arabidopsis, fitness is better assessed by 

counting the numbers of seeds than fruits, as they more directly reflect the 

number of offspring and reproductive success. Due to the lack of an effective tool 

enabling high throughput counting of small seeds en masse, seed counts are 

often estimated indirectly, for example by dividing the total seed weight per plant 

by the estimated individual seed weight in the same batch (Cvetkovic et al., 

2017), or by multiplying the fruit count by the average fruit length (Kerwin et al., 

2015; Taylor et al., 2019). However, these approaches may not yield accurate 

estimates of seed production due to potential measurement errors and the 

imperfect correlation between seed number and fruit length (Roux et al., 2004). 

Here, we developed a tool employing a deep learning approach, Faster R-CNN, 

to count seeds and fruits with a near perfect accuracy. In particular, the Faster R-

CNN-based predictions outperform those of ImageJ, a well-known platform with 

macros/modules for segmentation and morphology extraction (Schneider et al., 

2012; Cervantes et al., 2016; Vasseur et al., 2018). Most importantly, the 

advantages of the Faster R-CNN model over ImageJ are that it can detect 

individual seeds when the seed density is high without the need to separate them 

or when seeds partially overlap with artifacts such as scratches on the substrate 

surface. Also, it is not necessary to predefine regions indicating the location of 

the seeds. Our final model almost perfectly detected and counted seeds with an 

F1 close to 1, and allowed robust seed detection for images with multiple 

different properties or qualities.  

With the significance of the deep learning approach in seed counting noted, there 

are three general challenges that we faced during model development. The first 

challenge is that deep learning approach-based object detection tasks require a 

large amount of labeled data (in our case, labeled seeds). In this study, we 
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adopted a two-step modeling strategy to reduce the labor needed for seed 

annotations. In step 1, we split the images and used a subset of the split images 

to build a preliminary model (F1<0.975) and applied it to the remaining images. 

While the predictions were not perfect, this step drastically reduced the manual 

annotations needed because we only needed to correct for mis-predictions to 

boost our seed labels by ~5 fold (29,360 labels in the first-round, 138,929 labels 

in the second-round). Using this much larger set of seed labels, in step 2, new 

models were built that had improved model performance (F1=0.992), indicating 

the effectiveness of our strategy. An alternative strategy to increase the number 

of labels is based on the concept of domain randomization. Using this approach, 

Toda et al. (2020) generated a synthesized dataset for model training by 

randomly pasting individual images of seeds from a seed image pool to virtual 

canvases. The number, position, and direction of seeds on the canvases were all 

randomized, and seeds could be crowded together or covered by each other 

(Toda et al., 2020). However, the F1 of seed counting in that study was ~0.95, 

which may be because the morphology of seeds in the seed image pool (20 seed 

images for each of the 20 cultivars) was not representative of seed shapes in 

larger samples. In this study, we labeled 105,045 seeds for the training set of 

Modelseed 67, making it more likely that all seed types investigated here were 

representative.  

The second major challenge is the difficulty in adopting the deep learning 

framework for our specific applications. The pre-trained model that was used as 

the starting point of our Faster R-CNN models was originally used for detecting 

vastly different objects, from cats and dogs to TVs and cars. Although Faster R-

CNN is widely used for image-based applications, the computer science literature 

frequently does not have sufficient or proper documentation facilitating 

applications in other domain areas. In addition, the rapid development cycle of 

the modeling software, Tensorflow, made the activation energy for getting the 

approach to work very high; this was because we encountered frequent 

anonymous errors that took significant amounts of time to troubleshoot. With the 

hope of passing on our experience and facilitating similar applications of our 
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models, we have documented our approaches extensively on our GitHub page, 

from model training to model application.  

The third challenge is the high degree of computational complexity. In the 

RESULTS section, we emphasized that we can apply the model with modest 

computational resources with reasonable speed for detecting Arabidopsis seeds 

and fruits. However, to build the model, there is a substantial requirement for 

computational resources. For example, for building one of the first-stage seed 

counting models with a particular set of hyperparameters, the average run time 

was >4 h while requiring the use of three GPUs with >300 Gb RAM requested. 

Over the course of the project, over thousands of computing jobs requiring 

similar amounts of resources were run for model building, particularly during the 

early phase of development. Thus, development of the seed and fruit counting 

models was far from trivial computationally, and it can be challenging to build a 

model from scratch. 

The Faster R-CNN approach also shows promise in fruit detection and counting 

(R2=0.98, slope=0.79). In contrast to the finding that the Faster R-CNN approach 

outperformed the ImageJ approach for seed counting by a large margin, our 

Faster R-CNN fruit counting model did not perform as well as an ImageJ-based 

segmentation and skeletonization approach that was previously developed to 

enable high throughput measurement of fruit number (R2=0.91, slope= ~1, 

Vasseur et al., 2018). One possible reason underlying the performance 

difference between our seed and fruit counting models could be the huge 

difference in label numbers (there were about 52 times more labeled seeds in the 

training set than labeled fruits). The performance of the fruit counting model is 

thus expected to be improved when more fruit labels are included to train the 

model. In addition, one notable caveat of our approach is the undercounting at 

higher fruit numbers; this was mainly due to overlap between intact fruits and 

between intact fruits and stems. To remedy this, one approach is to rearrange 

the inflorescences before capturing the images to avoid the overlapping among 

fruits and stems. Another potential approach is to analyze multiple images (or 
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frames of a movie) taken at different angles or to examine the 3D reconstruction 

of the inflorescence.  

Nevertheless, the performance of our fruit counting model was better than that of 

another recently published CNN-based approach, DeepPod (R2=0.90, slope= 

~0.70, Hamidinekoo et al., 2020). In Hamidinekoo et al. (2020), the task (i.e., fruit 

detection) was first divided into four classification tasks: the detection of the tip, 

body, and base of the fruits and the detection of the stem. The separately 

detected parts were then joined together as a whole fruit. As the authors noted, 

the post-processing step (i.e., combining the four regions into a whole fruit) 

affected the final fruit detection performance. In our study, the fruits were labeled 

and detected as whole objects, thus avoiding the need for post-processing. In 

addition, different from Hamidinekoo et al. (2020) and Vasseur et al. (2018), 

where most fruits and the stems were fresh and green, fruits in our study were 

dry and light brown to gray, or contained only the pale replum remaining after 

seeds were dispersed. Thus, our fruit counting approach is expected to be 

applicable to a wider range of Arabidopsis fruit developmental stages. This is 

especially important when plants must be grown to maturity, and seed counts are 

estimated by calculating the number of seeds per intact fruit and multiplying by 

the total number of fruits (intact and dehisced).  

Taken together, our results illustrate that almost perfect performance can be 

obtained using Faster R-CNN-based models to detect Arabidopsis seeds. We 

also showed that a Faster R-CNN model is also capable of detecting Arabidopsis 

fruits and distinguishing them from the stem and background. It is intriguing that 

faster_rcnn_inception_v2_coco, the starting point of our model, was originally 

built to classify objects very different from Arabidopsis seeds and fruits. By using 

this pre-trained model as the initial model but changing the inputs (seed/fruit 

images) and the desired outputs (seed/fruit label and location), the model 

originally trained for a completely different purpose could be reused for our more 

specific application. This is consistent with the general idea of transfer learning 

(Yang et al., 2020) where information learned from one domain can be applied to 
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another domain area using machine learning. Beyond the specific application in 

this study, we expect that the general transfer learning framework can be applied 

widely to resolve other questions in biological sciences.   

METHODS 

Plant Materials and Growth Conditions 

For seed counting, seeds in the Arabidopsis Col-0 background were sown in 

200-cell flats filled with Arabidopsis mix (1:1:1 SureMix, vermiculite, and perlite), 

stratified for 5–7 days in the dark at 4°C, then transferred to a growth chamber 

and grown under a 16-h light/8-h dark cycle with a light intensity of 110–130 

�moles/m2/s at 21°C. Seedlings were thinned to one per cell after 1 week. Plants 

were watered two to three times per week and grown to maturity, after which the 

fruits produced by individual plants were counted. Intact fruits were transferred to 

glassine envelopes and allowed to dry for at least one month before counting 

seeds. For fruit counts, seeds with the Arabidopsis Col-0 background were sown 

in 200-cell flats filled with MetroMix 360, stratified for seven days in the dark at 

4°C, then grown under a light intensity of ~150 �moles/m2/s at 21°C. After five 

weeks (23 November 2018) flats were transferred to a plot at Kellogg Biological 

Station. Plants were removed from the field on 23 May 2019. Plants were cut at 

the base and imaged as described below. 

Seed Image Scanning 

Seeds from different numbers of dry fruits were scattered on the lid of a 60-mm 

petri plate. Forceps were then used to remove the fruit walls so that only the 

seeds remained. The petri plate lid containing seeds was tapped with fingers to 

ensure that seeds did not cover each other. For some plate lids counted with 

ImageJ, seeds were separated from each other and moved away from the edges 

of the plate lid using forceps. The uncovered petri dish lids were placed in a 

template made from white acrylic (295 mm X 210 mm X 10 mm, Figure 1A) on a 

standard desktop scanner. This template was designed to be the same height as 
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the plate lid to minimize artifacts resulting from light loss. For the template, 12 60-

mm diameter holes were cut into the template using a laser cutter. These holes 

were arranged in four rows of three and were spaced 6 mm from the edges and 

from each other. Within a column, holes were spaced 10 mm from the edges and 

each other. The template was aligned to the top right corner of the scanner 

before every scan because even small changes (<1 cm) in the location of the 

template required changing the parameters for the circular search regions in the 

ImageJ algorithm (described in the following section). Seeds were scanned at 

1200 dots per inch and in 24-bit color, and scans were saved as jpeg files.  

Seed Image Processing and Counting with ImageJ 

The ImageJ workflow is shown in Figure 1. Scanned images were first converted 

into 8-bit grayscale bitmap format with the im.convert(‘L’) method in the Python 

Imaging Library (https://pythonware.com/products/pil). The converted images 

were opened in ImageJ version 1.52a (https://imagej.nih.gov), and seeds were 

counted using the “Analyze Particles” tool. A macro was written to automate seed 

counting. First, circular search regions were defined to confine the search to the 

plate lids containing the seeds; there were 12 regions (i.e., petri plate lids) per 

scanned image. Second, a threshold was applied by selecting pixels with 

intensities between 50 and 140, and pixels were converted to real world units 

using a predefined line covering a known distance (the distance across the plate 

lid, 60 mm). Third, seeds within the circular search regions were counted. Only 

above-threshold regions of interest greater than 0.06 mm2 and with a circularity 

value of 0.25 to 1 were counted. Circularity was calculated by ImageJ as 

C=4π*(area/perimeter2). The image conversion program and the ImageJ macro 

were combined into a Windows batch script, in which a for-loop was used to run 

the ImageJ macro over all the images quickly in sequence. It took approximately 

5 min to fully process 10 images. All software for imaging processing are 

available in our Github repository (see COMPUTATIONAL RESOURCES). 

Seed Image Processing and Counting with Faster R-CNN 
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Each scanned image was first split into 12 sub images; each sub image contains 

a single plate lid and is referred to as a “whole-plate image”. Then, in the initial 

Faster R-CNN modeling trial, each whole-plate image was split into four quarter-

plate images. Seeds on the quarter-plate images were manually annotated using 

LabelImg v1.8.1 (Tzutalin, 2015), and the annotated coordinates of seeds were 

first saved in extensible markup language (xml) format, and then converted to 

comma-separated values (csv) format. The csv files contained the coordinates of 

the bottom-left (xmin, ymin) and upper-right (xmax, ymax) corners in each of the 

annotated seed areas, which were used as ground truth annotations. For images 

used for model training, the csv files were further converted to the TFrecord 

format. 

Faster R-CNN (Ren et al., 2017), which was performed using Tensorflow object 

detection API (Huang et al., 2017) and implemented in Tensorflow v1.13.2 (Abadi 

et al., 2016) in python v3.6.4, was used for object detection. Faster R-CNN 

combines the generation of region proposals (i.e., circumscribing the areas of 

interest, a regression problem) and their classification (i.e., in our case, the object 

is a seed or not) into a single pipeline (Ren et al., 2017). The architecture of 

Faster R-CNN used in Ren et al. (2017) has two stages: 1) construction of a 

Region Proposal Network and 2) establishment of a box classifier, Fast R-CNN, 

which was adapted from (Girshick, 2015) (Figure S2). In the first stage (left panel 

in Figure S2), images were processed by a feature extractor (Inception V2, 

Szegedy et al., 2016), and the resulting feature maps were used to predict 

bounding boxes containing images of individual seeds (referred to as proposals). 

In the second stage (right panel in Figure S2), these proposals were used to 

crop features from the feature maps; these cropped features were subsequently 

used for classification and bounding box regression. 

To speed up the training process, a pre-trained model 

(faster_rcnn_inception_v2_coco) was used as a starting point. To optimize the 

Arabidopsis seed detection, tuning was conducted for three hyperparameters: 

proposal, aspect ratio, and scale (Figure 3A and Figure S2). For the 
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hyperparameter space tested see Table S3. Each model was run on three 

graphics processing units (GPUs) for 40,000 steps using the Adam optimizer, 

with a batch size of five (five random images were used to train the model for 

each step) and a learning rate of 0.0002. A model was saved every 10 minutes 

during the run as a model checkpoint.  

To evaluate the model performance for hyperparameter tuning, validation set 

images—seeds in these images were manually annotated but were not used in 

the model training—were fed into the frozen models in jpeg format, and the 

outputs of model prediction were files in csv format containing the coordinates of 

the bottom-left and upper-right corners in each of the predicted seed areas. 

Coordinates of ground truth annotations in validation set images were compared 

with those of predicted seed areas using the measure IoU, which is defined as 

the intersection (I) of a ground truth area and a prediction area over (o) the union 

(U) of the same ground truth and prediction areas. A seed was regarded as 

correctly detected if its IoU was ≥ 0.5. An IoU < 0.5 was considered to be a 

misprediction. Then the F-measure (F1) score was calculated as a measurement 

of performance for a model as follows: F1 = 
���������	
�������

�������	
������
, where precision = 

��

����
; recall = 

��

����
. TP (true positive) is the number of correctly detected seeds, 

and FP (false positive) is the sum of the number of predicted seed areas that 

contain no seeds and the number of predicted seed areas minus 1 (if the ground 

truth area was detected more than once). FN (false negative) is the number of 

seeds with a maximum IoU < 0.5 with any predicted areas (i.e., the ground truth 

seed area was not detected).  

Fruit Image Capturing and Counting with Faster R-CNN  

For capturing fruit images, each dry Arabidopsis plant was put on a pink paper 

background and was photographed with an iPhone 8 smartphone. The images 

were saved in jpeg format with dimensions of 3024 X 4032 pixels. Fruits in the 

images were manually annotated, and the annotated coordinates were then 

converted to the csv and TFrecord formats, as conducted for the seed images. 
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The same pre-trained Faster R-CNN model used for seed counting was used to 

build the fruit counting models, and the same three hyperparameters were tuned 

to optimize the model performance but with a different hyperparameter space 

(Table S6). For each hyperparameter combination, a model was saved after 

6000 steps, when the performance had converged. A final model was 

established using hyperparameters selected based on performance on the 

validation set images. 
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FIGURE LEGENDS 

Figure 1. Workflow and Performance for Seed Counting Using ImageJ 

When Seeds Were Deliberately Separated.  

(A) Workflow. Seeds from 12 different plants were scattered and manually 

separated from each other on the lids of 12 petri plate lids, which were placed in 

a template and scanned. Twelve search areas, each with a diameter of 60 mm 

(yellow circles), were predefined. A threshold was applied by selecting pixels with 

intensities between 50 and 140 to separate the seed areas (red) from the 

background. Then pixels were converted to real-world distance units in mm. The 

“Analyze Particles” tool was used to detect and count the seeds.  
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(B) An example of an image with detected seeds (left) and an enlarged image 

showing the seeds (right). Red region with number: individual detected seed area.  

(C) Correlation between true and predicted seed counts using ImageJ when 

seeds were deliberately separated. 

Figure 2. Comparison Between the Performances of ImageJ and Faster R-

CNN-based Seed Counting for the Test Set Images of Seeds that Were Not 

Deliberately Separated.  

(A, B) The same seed scan image analyzed by ImageJ (A) and Faster R-CNN 

(B). Three different regions of the plate lid with different densities are outlined. 

Region 1 has low seed density, region 2 has moderate density, and region 3 has 

a high density. In (A) the red colored regions represent the segmented areas 

identified by ImageJ; seeds outlined in yellow and assigned numeric IDs were 

counted. In (B) the blue rectangles represent seeds detected by Faster R-CNN.  

(C,D) Correlation between true and predicted seed numbers from ImageJ (C) 

and Faster R-CNN (D) analysis of the test set.  

(E) Distribution of differences between true and predicted seed numbers. Red 

lines: ImageJ; blue lines: Faster R-CNN. 

(F) Correlation between seed density index (SDI) and difference between true 

and predicted seed counts.  

Each dot in (C,D,F) corresponds to one of the 50 test set images. The red line in 

(C) is the regression line obtained using the loess method. The blue lines in (D,F) 

are fitted regression lines for Faster R-CNN predictions. The red line in (F) is the 

fitted linear regression line for ImageJ-based predictions. PCC: Pearson 

correlation coefficient. 

Figure 3. Workflow for Building Faster R-CNN-based Seed Counting Models.  

(A) First-round modeling for enriching annotated seed labels. Each of the 256 

whole-plate images was split into four quarter-plate images. Among the 1024 

quarter-plate images, 180 were used in first-round modeling, and the remainder 

(844) were used in second-round modeling described in (B). Seeds in the 180 

quarter-plate images were manually annotated, and then these annotated 
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images were further split into training set 1 (160) and a validation set (20) to train 

and evaluate models, respectively. Sixty-three combinations of three 

hyperparameters (i.e., 3 proposal numbers ✕ 3 scales [A, B, and C] ✕ 7 aspect 

ratios [AR-A through G]; for scale and aspect ratio values see Table S3) were 

used to build 63 models. The optimal scale (B) and aspect ratio (AR-A) were 

selected based on the model performance on validation set images (Figure S3). 

An additional three models (Modelseed 64-66) were built using three different 

proposal values, and the final best model, Modelseed 66, with 10,000 proposals, 

was applied to the 844 quarter-plate images reserved for second-round modeling 

to generate in silico seed annotations.  

(B) Second-round modeling. The 844 quarter-plate images with seed predictions 

from Modelseed 66 were rejoined together to reconstruct 211 whole-plate images 

with in silico seed annotations, which were then manually curated and used as 

ground truth seed annotations. Modelseed 67 was built using 161 (training set 2) 

out of the 211 annotated images with the same hyperparameters used in 

Modelseed 66, and was evaluated using the test set (50 independent images) and 

the modified test set (i.e., 50 test set images not used for modeling plus 1,700 

images modified from the test set images that had different image properties 

[blurriness, brightness, contrast, and resolution values]). For data augmentation, 

20 images from training set 2 with different image properties were combined with 

training set 2, resulting in 581 images (modified training set 2), which were used 

to build Modelseed 68. The modified test set was used to evaluate the 

performance of Modelseed 68. 

Figure 4. Effect of Seed Density on the Performance of the Faster R-CNN 

Models.  

(A) Examples with different seed density index (SDI) values. The radius of each 

circle is 30 pixels (0.62 mm).  

(B,C) Relationship between SDI and model performance (B) and between the 

true SDI and SDI based on prediction (C) for test images. Each dot corresponds 
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to one of 50 test set images. Blue lines are the fitted linear regression lines. F1: 

F1 value at 0.5 IoU (Intersection over Union). 

Figure 5. Improvement of Model Robustness Using Training Images with 

Different Properties.  

(A) Examples of seed images with different relative brightness, contrast, 

blurriness, and resolution values that were derived from the same original image.  

(B) Model performance for Modelseed 67 and Modelseed 68 on the modified test set 

(Figure 2B). Red boxplot: Modelseed 67; blue boxplot: Modelseed 68. F1: F1 value 

at 0.5 IoU. 

Figure 6. Fruit Counting Using Faster R-CNN Models.  

(A) Fruit counting workflow.  

(B) Relationship between true and predicted fruit numbers.  

(C) Relationship between fruit number in an image and the model performance.  

(D) Examples of the same fruit image with different relative brightness, contrast, 

blurriness, and resolution values.  

(E) Model performance for Modelfruit 21 and Modelfruit 76 on test images with 

different properties. Red boxplot: Modelfruit 21; blue boxplot: Modelfruit 76. F1: F1 

at 0.5 IoU. 

PCC: Pearson correlation coefficient. 

SUPPLEMENTAL INFORMATION 

Figure S1. Example False Negatives from ImageJ Analysis and Faster R-

CNN Models.  

(A-B) One example seed scan image analyzed by ImageJ (A) and the Faster R-

CNN Model 67 (B). Purple arrowheads: example false negatives from ImageJ 

and Faster R-CNN; green arrowheads: seeds correctly detected by Faster R-

CNN. 

Figure S2. The Architecture of Faster R-CNN.  
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The seed images are first processed using a feature extractor (Inception V2), 

which extracts features from the input images by assigning importance (weights 

or biases) to the objects in the images. The output of the feature extractor is a 

feature map, indicating the locations and strength (indicated by color gradient) of 

the detected features in an image. Then a large number of anchors (rectangles 

with different aspect ratios [width/height] and scales [relative size]) are generated 

and placed uniformly throughout the feature map. By applying one of the key 

modules of Faster R-CNN, Regional Proposal Network, each anchor is assigned 

an objectness score, which is an indication of how likely it is that the anchor 

contains an object. A predefined number of anchors (object proposals) are 

selected based on the rank of objectness scores. Next, to determine whether an 

anchor contains an object and to adjust the anchors to better fit the location of 

the seed, the feature maps and the proposals are processed using another 

module, the Fast R-CNN Detector. Two scores are obtained: a classification 

score (the likelihood that the proposal region contains a seed) and regression 

score (the location of the detected seed). 

Figure S3. Hyperparameter Tuning for Seed Counting Models.  

(A-C) Performance of models trained on training set 1 with 100 (A), 500 (B), and 

1,000 (C) proposals at different scales (columns) and with different aspect ratios 

(colored lines). Performance was evaluated using the validation set. For scale 

and aspect ratio values see Table S3.  

(D) Model performance for different proposals based on the scale-B and aspect 

ratio-A combination.  

X axis: the number of training steps; y axis: F1 at 0.5 IoU. 

Figure S4. Computational Efficiency of Seed Counting Models.  

Computational efficiency of seed counting models trained with training set 1, with 

100 (A), 500 (B), and 1,000 proposals (C) at different scales (A, B, and C 

columns) and with different aspect ratios (colored lines).  

X axis: the number of training steps; y axis: global steps per second.  
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Figure S5. Example Images with Different SDI Values.  

Six seed images with SDI values ranging from low (1.157) to high (3.100). 

Figure S6. Effect of Seed Density on the Performance of the Faster R-CNN 

Models Using Different Measures of Performance.  

(A-C) Relationship between SDI and precision (A), recall (B), and accuracy (C).  

Each blue dot represents one of the 50 test set images, and lines are the fitted 

linear regression lines. 

Figure S7. Hyperparameter Tuning for Fruit Counting Models.  

Performance of fruit counting models trained on images in the training set with 

different proposal numbers (rows) at different scales (columns) and with different 

aspect ratios (colored lines). Performance was evaluated using images in the 

validation set. For scale and aspect ratio values see Table S6. x axis: the 

number of training steps; y axis: F1 at 0.5 IoU. 

Table S1 Seed Counting Using ImageJ 

Table S2 Seed Counting for 50 Test Set Seed Images Using Modelseed 67 

Table S3 Hyperparameter Space for Seed Counting 

Table S4 Seed Counts in 20 Quarter-plate Images in the Validation Set 

Table S5 Image Property Setting for Modelseed 68 and Modelfruit 76 

Table S6 Hyperparameter Space for Fruit (Silique) Counting 

Table S7 Fruit Counting for 20 Test Fruit Images Using Modelfruit 21 
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Figure 1. Workflow and Performance for Seed Counting Using ImageJ When Seeds Were 
Deliberately Separated. 
(A) Workflow. Seeds from 12 different plants were scattered and manually separated from each 
other on the lids of 12 petri plate lids, which were placed in a template and scanned. Twelve 
search areas, each with a diameter of 60 mm (yellow circles), were predefined. A threshold was 
applied by selecting pixels with intensities between 50 and 140 to separate the seed areas (red) 
from the background. Then pixels were converted to real-world distance units in mm. The “Analyze 
Particles” tool was used to detect and count the seeds. 
(B) An example of an image with detected seeds (left) and an enlarged image showing the seeds 
(right). Red region with number: individual detected seed area. 
(C) Correlation between true and predicted seed counts using ImageJ when seeds were 
deliberately separated.
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Figure 2. Comparison Between the Performances of ImageJ and Faster R-CNN-based 
Seed Counting for the Test Set Images of Seeds that Were Not Deliberately Separated. 
(A, B) The same seed scan image analyzed by ImageJ (A) and Faster R-CNN (B). Three 
different regions of the plate lid with different densities are outlined. Region 1 has low seed 
density, region 2 has moderate density, and region 3 has a high density. In (A) the red colored 
regions represent the segmented areas identified by ImageJ; seeds outlined in yellow and 
assigned numeric IDs were counted. In (B) the blue rectangles represent seeds detected by 
Faster R-CNN. 
(C,D) Correlation between true and predicted seed numbers from ImageJ (C) and Faster 
R-CNN (D) analysis of the test set. 
(E) Distribution of differences between true and predicted seed numbers. Red lines: ImageJ; 
blue lines: Faster R-CNN.
(F) Correlation between seed density index (SDI) and difference between true and predicted 
seed counts. 
Each dot in (C,D,F) corresponds to one of the 50 test set images. The red line in (C) is the 
regression line obtained using the loess method. The blue lines in (D,F) are fitted regression 
lines for Faster R-CNN predictions. The red line in (F) is the fitted linear regression line for 
ImageJ-based predictions. PCC: Pearson correlation coefficient.
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Figure 3. Workflow for Building Faster R-CNN-based Seed Counting Models. 
(A) First-round modeling for enriching annotated seed labels. Each of the 256 whole-plate images was 
split into four quarter-plate images. Among the 1024 quarter-plate images, 180 were used in first-round 
modeling, and the remainder (844) were used in second-round modeling described in (B). Seeds in the 
180 quarter-plate images were manually annotated, and then these annotated images were further split 
into training set 1 (160) and a validation set (20) to train and evaluate models, respectively. Sixty-three 
combinations of three hyperparameters (i.e., 3 proposal numbers x 3 scales [A, B, and C]  x 7 aspect 
ratios [AR-A through G]; for scale and aspect ratio values see Table S1) were used to build 63 models. 
The optimal scale (B) and aspect ratio (AR-A) were selected based on the model performance on 
validation set images (Figure S3). An additional three models (Modelseed 64-66) were built using three 
different proposal values, and the final best model, Modelseed 66, with 10,000 proposals, was applied to
the 844 quarter-plate images reserved for second-round modeling to generate in silico seed annotations. 
(B) Second-round modeling. The 844 quarter-plate images with seed predictions from Modelseed66 were 
rejoined together to reconstruct 211 whole-plate images with in silico seed annotations, which were then 
manually curated and used as ground truth seed annotations. Modelseed 67 was built using 161 (training 
set 2) out of the 211 annotated images with the same hyperparameters used in Modelseed 66, and was 
evaluated using the test set (50 independent images) and the modified test set (i.e., 50 test set images 
not used for modeling plus 1,700 images modified from the test set images that had different image 
properties [blurriness, brightness, contrast, and resolution values]). For data augmentation, 20 images 
from training set 2 with different image properties were combined with training set 2, resulting in 581 
images (modified training set 2), which were used to build Modelseed 68. The modified test set was 
used to evaluate the performance of Modelseed 68.
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Figure 4. Effect of Seed Density on the Performance of the Faster R-CNN Models. 
(A) Examples with different seed density index (SDI) values. The radius of each circle is 
30 pixels (0.62 mm). 
(B,C) Relationship between SDI and model performance (B) and between the true SDI 
and SDI based on prediction (C) for test images. Each dot corresponds to one of 50 test 
set images. Blue lines are the fitted linear regression lines. F1: F1 value at 0.5 IoU 
(Intersection over Union).
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Figure 5. Improvement of Model Robustness Using Training Images with Different Properties. 
(A) Examples of seed images with different relative brightness, contrast, blurriness, and resolution 
values that were derived from the same original image. 
(B) Model performance for Modelseed 67 and Modelseed 68 on the modified test set (Figure 2B). Red 
boxplot: Modelseed 67; blue boxplot: Modelseed 68. F1: F1 value at 0.5 IoU.
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Figure 6. Fruit Counting Using Faster R-CNN Models. 
(A) Fruit counting workflow. 
(B) Relationship between true and predicted fruit numbers. 
(C) Relationship between fruit number in an image and the model performance. 
(D) Examples of the same fruit image with different relative brightness, contrast, blurriness, and resolution 
values. 
(E) Model performance for Modelfruit 21 and Modelfruit 76 on test images with different properties. Red 
boxplot: Modelfruit 21; blue boxplot: Modelfruit 76. F1: F1 at 0.5 IoU.
PCC: Pearson correlation coefficient.
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