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Abstract 8 

We are in the midst of a sixth mass extinction but little is known about the global patterns of biodiversity when 9 

accounting for taxonomic, phylogenetic and functional information. Here, we present the first integrated 10 

analysis of global variation in taxonomic, functional diversity and phylogenetic diversity of more than 17,000 11 

tetrapod species (terrestrial mammals, amphibians, reptiles and birds). We used a new metric (z-Diversity) 12 

able to synthetize taxonomic, functional and phylogenetic information across different sets of species to 13 

provide a comprehensive estimation of biodiversity. Our analyses reveal that hotspots of tetrapod diversity are 14 

clustered in specific regions of the world such as central Africa and the Indian peninsula, and that climate 15 

stability and energy availability have an overarching importance in explaining tetrapod spatial patterns. Future 16 

research might take advantage of these methods to perform an informed prioritization of protected areas. 17 

 18 

Introduction 19 

Humans drive patterns of biodiversity in the Anthropocene to the point that the world is facing the sixth mass 20 

extinction1, where nearly 1 million species are estimated to be threatened with extinction with severe 21 

consequences for ecosystem health and human wellbeing2,3. Biodiversity is a multidimensional metric4 and 22 

species loss does not only entail a reduction in species richness, but potentially affect also the evolutionary 23 

history (phylogenetic diversity  ̶  PD5) and the functional structure (functional diversity  ̶  FD6) of natural 24 

communities7,8. While PD can provide information on how past dispersal events may have shaped current 25 

species assemblages9, FD depicts ecosystem functions and associated services than simple patterns of species 26 

richness and turnover might not completely disclose10. Particularly, the regional loss of PD or FD may lead 27 

local assemblages towards the loss of evolutionary history or important functions likely jeopardizing crucial 28 

ecosystem processes, and potentially leading to higher homogenization11. In recent years, increased data 29 

availability (e.g. species spatial distribution, functional or genetic data) has improved our understanding of 30 

global diversity patterns across the tree of life9,12–14, including the development of conservation targets based 31 

on the assumption that conserving species with unique evolutionary history indirectly preserve also other 32 

diversity facets (e.g. EDGE project15). Nevertheless, recent findings seem to suggest that focusing on PD alone 33 

might not ensure the conservation of all facets of diversity16, but the strength of the relationship between PD 34 

and FD is still debated in literature17,18. Given these premises, the inclusion of different diversity facets beyond 35 

taxonomic diversity is essential for a thorough understanding of the processes shaping life on Earth19,20, and 36 

ideally to reevaluate global priority areas for biodiversity conservation21–24. Despite the pivotal role of FD and 37 

PD on ecosystem functioning and stability10,25,26, little is known about how biodiversity conservation could 38 

benefit from an integration of its different diversity facets21,27. 39 

Here, we provide the first integrated analysis of global variation in taxonomic, functional diversity and 40 

phylogenetic diversity of extant tetrapods (terrestrial mammals, amphibians, reptiles and birds) by presenting 41 

a new metric (z-Diversity) integrating species richness, PD and FD in a single measure that can be combined 42 

across different groups of species to provide a comprehensive estimation of biodiversity. We focused on 43 

Tetrapods which represent half of the vertebrate species living on our planet and are among the most described 44 

taxa (in terms of spatial distribution, conservation status and functional traits) on our planet. There are 45 
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continuous evidences of ongoing global decline for all these species28–32, to the point that approximately one 46 

third of them are threatened with extinctions, spanning from 14% of birds to 40% of amphibians33. Tetrapods 47 

have important ecological roles within natural ecosystems34,35, thus preserving higher tetrapod diversity should 48 

buffer the effects of accelerated global change36,37, promoting ecosystem stability38.  49 

Many studies tried to disentangle tetrapod spatial patterns mainly focusing on mammals and birds21,35,39,40, but 50 

see19,41), and their taxonomic patterns42–44, whereas little attention have been paid to the spatial patterns of the 51 

other diversity facets (i.e. PD and FD)9,39,40. Several hypotheses (reviewed in Fine 45) have been postulated to 52 

explain broad-scale patterns of species diversity, usually relying solely on species richness, with a lack of 53 

general consensus so far. These relate diversity to the variation in water-energy dynamics46,47 or link it with 54 

macroevolutionary aspects48, historical factors44 and species coexistence49. Nevertheless, there are no well-55 

established mechanistic hypotheses about the drivers of broad-scale patterns of PD and FD, and if they might 56 

respond to different factors with respect to the one described for species richness. Given these premises, an 57 

integrated metric such as z-Diversity might help to identify global priority areas whose protection would 58 

maximize tetrapod diversity. In addition, testing the relationship between z-Diversity and some variables 59 

related to past climate change, biogeography history, energy availability and land use legacies might shed light 60 

on their relative influence in shaping global tetrapod spatial patterns. Our analyses reveal that hotspots of 61 

tetrapod diversity are clustered in specific regions of the world such as central Africa and Indian peninsula. 62 

Finally, climate stability and energy availability revealed to be the best predictors in explaining the spatial 63 

variation across all tetrapod groups. 64 

 65 

Results 66 

Spatial mismatch between diversity facets 67 

For our analysis, we collated a large database of 17,341 tetrapod species encompassing 3,912 terrestrial 68 

mammals 3,239 amphibians, 3,338 reptiles and 6,852 birds for which accurate range estimates were available 69 

based on International Union of Conservation of Nature (IUCN) data50 which were subsequently converted to 70 

hexagonal equal-area grid cells (cell resolution 23,322 km2) on which we compiled the species list in each cell 71 

for each taxonomic group. Later, we selected a set of functional traits characterizing tetrapod species from 72 

public databases51,52 along with their phylogenies20,40,53,54 . Due to the presence of missing values among traits, 73 

for each group we performed a phylogenetically informed trait imputation procedure followed by a sensitivity 74 

analysis to evaluate imputation performance following Carmona et al.8, both using phylogenetic information 75 

that functional traits only. Briefly, for each taxonomic group we first compute the functional space using 76 

principal component analysis (PCA); we then artificially removed trait values in a reduced set of species which 77 

were later imputed with the complete database. The ability in retrieving species position in the functional space 78 

was used as an indicator of the performance of the imputation process. Our simulations showed that the 79 

imputation procedure performed quite well in retrieving the positions of species in the functional space for all 80 

groups, but using phylogenetic information halves the errors on average with respect to the imputation realized 81 

with traits information only (Supplementary Figure 1, see methods for more details).  82 

For each grid cell and for each group, we therefore estimated species richness (SR), Faith’s PD5 and FD which 83 

was expressed as functional richness (FRic). Since both PD and FRic depend on species richness55, we 84 

performed null model simulations to obtain standardized effect sizes  ̶  SES computed as follows: [SES = 85 

(Metricobs−mean(Metricnull))/SDnull.]. SES indicate the degree of deviation of a given metric (expressed in SD 86 

units) with respect to simulated values. The three diversity metrics thus obtained (SR, sesPD, sesFRic) were 87 

later scaled and centered to unit variance (zSR, zPD, zFRic) and averaged into a single indicator of diversity 88 

(z-Diversity). The arithmetic mean among the z-Diversities of the four taxonomic groups provided a new 89 

overall metric able to synthetize the total diversity (taxonomic, functional and phylogenetic aspects) contained 90 

in a set of species. 91 

Overall, we observed congruent spatial pattern in species richness and sesPD for all taxonomic groups. In 92 

contrast, sesFRic showed some striking differences especially between mammals and reptiles (see for instance 93 

central Africa and Indian peninsula in Supplementary Figure 2, where to a higher sesFRic was associated a 94 

lower sesPD). Morevoer, negative correlations between species richness and sesPD were detected across all 95 

taxonomic groups while there was a slight positive correlation between sesPD and sesFRic (Supplementary 96 

Table 1). Tetrapod z-Diversity is strongly correlated with zFRic (Pearsons’s correlation r = 0.76, p < 0.001; 97 

all correlations were spatially corrected) and to a lesser extent to zSR (r = 0.34, p < 0.01) whereas a not 98 

significant correlation was detected with zPD (r = 0.17, p > 0.05). z-Diversity was also strongly correlated 99 
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with zFRic across all groups; additionally for mammals and birds we observed also a significant correlation 100 

with zSR and zPD, respectively (Supplementary Table 2). Notably, Afrotropics and Indomalayan realms 101 

showed an overall even dispersion on both sesPD and sesFric with respect the other realms, in contrast 102 

Neotropic realm was mainly driven by both phylogenetic and functional clustering across all groups  103 

(Supplementary Figure 3). 104 

 105 

Global priority areas 106 

Global tetrapod z-Diversity is highest in Africa and South-East Asia followed by Central and South America, 107 

Japan and the Mediterranean basin (Figure 1A). Looking at the single groups (Figures 1B,C,D,E), mammals 108 

z-Diversity was higher in Africa and Indian peninsula, whereas amphibians showed a higher z-Diversity 109 

especially in the Amazon basin. Reptiles displayed the highest variation in Africa and South-East Asia while 110 

bird assemblages showed higher z-Diversity in southern hemisphere with peaks especially in Africa and 111 

Oceania. Interestingly, hotspots of tetrapod z-Diversity (the richest 5% of grid cells) were largely clustered in 112 

African continent with few spots in Indian peninsula and South America (tropical Andes, northeastern coast, 113 

Figure 2A). These patterns were mirrored by all the considered groups (Figure 2B,C,D,E), except for 114 

amphibians whose higher z-Diversity resulted to be largely clustered in South America. 115 

 116 

  117 
Figure 1. Global patterns of z-Diversity expressed averaging z-scores of single diversity facets in each 118 

taxonomic groups (zSR, zPD, zFRich). These were later mediated across groups to obtain tetrapod diversity. 119 

(A) Tetrapoda, (B) Amphibia, (C) Aves, (D) Mammalia, (E) Reptilia. Silhouettes were retrieved from PhyloPic 120 

(www.phylopic.org). 121 

 122 

 123 
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Climate stability and energy availability shapes tetrapod diversity 124 

The global patterns of tetrapod z-Diversity were highly predictable by the set of variables that we chose (R2 125 

=0.85±0.04, Root Mean Square Error -RMSE =0.24±0.06; average ± SD). Our model showed that the global 126 

pattern of z-Diversity was mainly driven by energy availability and climate variation since Late Quaternary, 127 

rather than by current or past anthropogenic factors (Figure 3, Table 1). Within taxonomic groups 128 

(Supplementary Figures 4-7), results were relatively concordant, only amphibians departed from this general 129 

pattern, probably due to their higher dependency on water. In addition, whereas the diversity of mammals, 130 

birds and reptiles increased along with evapotranspiration, the diversity of amphibians showed a negative 131 

relationship with PET (Figure 3). In contrast, birds were primarily driven by a positive relation with PET, 132 

while all other variables showed a comparable influence in the model. In terms of model performance, RMSE 133 

within individual groups was higher than those of the tetrapod  model (≈ 0.41) coupled with a small reduction 134 

in R2  (≈ 0.78). 135 

 136 
Figure 2. Global hotspots of z-Diversity. Darkest tones denote 10% of the richest grid cells while darker tones 137 

5% and 2.5%, respectively. (A) Tetrapoda, (B) Amphibia, (C) Aves, (D) Mammalia, (E) Reptilia. Silhouettes 138 

were retrieved from PhyloPic (www.phylopic.org). 139 

Discussion 140 

We collated, for the first time at a global scale, the taxonomic, phylogenetic and functional characteristics of 141 

all groups of terrestrial vertebrates and summarized it in a single index. Accounting for all the three diversity 142 

facets across different taxonomic groups revealed conservation priority areas that are usually overlooked in 143 

global conservation schemes that use less comprehensive information41. These new hotspots of diversity 144 
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include arid and semi-arid environments, especially in the Mediterranean basin, central Asia, southern coast 145 

of Australia or in South America (e.g. Brazilian caatinga). Interestingly, despite the relatively lower number 146 

of tetrapod species with respect to Neotropics, the Afrotropical and Indomalayan realms stand out as hotspots 147 

of a high diversity (Supplementary Figure 3). This result is in agreement with previous studies on individual 148 

taxonomic groups (e.g. amphibians20, mammals39,56, reptiles41), but here we present the first comprehensive 149 

assessment showing this trend across all terrestrial vertebrates and considering multiple facets of diversity.  150 

Interestingly, the pattern of z-Diversity is primarily driven by functional diversity, as suggested by the high 151 

correlation between z-Diversity and zFRic (r = 0.76), highlighting the importance to consider functional 152 

information to provide reliable evaluation of species diversity patterns. Afrotropics showed the highest values 153 

of sesFRic with respect to random expectations especially for mammals and reptiles (Supplementary Figure 154 

3). This pattern might be explained by the high intrinsic megafaunal diversity reported for this continent56,57. 155 

African continent was probably the first one which experienced some moderate megafaunal loss (e.g. 156 

carnivores and proboscidean) already in Early Pleistocene (~ 1 Ma) likely due to the appearance of Homo 157 

erectus58, which were later somehow dampened thanks to coevolution with Homo sapiens. In contrast, outside 158 

H. sapiens area of origin, subsequent extinction waves occurred coinciding more or less with the expansion of 159 

humans across the globe59. In addition to this, the Great American Biotic Interchange (GABI)  ̶  the interchange 160 

between North and South American faunas associated with the formation of the Isthmus of Panama  ̶  seemed 161 

to have enhanced the extinction and the consequent reduction of diversity in South American mammals60. 162 

We detected also dominant phylogenetic clustering suggesting that environmental filtering and inter-clade 163 

competitions have shaped local assemblages61. Indeed, clades with rapid speciation rates such as primates in 164 

Africa and ovenbirds (Furnariidae) in Central-South America or closely related species tended to co-occur 165 

more frequently at smaller scales, as a results of local processes of radiation and dispersal limitations62. 166 

Nonetheless, multiple processes can interact together in defining local assemblages in space and time, and 167 

more studies linking mechanistically trait evolution and biogeographic history can help in this sense (e.g. 168 

process-based models63). Moreover, the relatively low correlation between sesPD and sesFRich implies a 169 

spatial mismatch in the global spatial diversity patterns, suggesting also that phylogenetic diversity captures 170 

only a portion of functional diversity in agreement with recent works16,64.  171 

Energy availability and climate stability confirmed to have an overarching importance to explain tetrapod 172 

diversity. Water–energy dynamics are important in describing species richness patterns for plants65 and 173 

animals46,66, but their relationship with the other diversity facets has been poorly investigated at a global scale 174 

(but see67). Generally, higher energy (i.e., higher PET) is linked to a higher resource availability which in turn 175 

promotes greater species packing (i.e., more species coexist with narrower niches68) and larger population sizes 176 

which may lessen extinction rates47. When considered individually, only amphibians departed from this general 177 

pattern, due to their higher dependency on water. The high importance of soil humidity in amphibians 178 

(Supplementary Figure 5) is not surprising since it helps in keeping balanced their hydric state69. Also the 179 

negative relation with PET compared to the positive of all other groups could be explained by the property of 180 

this metric, which tends to increase towards dry environments, not reflecting water balance as accurately as 181 

Actual Evapotranspiration (AET)70. Model outputs also indicated that climate stability promotes higher 182 

diversity, probably through the combination of lower extinction rates and high levels of speciation71,72, 183 

occurring also at a larger spatial scale. There are compelling evidences of higher extinction rates towards the 184 

poles for different taxonomic groups67,73 further corroborating the idea that climate stability and evolutionary 185 

processes influence species richness latitudinal gradient42 through region‐specific accumulation of diversity74, 186 

which is consistent with the CSH. Accordingly, species inhabiting more stable regions tend to display restricted 187 

thermal preferences and higher specialization48,75,76, thanks also to the higher frequency of speciation events77 188 

driven by the intimate link between temperature and ecological and evolutionary rates78. In contrast, extinctions 189 

might be higher in climatic unstable regions79, being triggered by variations in Earth's orbit causing recurrent 190 

climatic shifts across the globe80. For instance, higher extinction rates occurred during cold periods, especially 191 

for those taxonomic groups with poor dispersal abilities81
 (e.g. reptiles). To the best of our knowledge, this is 192 

the first evidence demonstrating how climate stability influences broad-scale patterns of species diversity, 193 

considering all three diversity facets. Lastly, we found no consistent effect of past and recent Land Use Land 194 

Changes similarly to what observed for genetic diversity12, even though future projections of land-use changes 195 

seem to strongly affect Earth’s biodiversity82,83. Another explanation for this lack of signal might rely in the 196 

relatively coarse scale used in this study along with the lack of finer spatio-temporal data able to depict these 197 

patterns. Even though some taxa (e.g. small-ranged species) or regions (e.g. tropics) might have some spatial 198 

biases84, and despite the potential lack of inclusion of important evolutionary or ecological variables (e.g. 199 
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speciation and dispersal rate), our models indicated that the selected variables are able to describe most of the 200 

global variation in tetrapod diversity.  201 

Our novel approach allows to consider all components of biodiversity and average them across taxonomic 202 

groups. Future research can take advantage of these methods to perform an informed prioritization of protected 203 

areas23,24, which could enhance the achievement of Aichi Biodiversity targets, whose progress for some 204 

indicators are still not satisfactory2. More importantly, the cells hosting a higher tetrapod diversity are often 205 

located in regions under high human pressure (e.g. Southeast Asia, Mediterranean coast)19,85 enhancing the 206 

need for a transnational cooperation, especially in the countries with lower GDP in order to preserve also the 207 

“option-value” of natural ecosystems. 208 

 209 
 210 

 211 

 212 

Figure 3. Variable importance ranked by the RMSE loss after permutations (left panel) and marginal effects 213 

of the different predictors (right panel) of the random forest model using tetrapod z-Diversity as response 214 

variable. ClimVar and ClimVel represented the average rate of change during the time-series (expressed in 215 

°C/century and m/yr, respectively) since Last Glacial Maximum. BiomeShan described the variation in biome 216 

patterns over the last 140 ka expressed using the Shannon index. SoilRH, PET, and TreeCovFract2019 217 

represented soil humidity, Potential Evapotranspiration and forest cover updated to 2019, respectively. LULC 218 

expresses the fraction of grid cell under anthropogenic land use since 8000 BC, while HFP2009 is the 2009 219 

Human Footprint index. 220 

 221 
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 222 

 223 

Table 1. Model output showing the variable importance expressed using Root Mean Square Error (RMSE) 224 

loss (average ± SD) for each variable considering all tetrapod pooled and each taxonomic group independently. 225 

ClimVar and ClimVel represented the average rate of change during the time-series (expressed in °C/century 226 

and m/yr, respectively) since Last Glacial Maximum. BiomeShan described the variation in biome patterns 227 

over the last 140 ka expressed using the Shannon index. SoilRH, PET, and TreeCovFract2019 represented soil 228 

humidity, Potential Evapotranspiration and forest cover updated to 2019, respectively. LULC expresses the 229 

fraction of grid cell under anthropogenic land use since 8000 BC, while HFP2009 is the 2009 Human Footprint 230 

index. RMSE and R2 were obtained using spatial cross-validation. N represents the number of grid cells used 231 

to train the models. Please note z-Diversity was computed only in the cells where all the three metrics (zSR, 232 

zPD,zFD) were available. 233 

Predictor Tetrapoda Mammalia Amphibia Reptilia Aves 

PET 0.112 ± 0.0009 0.056 ± 0.0011 0.211 ± 0.0014 0.237 ± 0.0019 0.349 ± 0.0026 

ClimVar 0.109 ± 0.0007 0.058 ± 0.0009 0.174 ± 0.0009 0.186 ± 0.0010 0.198 ± 0.0011 

ClimVelocity 0.098 ± 0.0007 0.003 ± 0.0010 0.155 ± 0.0007 0.215 ± 0.0019 0.184 ± 0.0005 

SoilRH 0.094 ± 0.0006 0.051 ± 0.0011 0.182 ± 0.0011 0.162 ± 0.0004 0.188 ± 0.0007 

HFP2009 0.085 ± 0.0003 0.038 ± 0.0008 0.177 ± 0.0012 0.158 ± 0.0003 0.186 ± 0.0007 

TreeCovFract2019 0.083 ± 0.0003 0.046 ± 0.0012 0.168 ± 0.0011 0.160 ± 0.0004 0.198 ± 0.0009 

BiomeShan 0.080 ± 0.0003 0.030 ± 0.0009 0.143 ± 0.0005 0.163 ± 0.0005 0.173 ± 0.0003 

LULC 0.080 ± 0.0001 0.033 ± 0.0008 0.146 ± 0.0006 0.161 ± 0.0005 0.171 ± 0.0003 

R2 0.85±0.04 0.77±0.04 0.78±0.05 0.78±0.04 0.77±0.03 

RMSE 0.24±0.06 0.44±0.11 0.45±0.06 0.40±0.09 0.37±0.05 

N 4274 6408 4581 4584 6439 

 234 

Methods 235 

Species spatial distribution and environmental data. We obtained expert-verified range maps of 23,848 236 

tetrapod species from the International Union for Conservation of Nature (IUCN) 50. Even though these maps 237 

might underestimate the complete extent of occurrence of the species, especially in poorly surveyed regions 238 
84, these currently represent the best information available. We then excluded marine mammals and range maps 239 

were converted to hexagonal equal-area grid cells with a cell area of 23,322 km2 using the ‘dggridR’86 R 240 

package. We chose this resolution because it is close to the finest resolution justifiable for using global data 241 

without incurring in false presences87. Species names were standardized using Global Biodiversity Information 242 

Facility (GBIF) Backbone Taxonomy88 using the R package ‘taxize’89.  243 

For each grid cell, we computed several environmental predictors depicting spatiotemporal effects of past 244 

climate change/biogeography history, current ecosystem features, and anthropogenic disturbances. 245 

Specifically, we gathered the following environmental data: climate stability since Last Glacial Maximum (ca. 246 

20 kya) was retrieved using two complementary indices reflecting the median rate of change during the time-247 

series expressed in °C/century (climate variation90, ClimVar) and m/yr (climate velocity43, ClimVel). Biome 248 

variation (BiomeShan)91, expressed using the Shannon index, described the variation in biome patterns over 249 

the last 140 ka. Gridded databases of Soil humidity (SoilRH) and Potential Evapotranspiration (PET) were 250 

obtained from TerraClimate92, while forest cover (TreeCovFract2019) updated to 2019 was retrieved from 251 

Copernicus Global Land Cover products93. Land cover land use (LULC) legacy effects were assessed by means 252 

of the data of Kaplan et al.94, which reported the fraction of grid cell under anthropogenic land use since 8000 253 

BC, while the 2009 Human Footprint index (HFP2009)95 was used to depict the spatial distribution of the 254 

current human pressure across the globe. HFP2009 reports for each grid cell a measure of the intensity of eight 255 

metrics of human pressure (i.e., human population density, roads, railways, navigable waterways, built 256 

environments, crop land, pasture land, night-time lights), weighted based on the relative human pressure on 257 

that cell 95. 258 

Functional traits. Functional trait data for the different groups were collected using public databases from 259 

different sources. See8 for a detailed description of the traits used in this study.  260 
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Mammals, reptiles and birds. Data were retrieved from Amniote database51, which include traits for 4953 261 

species of mammals, 6567 species of reptiles, and 9802 species of birds. Specifically, this database contains 262 

information of 29 life history traits, of which we selected a subset of traits with information available for at 263 

least 1000 species (see Table S1 in Carmona et al.8 for more details about traits and their completeness in each 264 

group). For mammals, eight traits were chosen: longevity (long, years), number of litters per year (ly), adult 265 

body mass (bm, g), litter size (ls, number of offspring), weaning length (wea, days), gestation length (gest, 266 

days), time to reach female maturity (fmat, days), and snout–vent length (svl, cm). For birds, we selected the 267 

following traits: number of clutches per year, adult body mass (bm, g), incubation time (gest, days), clutch size 268 

(ls, number of eggs), longevity (long, years), egg mass (em, g), snout-vent length (svl, cm), and fledging age 269 

(fa, days). Regarding reptiles, six traits were selected: number of clutches per year, longevity (long, years), 270 

adult body mass (bm, g), clutch size (ls, number of eggs), incubation time (inc, days), and snout-vent length 271 

(svl, cm). 272 

Amphibians. Functional trait data of amphibians were retrieved from AmphiBIO database52. We selected four 273 

traits that mirror similar information as the one collected for the other three groups (i.e. traits related to body 274 

size, pace of life and reproductive strategies): age at maturity (am, years), body size (bs; measured in Anura as 275 

snout-vent length – SVL – and in Gymnophiona and Caudata as total length in mm); maximum litter size (ls, 276 

number of individuals); and offspring size (os, mm). 277 

Phylogenies. Phylogenies for each group were downloaded from published papers20,40,53,54. Species absent 278 

from the phylogeny were manually added to the root of their genus using the R package ‘phytools’96. Since for 279 

mammals and birds multiple phylogenetic trees were available, for these groups we computed a maximum 280 

clade credibility tree (MCC) using the ‘phangorn’97 R package. To assess the reliability of the information 281 

contained in the MCC, we performed a  simulation where we correlated PD obtained from this MCC with 282 

those obtained with 100 phylogenies randomly selected from the original posterior distribution. This test 283 

proved that using the MCC tree is unlikely to affect the computation of PD (Supplementary Figure 8).  284 

Trait imputation and sensitivity analysis. Since there were gaps in the functional trait data, we imputed 285 

missing traits for each group using ‘missForest’98 R package. This procedure relied on random forest algorithm 286 

to impute trait data taking advantages also of the phylogenetic relationships among species following the 287 

procedure described in Penone et al.99. To further validate this procedure, we performed a sensitive analysis 288 

similarly to the one performed in ref. 8, but repeating the imputation process using both phylogenetic 289 

information and without it... Our simulations showed that the imputation procedure performed quite well in 290 

retrieving the positions of species in the functional space for all groups, but using phylogenetic information 291 

halves the errors on average with respect to the imputation realized with traits information only (Supplementary 292 

Figure 1) 293 

Calculation of diversity metrics. Extinct species and species totally lacking evolutionary, functional trait or 294 

spatial data were removed from the database, thus leaving 17,341 species for subsequent analysis (N = 3,912 295 

for mammals, N = 3,239 for amphibians, N = 3,338 for reptiles and N = 6,852 for birds; see Supplementary 296 

Table 3). To map global patterns of tetrapod diversity, we first computed diversity metrics for each taxonomic 297 

group independently. Species richness was estimated as the number of species in each cell; PD represented the 298 

sum of branch length between the root node and tips for the subtree comprising all species in the grid cell, and 299 

was computed using the ‘caper’100 R package. FD was estimated as described in ref8, we first have built a two-300 

dimensional functional space based on a Principal Component Analysis on the log-transformed and scaled trait 301 

values, then by means of TPD framework101 and ‘TPD’ and ‘ks’ R packages102,103, we estimated cell-based 302 

functional richness (FRic, i.e. the amount of the functional space occupied by an assemblage 101). Since both 303 

PD and FRic are strongly dependent on species richness, we performed null model simulations to break this 304 

relationship 55 and to compute standardized effect sizes (SES) as SES = (Metricobs−mean(Metricnull))/SDnull. To 305 

obtain the null distribution, we randomized 1000 times the community composition of each cell preserving 306 

marginal totals by using the quasiswap algorithm in the R package ‘vegan’104. After having computed the SES, 307 

we centered and scaled to unit variance the three diversity indices (i.e., species richness, sesPD, sesFrich) for 308 

each group in order to obtain comparable range of variation and then we averaged them to calculate within-309 

group z-Diversity only for the cells where all the three metrics were available. Finally, tetrapod z-Diversity 310 

was obtained as the arithmetic mean of within-group z-Diversity for each cell where all within-group z-311 

Diversity values were available. We further computed the Pearson's correlation (r) among all diversity facets 312 

by taking into account their spatial structure since all these metrics were measured on the same cells. 313 

Specifically, we used a modified t-test of spatial association105 implemented in the SpatialPack 106 R package 314 

to test the spatial association between z-Diversity and the three diversity metrics underlying it (zSR, zPD, 315 

zFRic) as well as the correlation among their original values (species richness, sesPD, sesFRic). 316 
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Drivers of diversity. Random forest (RF) is a machine learning algorithm consisting of an ensemble of 317 

classification or regression trees107. RF are well suited for modeling large-scale patterns, since they can deal 318 

with large amounts of data, prevent overfitting and multicollinearity, and perform well in presence of complex 319 

interactions or non-linear relationships108. RF are effectively used in different research fields such as climate 320 

modelling109, species conservation110 and landscape genetics111, among others. We build 5 models using z-321 

Diversity as a function of environmental variables (one for tetrapod plus one for each individual taxonomic 322 

group) using the framework provided in the ‘ml3’112 and ‘mlr3spatiotempcv’113 R packages. We started 323 

building trees using the following parametrization: ntree = 500, mtry= 1, min.node.size = 1, sample.fraction = 324 

0.6, which were later tuned using the ‘paradox’114 R package. Variable importance was determined by 325 

measuring the mean change in a loss function (i.e., Root Mean Square Error - RMSE) after variable 326 

permutations (N = 500) using ‘DALEX’ R package115. This method assumes that if a variable is relevant for a 327 

given model, we expect a worsening in model’s performance after randomly permuting its values (see116 for 328 

more technical details). In other words, this method asses variable importance as the loss in explanatory ability 329 

of the model when that variable is randomized. We also displayed marginal effects of different predictors by 330 

using partial dependence plots computed with the ‘iml’117 R package. 331 

Spatial cross validation. Failing to account for spatial autocorrelation processes in ecology might lead to 332 

biased conclusions118,119 or to an overoptimistic evaluation of model predictive power120,121. For this reason, 333 

we performed an internal spatial cross-validation (spCV) splitting the data into training (70%) and validation 334 

set (30%). We created five spatially disjointed subsets (i.e., partitions) where we introduced a spatial distance 335 

between training and validation set so that these sets are more distant than they would be using random 336 

partitioning122. To perform the spCV, we used a nested resampling approach as described in ref.123, where outer 337 

resampling evaluated model performance while inner resampling performed tuning of model hyperparameters 338 

for each outer training set. Because nested resampling is computationally expensive, we selected 5 folds with 339 

5 repetitions each to reduce the variance introduced by partitioning in outer resampling and 5 folds in inner 340 

resampling coupled with 50 evaluations of model settings. 341 

 342 

 343 

 344 
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 651 

 652 

Supplementary Figure 1. Sensitivity analysis on trait imputation procedure for each taxonomic 653 

group. We simulated missing traits (100 repetitions) starting for a subset of species with complete 654 

trait data. We then randomly selected 10% of species assigning them the structure of missing values 655 

of a random species from the subset of species with missing trait values. Then we combined the three 656 

datasets (90% species with complete traits, 10% with simulated NA and the remaining species with 657 

non-complete trait information). Here we performed two imputation processes: one based solely on 658 

the variance-covariance structure of functional traits and another based on the phylogenetic 659 

information as described in the methods in the main text. For each dataset obtained, we then computed 660 

a functional space using a PCA on which we predicted the position of all species. For only the species 661 

with artificial NA, we evaluated the normalized root mean square error (NRMSE) between the 662 

original position in the functional space and the position calculated after trait imputation, expressed 663 

as the relative range of trait values in the corresponding PC axis. 664 
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 678 

Supplementary Figure 2. Global Patterns of species richness (upper panels), sesPD (central panels) 679 

and sesFRic (lower panels). A-E-I) Amphibians, B-F-J) Birds, C-G-K) Mammals, D-H-L)  Reptiles. 680 

Please note that species richness is expressed on logarithmic scale and the color scale is centered on 681 

the median value. 682 
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 684 

Supplementary Figure 3. Boxplots showing the distributions of species richness, sesPD and sesFRic 685 

for each realm. Please note that sesPD and sesFRic represents standardized effect sizes of the original 686 

metric. 687 
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 704 

 705 

Supplementary Figure 4. Variable importance ranked by the RMSE loss after permutations (left 706 

panel) and marginal effects of the different predictors (right panel) of the random forest model using 707 

mammal zDiversity as response variable. ClimVar and ClimVel represented the average rate of 708 

change during the time-series (expressed in °C/century and m/yr, respectively) since Last Glacial 709 

Maximum. BiomeShan described the variation in biome patterns over the last 140 ka expressed using 710 

the Shannon index. SoilRH, PET, and TreeCovFract2019 represented soil humidity, Potential 711 

Evapotranspiration and forest cover updated to 2019, respectively. LULC expresses the fraction of 712 

grid cell under anthropogenic land use since 8000 BC, while HFP2009 is the 2009 Human Footprint 713 

index. 714 
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 717 

Supplementary Figure 5. Variable importance ranked by the RMSE loss after permutations (left 718 

panel) and marginal effects of the different predictors (right panel) of the random forest model using 719 

amphibians zDiversity as response variable. ClimVar and ClimVel represented the average rate of 720 

change during the time-series (expressed in °C/century and m/yr, respectively) since Last Glacial 721 

Maximum. BiomeShan described the variation in biome patterns over the last 140 ka expressed using 722 

the Shannon index. SoilRH, PET, and TreeCovFract2019 represented soil humidity, Potential 723 

Evapotranspiration and forest cover updated to 2019, respectively. LULC expresses the fraction of 724 

grid cell under anthropogenic land use since 8000 BC, while HFP2009 is the 2009 Human Footprint 725 

index. 726 
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 729 

Supplementary Figure 6. Variable importance ranked by the RMSE loss after permutations (left 730 

panel) and marginal effects of the different predictors (right panel) of the random forest model using 731 

reptilian zDiversity as response variable. ClimVar and ClimVel represented the average rate of change 732 

during the time-series (expressed in °C/century and m/yr, respectively) since Last Glacial Maximum. 733 

BiomeShan described the variation in biome patterns over the last 140 ka expressed using the Shannon 734 

index. SoilRH, PET, and TreeCovFract2019 represented soil humidity, Potential Evapotranspiration 735 

and forest cover updated to 2019, respectively. LULC expresses the fraction of grid cell under 736 

anthropogenic land use since 8000 BC, while HFP2009 is the 2009 Human Footprint index. 737 
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 740 

Supplementary Figure 7. Variable importance ranked by the RMSE loss after permutations (left 741 

panel) and marginal effects of the different predictors (right panel) of the random forest model using 742 

avian zDiversity as response variable. ClimVar and ClimVel represented the average rate of change 743 

during the time-series (expressed in °C/century and m/yr, respectively) since Last Glacial Maximum. 744 

BiomeShan described the variation in biome patterns over the last 140 ka expressed using the Shannon 745 

index. SoilRH, PET, and TreeCovFract2019 represented soil humidity, Potential Evapotranspiration 746 

and forest cover updated to 2019, respectively. LULC express the fraction of grid cell under 747 

anthropogenic land use since 8000 BC, while HFP2009 is the 2009 Human Footprint index. 748 
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 760 

Supplementary Figure 8. Comparison of phylogenetic diversity values calculated with a maximum 761 

clade credibility (PDMCC) tree and PD calculated averaging the values from 100 trees selected from 762 

the posterior distribution of mammals and birds phylogenies (PDsim), red line represents the perfect 763 

fit. In both groups, PD values across assemblages were very similar regardless of the method used 764 

(Spearman’s ρ > 0.99). We conclude that using a MCC tree should not affect our results. 765 
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Supplementary Table 1. Pearson’s correlations between diversity metrics in each taxonomic groups. 781 

All the correlations were spatially corrected. 782 

Taxon SR sesPD sesFRic  

Mammalia 

-   SR 

   -0.70*** -  sesPD 

0.10 0.18 - sesFRic 

Amphibia 

-   SR 

  -0.78*** -  sesPD 

0.11 0.09 - sesFRic 

Reptilia 

-   SR 

  -0.87** -  sesPD 

-0.15 0.32 - sesFRic 

Aves 

-   SR 

-0.34 -  sesPD 

   -0.53*** 0.31* - sesFRic 

*** = P < 0.001; ** = P < 0.01; * = P < 0.05 

 783 

Supplementary Table 2. Pearson’s correlation between zDiversity of each taxonomic group and for 784 

all tetrapod and the related diversity metrics obtained after centering and scaling to unit variance 785 

species richness (zSR), sesPD (zPD) and sesFRic (zFRic). Please note that overall zDiversity was 786 

calculated as the arithmetic mean among zSR, zPD and zFRic. All the correlations were spatially 787 

corrected. 788 

 789 

  Taxon zSR zPD zFRic 

  Mammalia 0.55** -0.03 0.85*** 

  Amphibia 0.28 0.19 0.89*** 

  Reptilia 0.00 0.34 0.92*** 

 Aves 0.09 0.71*** 0.58*** 

 Tetrapoda 0.34** 0.17 0.76*** 

  *** = P < 0.001; ** = P < 0.01 

Supplementary Table 3. Median diversity metric scores for each taxonomic group and for all 790 

tetrapod and the relative coverage in terms of number of species. SR, PD and FRic represent the 791 

median value of species richness, phylogenetic diversity and functional diversity (expressed as 792 

functional richness), respectively. of the cells. Please note that for mammals and birds PD was derived 793 

using a Maximum Credibility Tree. 794 

Clade 
Species with functional, 

phylogenetic and range data 

Total species               
(% total species 

included in this study) 
SR PD FRic 

Mammalia 3,912 ~5,692 (69%) 46 1,623 54 

Amphibia 3,239 7,776 (42%) 9 1,109 22 

Reptilia 3,338 10,845 (31%) 13 1,134 42 

Aves 6,852 10,970 (62%) 133 3,989 72 

Tetrapoda 17,341 35,283 (49%) 50 1,964 48 
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