
 

 
 

1

A genome-wide association study of serum proteins reveals shared loci with common 1 

diseases 2 

Alexander Gudjonsson*,1, Valborg Gudmundsdottir*,1,2, Gisli T Axelsson1,2, Elias F 3 

Gudmundsson1, Brynjolfur G Jonsson1, Lenore J Launer3, John R Lamb4, Lori L Jennings5, Thor 4 

Aspelund1,2, Valur Emilsson#,1,2 & Vilmundur Gudnason#,1,2 5 

 6 

 7 

 8 
1Icelandic Heart Association, Holtasmari 1, 201 Kopavogur, Iceland. 9 
2Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland. 10 
3Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National 11 

Institute on Aging, Bethesda, MD 20892-9205, USA. 12 
4GNF Novartis, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. 13 
5Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA 02139, USA. 14 

 15 

 16 

 17 

 18 

*These authors contributed equally as joint-first authors 19 
#These authors contributed equally as joint-senior authors 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

Correspondence: v.gudnason@hjarta.is 28 

Keywords: Proteomics, pQTLs, genomics, systems genetics, serum  29 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450858doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450858
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 

2

Abstract 30 

With the growing number of genetic association studies, the genotype-phenotype atlas has 31 

become increasingly more complex, yet the functional consequences of most disease 32 

associated alleles is not understood. The measurement of protein level variation in solid tissues 33 

and biofluids integrated with genetic variants offers a path to deeper functional insights. Here we 34 

present a large-scale proteogenomic study in 5,368 individuals, revealing 4,113 independent 35 

associations between genetic variants and 2,099 serum proteins, of which 37% are previously 36 

unreported. The majority of both cis- and trans-acting genetic signals are unique for a single 37 

protein, although our results also highlight numerous highly pleiotropic genetic effects on protein 38 

levels and demonstrate that a protein’s genetic association profile reflects certain characteristics 39 

of the protein, including its location in protein networks, tissue specificity and intolerance to loss 40 

of function mutations. Integrating protein measurements with deep phenotyping of the cohort, 41 

we observe substantial enrichment of phenotype associations for serum proteins regulated by 42 

established GWAS loci, and offer new insights into the interplay between genetics, serum 43 

protein levels and complex disease.  44 

 45 

Main 46 

The identification of causal genes underlying common diseases has the potential to reveal novel 47 

therapeutic targets and provide readouts to monitor disease risk. Genome-wide association 48 

studies (GWAS) have identified thousands of genetic variants conferring risk of disease, 49 

however, the highly polygenic architecture of most common disorders1 implies that the genetic 50 

component of common diseases is largely mediated through complex biological networks2,3. 51 

Identifying the causal mediators of mapped phenotype-associated genetic variation remains a 52 

largely unresolved challenge as majority of such variants reside in non-coding regulatory 53 

regions of the genome4. In fact, disease risk loci are enriched in regions of active chromatin 54 

involved in gene regulation5,6. Thus, the integration of intermediate molecular traits like mRNA7 55 

or proteins8–12 with genetics and phenotypic information may aid the identification of causal 56 

candidates and functional consequences. Furthermore, the phenotypic pleiotropy observed at 57 

many loci13 calls for a better understanding of the chain of events that are introduced by disease 58 

associated variants. Genetic perturbations may for instance drive molecular cascades through 59 

regulatory networks8, most of which have not yet been fully mapped, or as a consequence of 60 
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their phenotypic effects. Such downstream effects of genetic variants can be reflected in the 61 

molecular pleiotropy observed at some genetic loci, which may have important implications for 62 

therapeutic discovery including for estimating potential side effects14. For instance, many GWAS 63 

risk loci for complex diseases regulate multiple proteins in cis and trans, which often cluster in 64 

the same co-regulatory network modules8. Through the serum proteome we can gain a broad 65 

and well-defined description of the downstream effects of genetic variants, and their complex 66 

relationship with disease relevant traits. 67 

 The human plasma proteome consists of proteins that are secreted or shed into the 68 

circulation, either to carry out their function there or to mediate cross-tissue communications15. 69 

Proteins may also leak from tissues, for example as a result of tissue damage15. It has been 70 

noted that a large subset of cis-to-trans serum protein pairs (i.e. proteins that are regulated by 71 

the same genetic variant in cis or trans, respectively) have tissue specific expression but often 72 

involving distinct organ systems8, indicating that proteins in circulation may originate from 73 

virtually any tissue in the body. This suggests that system level coordination is facilitated to a 74 

considerable degree by proteins in blood, which if perturbed may mediate common disease16. 75 

These observations, together with the accessibility of blood compared to other tissues, make 76 

circulating proteins an attractive source for identifying molecular signatures of disease in large 77 

cohorts.  78 

 Recent technological advances now allow for high-throughput quantification of 79 

circulating proteins, which has resulted in the first large-scale studies8–12 of protein quantitative 80 

trait loci (pQTLs) as recently reviewed17. Here, we present a large-scale proteogenomic study 81 

revealing thousands of independent genetic loci affecting a substantial proportion of the serum 82 

proteome, highlighting widespread pleiotropic effects of disease-associated genetic variation on 83 

serum protein levels. While our previous work reported associations to a restricted set of loci8, 84 

this is the first comprehensive GWAS for this number of serum proteins. A systematic 85 

integrative analysis furthermore demonstrates extensive associations between serum proteins 86 

and phenotypes that are regulated by the same genetic signals, adding further support to the 87 

therapeutic target and biomarker potential among proteins regulated by established GWAS risk 88 

variants.  89 

 90 

 91 
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Results 92 

Identification of cis and trans acting protein quantitative trait loci (pQTLs) 93 

We performed a GWAS of 4,782 serum proteins encoded by 4,135 unique human genes in the 94 

population-based AGES cohort of elderly Icelanders (n = 5,368, Table S1), measured by the 95 

slow-off rate modified aptamer (SOMAmer) platform as previously described8,18. On average the 96 

genomic inflation factor was low (mean λ = 1.045, sd = 0.033) and of the 7,506,463 genetic 97 

variants included in the analysis (Fig. S1), 269,637 variants exhibited study-wide significant 98 

associations (P < 5×10-8/4,782 SOMAmers = 1.046×10-11) with 2,112 unique proteins, dubbed 99 

protein quantitative trait loci (pQTLs). In a conditional analysis, we identified 4,113 study-wide 100 

significant associations between 2,087 independent genetic signals in 799 loci (defined as 101 

genetic signals within 300kb of each other) and 2,099 unique proteins (Fig. 1A-C, Tables S2-102 

S4). Here we defined a genetic signal as a set of genetic variants in linkage disequilibrium (LD) 103 

that were associated with one or more proteins. For each associated protein, a genetic signal 104 

has a lead variant, defined as the genetic variant that is most confidently associated with the 105 

protein, i.e. with the lowest P-value (see Methods for details). Among the 4,113 independent 106 

associations, those in cis (signal lead variant within 300kb of the protein-encoding gene 107 

boundaries, n = 1,429) tended to have larger effect sizes than those in trans (signal lead variant 108 

>300kb from the protein-encoding gene boundaries, n = 2,684) (Fig. S2A). We found that 109 

almost half (977/2,099 = 47%) of all proteins with any independent genetic associations had 110 

more than one signal (Fig. 1B). Of those, 579 proteins (59%) had more than one independent 111 

signal within the same locus (Fig. S2B) and 697 proteins (71%) had signals in distinct locations 112 

in the genome. The protein with the largest number of associated loci was TENM3 (10 loci), 113 

followed by NOG (9 loci), GRAMD1C and TMCC3 (7 loci each).  114 

 The majority of genetic signals were only associated with a single protein (Fig.1C), or 115 

98% of cis signals and 73% of trans signals, and can as such be considered specific for the 116 

given protein based on a recently proposed classification of trans-pQTLs11. Furthermore, we 117 

have previously shown that proteins regulated in trans by the same genetic variant often cluster 118 

in the same coregulatory networks, sharing functionality and a disease relationship, although 119 

they may often differ in tissue origin8. However, as in previous studies8–11, we identified 120 

numerous hotspots of trans protein associations, or more specifically 35 independent signals 121 

that were associated with 10 or more proteins each at a study-wide significant threshold (Fig. 122 

1A,C). The largest of these trans hotspots represents the variant rs704, a missense variant 123 

within the Vitronectin (VTN) gene, which was associated with 598 proteins. Many of these trans 124 
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hotspots are well established as such, including the VTN, ABO, APOE, CFH and BCHE loci8–11. 125 

Other notable trans hotspots included for instance variants in or near the Lipopolysaccharide 126 

Binding Protein (LBP) and Metastasis-Associated 1 (MTA1) genes. LBP is involved in the innate 127 

immune response to bacterial infections and MTA1 encodes a transcriptional coregulator 128 

upregulated in numerous cancer types and associated with cancer progression19. Of the 35 129 

trans hotspots, 14 also affected protein levels encoded by proximal genes, thus acting in cis as 130 

well (Table S3). 131 

 In contrast to the trans acting hotspots, we also observed genetic regions with high 132 

density of independent signals, each of which were not necessarily associated with many 133 

proteins. One such region stood out in particular on chromosome 3 (Fig. 1A), where 30 134 

independent signals were observed for a total of 55 proteins within a 300kb window (Fig. S3A), 135 

of which six proteins (ADIPOQ, AHSG, DNAJB11, FETUB, HRG and KNG1) were regulated in 136 

cis. Further analysis of this region demonstrated a sparse LD structure (Fig. S3A), allowing for 137 

this high density of independent signals, and revealing a subcluster of 15 genetic signals 138 

affecting 32 proteins in various constellations (Fig. S3B), that were enriched for Toll Like 139 

Receptor 7/8 cascade (FDR = 4.8×10-3) and MAP kinase activation (FDR = 4.8×10-3).  140 

 To define what proportion of the pQTLs identified in the present study can be considered 141 

novel, we compared all study-wide significant pQTLs with previously reported pQTL studies 142 

(Table S5), including the recent exome array analysis of the AGES cohort20. Of the 4,113 143 

independent associations detected in the current study, 1,527 (37.1%) are considered novel 144 

based on this comparison (Supplementary Note 1, Fig. 1E, Fig. S4). Of the 2,087 independent 145 

genetic signals, 821 (39.3%) are novel, in the sense that they have not been reported to 146 

associate with any protein, and we find new protein associations for 206 known signals. Out of 147 

the 2,099 proteins, 172 (8.2%) had no previously reported genetic associations in the 148 

comparison and we identified new genetic associations for additional 911 proteins.  149 

 We evaluated how well independent pQTLs reported by the INTERVAL study9 (n = 150 

3,301) replicated in our results and found 75.6% to be both directionally consistent and 151 

nominally significant (P < 0.05) (Supplementary Note 2, Fig. S5-S6). This proportion furthermore 152 

increased to 93.9% when the NLRP12 locus was excluded, a reported trans hotspot that did not 153 

replicate in the AGES cohort (Supplementary Note 2, Fig. S5-S6). This locus has in fact been 154 

identified as platform specific in a recent study21 and was suggested to be related to white blood 155 

cell lysis during sample handling. We similarly performed a lookup of the independent study-156 
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wide significant associations identified in the current study in the INTERVAL study summary 157 

statistics (Supplementary Note 2, Fig. S7). Of 2,716 associations with information in the 158 

INTERVAL study we find that 94.1% are directionally consistent and 82.0% were both 159 

directionally consistent and nominally significant (P < 0.05). Of 668 associations defined as 160 

novel in our study (Supplementary Note 1) and with information available in the INTERVAL 161 

study, we again find a very high directional consistency between the two studies, or 89.8% of 162 

associations, and 62.9% are both directionally consistent and nominally significant (P < 0.05) in 163 

the smaller INTERVAL study.  164 

 Finally, with more individuals genotyped we revisited the GWAS of the serum protein co-165 

regulatory network8, now represented by the first two eigenproteins of each module, and find 166 

that almost all the network modules are under strong genetic control (Supplementary Note 3). 167 

 168 

Characterization of proteins by genetic association profiles 169 

Taking advantage of the broad coverage of the protein measurements in our study, to determine 170 

which protein characteristics can provide additional insights into the observed differences in 171 

genetic profiles for the measured proteins we compared characteristics such as tissue-172 

enhanced gene22 and protein23 expression and protein localization22 for proteins with genetic 173 

signals to those without any detected genetic effect. Moreover, we analyzed loss-of-function 174 

(LoF) intolerance24 and hub status in two types of protein networks, i.e. the InWeb protein-175 

protein interaction (PPI) network25 and the serum protein co-regulatory network8, but 176 

pathogenicity of DNA sequence variation and hub status of proteins in biological networks are 177 

well-known features used to study the extent of selection pressure in molecular evolution26,27. 178 

We find that proteins with study-wide significant genetic associations, specifically those acting in 179 

cis, are generally more likely to have tissue-specific gene and protein expression and are more 180 

often secreted compared to those with no detected genetic signals (Fig. 2A, Tables S6-S7). 181 

These results may indicate that that cis-pQTLs in serum to some extent mirror the regulation of 182 

protein secretion from solid tissues, whereas the serum level of proteins without cis-pQTLs may 183 

mainly be affected by other mechanisms. By contrast, proteins with trans only signals are 184 

enriched among transmembrane proteins (Fig. 2A, Tables S6-S7). Furthermore, we find that 185 

proteins with cis signals generally have lower LoF intolerance, that is they are more tolerant to 186 

deleterious mutations, and they tend to have lower hub status in both PPI and co-regulatory 187 

networks, indicating a more peripheral position of cis regulated proteins in protein networks (Fig. 188 

2B, Tables S6-S7). Similarly, larger genetic effects on protein levels are negatively correlated 189 
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with LoF intolerance and hub status in both the PPI and co-regulatory networks (Fig. S8). This 190 

suggests that selective pressure may to some extent explain the lack of pQTLs for proteins that 191 

are encoded by housekeeping genes, are network hubs and are intolerant to LoF mutations.  192 

 Proteins with trans acting signals had higher hub status in the co-regulatory network 193 

compared to those proteins having no genetic signals (Fig. 2B). However, trans signals were not 194 

associated with hub status in the PPI network or influenced by LoF intolerance (Fig. 2B). 195 

Complementing this observation, we find that hub proteins in co-regulatory networks are 196 

generally connected to more proteins through the same genetic variants (Fig. S8). As the co-197 

regulatory network is derived from protein correlations, these results highlight how its structure 198 

is to some extent shaped by genetic variants affecting multiple proteins, the majority of which 199 

are trans regulated8 (Supplementary Note 3). These results elucidate key differences between 200 

the PPI and the serum protein co-regulatory networks, i.e. while hubs in both types of networks 201 

are depleted for cis-pQTLs, only those in the co-regulatory network were more likely trans-202 

regulated proteins.  203 

 204 

Colocalization of pQTLs with GWAS risk loci 205 

Genetic effects on serum proteins may offer novel insights into mechanisms underlying the 206 

genetics of common disease and relevant traits. Therefore, we examined the overlap between 207 

pQTLs and GWAS loci. We obtained GWAS summary statistics for 81 diseases and clinical 208 

traits (Table S8) and identified all genome-wide significant (P < 5×10-8) GWAS loci overlapping 209 

with a study-wide significant pQTL from our results. Of note, the number of significant loci for 210 

each of the tested phenotypes is highly dependent on the original study size (Fig. S9). GWAS 211 

signals for different phenotypes were considered to belong to the same locus if the lead variants 212 

were within 300kb of each other. By this criteria, 1,335 GWAS loci for 76 phenotypes were 213 

found to be in the vicinity of a study-wide significant pQTL and were tested for colocalization. Of 214 

those, 218 GWAS loci (associated with 69 phenotypes) had high support (PP4>0.8) for 215 

colocalization with 1,045 proteins (Fig. 3, Tables S9-S10). Additionally, medium support 216 

(0.5<PP4<=0.8) was found for colocalization between 171 proteins and 84 loci associated with 217 

49 phenotypes (Fig. 3, Tables S9-S10). Of the 799 loci associated with protein levels, 216 218 

(27.4%) colocalized with at least one GWAS phenotype and 1,083 (51%) of the 2,112 proteins 219 

with a study-wide significant pQTL. We found 91% (69/76) of the phenotypes tested to have a 220 

genetic signal colocalizing with at least one protein, with an average of 9 (11%) colocalized loci 221 

per trait (Fig. S10). GWAS loci with cis-pQTLs were more likely to colocalize (medium or high 222 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450858doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450858
http://creativecommons.org/licenses/by-nd/4.0/


 

 
 

8

support) with any protein than those without (22.3% vs 10.4%, Fisher’s exact test P = 7.5×10-8). 223 

For a given phenotype, we observed that its associated loci involved a median of 17 serum 224 

proteins (Fig. S11). Thus, even a limited proportion of associated loci for a given phenotype 225 

generally associates with numerous proteins in serum and consequently implicate multiple 226 

affected molecular pathways. To account for multiple independent signals in a given locus, we 227 

additionally ran a conditional colocalization analysis for loci that had more than one independent 228 

signal per protein, thus including 549 GWAS loci that overlapped with pQTLs for 546 proteins. 229 

Here we observed 178 instances of colocalization with medium or high support, of which 51 230 

(involving 19 loci, 14 phenotypes and 40 proteins) were not captured in the initial colocalization 231 

analysis (Tables S11-S12).  232 

 Colocalized cis-acting pQTLs can point to causal genes at GWAS loci. We found 237 233 

and 49 trait-locus-cis-protein combinations with high or medium support, respectively. For 102 234 

of 203 (50.2%) unique pairs of GWAS lead variants and colocalized cis-pQTLs, the protein was 235 

different than that encoded by the nearest gene to the GWAS lead variant (Table S10). For 236 

example, a GWAS signal for waist-to-hip ratio in the gene LRRC36, colocalizes with a pQTL for 237 

the serum levels of Agouti-related protein encoded by a nearby gene, AGRP (Fig. S12), a 238 

neuropeptide that increases appetite and decreases metabolism28. A related example involves 239 

two loci associated with BMI, located 5Mb apart on chromosome 20, both of which colocalize 240 

with serum levels of the Agouti signaling protein (ASIP) (Fig. S13), known to promote obesity via 241 

the melanocortin receptor (MC4R)29. These two associations are 2.2Mb and 7.6Mb upstream of 242 

the ASIP gene, respectively, however the colocalization with serum levels of ASIP suggest this 243 

may in fact be the causal candidate mediating their effects. Among neurological phenotypes, 244 

colocalized cis-pQTL examples include a GWAS signal for bipolar disorder on chromosome 2, 245 

which colocalizes with the serum levels of the protein encoded by LMAN2L (Fig. S14), and a 246 

signal for major depression disorder on chromosome 7 colocalizing with TMEM106B (Fig. S14), 247 

adding support for these being the causal genes at these loci, both of which are also the nearest 248 

gene to the GWAS lead variant. 249 

 We observed several highly pleiotropic loci, where multiple phenotype signals 250 

colocalized with multiple protein signals (Fig. 4A). In fact, among the high (PP4>0.8) and 251 

medium confidence (PP4>0.5) colocalization results, the number of associated proteins per 252 

GWAS locus was positively correlated with the number of associated phenotypes (Spearman’s 253 

rho = 0.50, P = 9.9×10-17). These pleiotropic loci included for example the ABO locus, best 254 

known for its role in determining the ABO blood groups, which was found to harbor eight 255 
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independent protein signals within a 28 kb region (chr 9, 136,127,268-136,155,127) (Table S4), 256 

where pQTLs for 63 proteins colocalized with 17 phenotypes, predominantly cardiometabolic 257 

and hematopoietic (Fig. 4A, Table S10). The complex genetic architecture at this locus gives 258 

rise to a wide range of downstream consequences, as indicated by the distinct sets of proteins 259 

associated with each independent genetic signal defined here and consistent with previous 260 

reports10, and most traits associated with the locus are affected by more than one of those 261 

signals. The 63 proteins in the ABO locus were enriched for gene ontology terms and pathways 262 

such as “transmembrane signaling receptor activity” (FDR = 2.7×10-6), “regulation of cell 263 

migration” (FDR = 2.5×10-4) and “Hippo-Merlin signaling dysregulation” (FDR = 1.2×10-3).  264 

Another example of a pleiotropic locus is a 46 kb window (chr 19, 49,206,108-49,252,151), 265 

harboring variants adjacent to or within FUT2 that are associated with diverse traits (Fig. 4B, 266 

Table S10), including immune (Crohn’s disease and type 1 diabetes), anthropometric (waist-to-267 

hip ratio and offspring birth weight), cardiometabolic (blood pressure, LDL and total cholesterol) 268 

and renal (BUN and UACR). FUT2 encodes for fucosyltransferase-2 that synthesizes the H 269 

antigen in body fluids and the intestinal mucosa, while a nearby gene, FGF21, is an important 270 

metabolic regulator30, acting for example through its effects on sugar intake31. We find that the 271 

genetic signals for 10 phenotypes in this region colocalize with 19 proteins that are collectively 272 

enriched for elevated gene expression22 in the intestine (FDR = 1.4×10-6), salivary gland (FDR = 273 

1.7×10-6) and stomach (FDR = 8.9×10-3) (Fig. 4B-C) and include proteins involved in 274 

carbohydrate digestion (LCT), taste perception (LPO, PIP) or humoral immunity (CCL25). The 275 

proteins regulated by this locus thus suggest downtream effects across different parts of the 276 

gastrointestinal tract. The shared genetic architecture of immune disorders has been well 277 

documented in the literature and is mirrored in multiple colocalized pQTLs shared between 278 

various immune diseases (Fig. S15). In particular the SH2B3 locus on chromosome 12 stands 279 

out in this regard, with GWAS signals for seven immune disorders colocalizing with three trans-280 

regulated proteins (THPO, ICAM2, CXCL11), all involved in positive regulation of immune 281 

system processes (GO:0002684).  282 

 In some cases we observed more than one colocalized trans-pQTLs converging on the 283 

same protein for a given phenotype. For example, HDL-associations in the LIPC (chromosome 284 

15) and APOB (chromosome 2) loci both colocalized with the serum levels of the sodium-285 

coupled transporter SLC5A8 (Fig. S16), involved in the transport of monocarboxylates such as 286 

lactate and short-chain fatty acids. Similarly, variants in the GALNT2 (chromosome 1) and 287 

GCKR loci (chromosome 2) both regulate the serum levels of NRP1, colocalizing with GWAS 288 
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signals for triglyceride levels (Fig. S17). A more extreme example is a network of 12 loci with 289 

GWAS signals for platelet counts that colocalize with serum levels of 24 proteins (Fig. S18). 290 

These proteins include noggin (NOG) and cochlin (COCH), colocalizing with platelet count 291 

signals in five and four loci, respectively. 292 

 293 

Associations of proteins with phenotypes in the AGES cohort 294 

Taking advantage of the deep phenotyping of the AGES cohort, we examined direct 295 

associations between colocalized proteins and 37 phenotypes that were measured in the AGES 296 

cohort (Table S13). For a quarter (10/37) of the phenotypes tested we observed a significant 297 

enrichment of phenotype associations among the sets of colocalized proteins compared to 298 

randomly sampled proteins (Fig. 5, Fig. S19, Table S14), demonstrating more generally that 299 

GWAS loci for complex phenotypes regulate serum proteins that themselves are often directly 300 

associated to the phenotype itself. At a more relaxed genome-wide significant (P<5×10-8) 301 

threshold for pQTLs, the proportion of phenotypes with significant enrichment of protein 302 

associations increased to 45% (18/40 phenotypes, Fig. S20), likely due to an increase in 303 

statistical power with more colocalized proteins per phenotype at this threshold and indicating 304 

that more associations between proteins regulated by GWAS-loci and the respective 305 

phenotypes can be expected to be identified as sample sizes for proteogenomic studies 306 

increase. Among the diseases and clinical traits with the strongest enrichment for direct protein-307 

trait associations, we found age-related macular degeneration (14% of colocalized proteins 308 

associated compared to an average of 7% for random proteins, P<0.001), total cholesterol (67% 309 

vs 35% for random, P<0.001), Alzheimer’s disease (21% vs 1% for random, P=0.001) and type 310 

2 diabetes (60% vs 40% for random, P=0.017). In some cases, this enrichment was driven by 311 

proteins regulated from a few trans loci, as evident by the loss of significance when the analysis 312 

was repeated without pleiotropic loci regulating five or more proteins, leaving on average 17 313 

proteins per trait (Fig. 5, Table S14). This was particularly evident for Alzheimer’s disease, 314 

where the enrichment was entirely driven by the associations of proteins regulated by the APOE 315 

locus (Table S13). In other cases, the removal of proteins regulated by pleiotropic loci resulted 316 

in an enhanced enrichment of phenotype associations, such as for HbA1c, mean platelet 317 

volume and diastolic blood pressure (Fig. S19, Table S14). 318 

 By evaluating each individual locus separately, we identified six loci with significant 319 

phenotype-association enrichment among its linked proteins that colocalized with GWAS signals 320 

for the respective phenotype, thus demonstrating specific examples of genetic variants whose 321 
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molecular and phenotypic consequences are linked within the same cohort (Table S15). Here 322 

the APOE locus stood out in terms of number of enriched phenotypes, with its regulated 323 

proteins being enriched for associations with Alzheimer’s disease, age-related macular 324 

degeneration, numerous cardiometabolic traits including coronary artery disease. The 641 325 

proteins regulated by the VTN locus on chromosome 17 were also enriched for associations 326 

with AMD. The PSRC1-CELSR2-SORT1 locus, best known for its associations with coronary 327 

artery disease and cholesterol levels, showed enrichment for protein associations with bone 328 

mineral density. Proteins regulated by the ABO locus on chromosome 9 and the UGT gene 329 

family cluster on chromosome 8 were enriched for associations with total cholesterol and finally 330 

the proteins regulated by the ZFPM2 locus on chromosome 8 were enriched for associations 331 

with basophil counts. These genetic loci thus demonstrate specific examples whose molecular 332 

and phenotypic consequences are linked within the same cohort. 333 

  Other examples of colocalized proteins showing significant associations with the 334 

respective phenotype include the inhibin beta subunit B (INHBB) protein, which has a cis-pQTL 335 

on chromosome 2 and a trans-signal on chromosome 12, near the INHBC gene that encodes 336 

another subunit of the same protein complex, both of which colocalize with GWAS signals for 337 

estimated glomerular filtration rate (eGFR), a marker of renal function (Fig. 6A-C). The INHBB 338 

protein itself is associated with eGFR in the AGES cohort in a directionally consistent manner 339 

(Fig. 6C-D). Thus, the associations of these genetic variants affecting different components of 340 

the same protein complex together with the consistent association between the protein itself and 341 

eGFR indicate a possible role for the inhibin/activin proteins in renal function. Another example 342 

is the colocalization between a GWAS signal for type 2 diabetes with the missense lead variant 343 

rs738409 in the PNPLA3 gene, a well established locus for non-alcoholic fatty liver disease32, 344 

and a trans-pQTL for ADP Ribosylation Factor Interacting Protein 2 (ARFIP2) (Fig. 6E), which is 345 

strongly downregulated in type 2 diabetes patients in AGES (Fig. 6F)18. These observations 346 

raise a number of new questions, for example how a missense variant in PNPLA3 leads to a 347 

change in the circulating levels of ARFIP2, if ARFIP2 provides some sort of readout of PNPLA3 348 

function and finally how ARFIP2 relates to type 2 diabetes, i.e. if it mediates any of the risk 349 

associated with this locus or if it is merely a bystander. Thus more generally, the novel links 350 

between genetic loci, proteins and disease risk observed here can be used to derive new 351 

hypotheses for further studies.  352 

 353 

 354 
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Discussion 355 

In this work, we present the largest genome-wide association study of serum protein levels to 356 

date in terms of protein coverage, and demonstrate a substantial increase in existing knowledge 357 

as regards the number of significant genetic associations to proteins in circulation. We 358 

furthermore provide a systematic evaluation of protein-phenotype associations in the context of 359 

established risk loci for numerous diseases and clinical traits. 360 

 The current study expands on our previous work8 by increasing the number of genetic 361 

variants included in the analysis (from cis-regions only to a genome-wide analysis), thus 362 

increasing the search space, but also enhancing statistical power for identifying genetic 363 

associations by increasing the sample size in genetic analyses from 3,219 previously to 5,368 364 

participants in the current study. Here, we identified study-wide significant genetic signals for 365 

half of the measured proteins and up to 16 independent genetic signals for a given protein. 366 

Thus, as for any other traits, the expected number of genetic associations for serum proteins 367 

can only be expected to increase with larger sample sizes, as has been demonstrated for 368 

CRP33. Large-scale meta-analyses across cohorts and biobanks will with time provide a more 369 

complete understanding of the genetic regulation of individual circulating proteins and their 370 

networks, including the effect of variability between different tissues on serum protein levels. 371 

The majority of cis and trans acting pQTLs detected in serum and plasma can be readily 372 

replicated across different populations, as shown in the current study, and different proteomic 373 

platforms8,9,17,21. However, a recent cross-platform comparison has shown that a subset of 374 

pQTLs are platform-specific and may in some cases represent epitope effects or other technical 375 

factors21. Thus, meta-analyses across platforms will still need to consider differences in 376 

analytical approaches and in cases where protein quantifications obtained by orthogonal 377 

methods differ, cis-pQTLs and mass spectrometry validation of probe targets may be good 378 

indicators of platform specificity34. 379 

 We demonstrate that proteins that are secreted, tissue-specific, more tolerant to LoF 380 

variants and with few connections in protein networks were most likely to be genetically 381 

controlled. This pattern was mainly driven by cis acting signals and not as apparent for the trans 382 

effects on protein levels, illustrating that cis- and trans-signals for serum proteins arose by 383 

different means and may differ in evolutionary properties. Our results are consistent with the 384 

notion that evolutionary important, and likely disease-relevant, genes undergo a negative 385 

selection against genetic cis-variants, which has been proposed as an explanation of the 386 

extreme polygenicity of complex traits35. The observed depletion of cis-variants among network 387 
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hubs in our study are furthermore in line with the recently proposed omnigenic model2, which 388 

suggests that core disease genes are rarely affected directly by GWAS variants but rather 389 

through a multitude of smaller effects mediated through cis-regulation of peripheral genes in 390 

regulatory networks. Thus, while our results provide a map of cis-regulatory effects for 812 391 

proteins, linking many of these to disease signals from GWAS studies, those without cis-effects 392 

may be even more important in the context of disease and should be studied further by other 393 

means. While hubs in the PPI network were depleted for any genetic signal, trans affected 394 

proteins showed higher degree of connectivity in the co-regulatory network compared to those 395 

with no detectable genetic signal. These findings demonstrate that the structure of the co-396 

regulatory network is to some extent be driven by genetic variants affecting multiple proteins. 397 

We also note that unlike PPI networks constructed in solid tissues, the serum protein networks 398 

are composed of protein members synthesized across different tissues of the body and as such 399 

may reflect cross-tissue regulation8 or factors that affect the levels of circulating proteins 400 

independently of their origin.  401 

 Among proteins with genetic associations, we find that many have multiple genetic 402 

signals, both across different loci throughout the genome but also within a given locus as 403 

revealed by conditional analysis, indicating that allelic heterogeneity is common in loci 404 

regulating serum protein levels. Widespread allelic heterogeneity has been described for gene 405 

expression36 and complex traits in general37. For serum proteins, this may reflect the complex 406 

regulation and diverse origin of proteins in circulation, as these proteins may arise from almost 407 

any tissue of the body. Furthermore, cis-pQTLs show a roughly 40% overlap with gene 408 

expression QTLs8,9, suggesting that a large fraction of the genetic effect is mediated through 409 

any of the many post-transcriptional steps involved in protein maturation.  410 

 The integration of well-established genetic associations for 81 diseases and disease-411 

related traits revealed a profound overlap with the genetic signals affecting protein levels in our 412 

study, where a third of the identified loci regulating serum protein levels colocalized with at least 413 

one GWAS phenotype. We identify examples of disease-associated loci colocalizing with many 414 

proteins, especially loci that also exhibit pleiotropic phenotype associations. Thus, it seems 415 

likely that the more complex the molecular consequences of a variant, the more likely it is to be 416 

associated with many different phenotypes, which has also been observed at the transcriptomic 417 

level38. The serum protein changes associated with any given disease signal can shed new light 418 

on the underlying pathways that are affected either before or after the onset of disease. The 419 

deep phenotyping of the AGES cohort allowed for an integrative analysis of genetic variants, 420 
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serum protein measurements and phenotypes within the same population. For proteins 421 

regulated by loci linked to a given disease-relevant phenotype, we observed an enrichment for 422 

associations to the same phenotype measures in our cohort, thus pointing to many novel 423 

candidate proteins that may play a role in regulating or responding to these phenotypes. 424 

However, it should be noted that while a pQTL that colocalizes with a signal for a disease or 425 

clinical trait may implicate causal candidates for mediating the genetic risk, it may just as well 426 

indicate downstream events or even unrelated parallel effects of a pleiotropic variant. 427 

Furthermore, the plasma proteome has been shown to change in waves throughout the human 428 

lifespan39, with a large proportion of proteins changing in old age. Thus some of the 429 

associations observed in the elderly AGES cohort may not be directly transferable to a younger 430 

population, but may at the same time shed light on the physiological relevance of circulating 431 

proteins in the aging process. Our study provides genetic instruments for further studies of 432 

causal relationships for specific examples, however mechanistic and experimental studies are 433 

warranted for determining the underlying chains of events behind these complex associations. 434 

Our results offer an in-depth inventory of information regarding the interconnections between 435 

genetic variants, serum proteins and disease relevant traits, which may encourage discoveries 436 

of novel therapeutic targets and fluid biomarkers, providing a robust framework for 437 

understanding the pathobiology of complex disease. 438 

 439 

 440 

Methods 441 

 442 

The AGES cohort 443 

Cohort participants aged 66 through 96 were included from the AGES-Reykjavik Study40, a 444 

prospective study of deeply phenotyped individuals of Northern European ancestry (Table S1). 445 

Blood samples were collected at the baseline visit after overnight fasting and serum lipids, 446 

glucose, HbA1c, insulin, uric acid and urea measured using standard protocols. LDL and total 447 

cholesterol levels were adjusted for statin use, with an approach similar to what has previously 448 

been described41. Hypertension medication use was accounted for by adding 15 mmHG to 449 

systolic blood pressure and 10 mmHG to diastolic blood pressure42. Serum creatinine was 450 

measured with the Roche Hitachi 912 instrument and estimated glomerular filtration rate (eGFR) 451 

derived with the four-variable MDRD Study equation43. Type 2 diabetes was defined from self-452 

reported diabetes, diabetes medication use or fasting plasma glucose ≥ 7 mmol/L. Type 2 453 
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diabetes patients were excluded from all analyses for fasting glucose, fasting insulin and 454 

HbA1c. Coronary artery disease was determined using hospital records and/or cause of death 455 

registry data. A coronary artery disease event was any occurrence of myocardial infarction, ICD-456 

10 codes: I21-I25, coronary revascularization (either CABG surgery or percutaneous coronary 457 

intervention (PCI)) or death from CHD according to a complete adjudicated registry of deaths 458 

available from the national mortality register of Iceland (ICD-10 codes I21–I25). Prostate cancer 459 

diagnosis was obtained from medical records (ICD-10 code C61). Information on migraine, 460 

Parkinson’s disease, eczema and thyroid disease was obtained from questionnaires. 461 

Alzheimer’s disease was determined with a consensus diagnosis based on international 462 

guidelines was made by a panel that includes a geriatrician, neurologist, neuropsychologist, and 463 

neuroradiologist and defined according to the criteria of the National Institute of Neurological 464 

and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 465 

Association (NINCDS-ADRDA), as previously described44. Hospital- and mortality data was also 466 

used to identify cases according to the ICD-10 code F00. Age-related macular degeneration 467 

(AMD) in the AGES-Reykjavik study has been previously described45, but in short was defined 468 

by the presence of any soft drusen and pigmentary abnormalities (increased or decreased 469 

retinal pigment) or the presence of large soft drusen ≥125µm in diameter with a large drusen 470 

area >500µm in diameter or large ≥125µm indistinct soft drusen in the absence of signs of late 471 

AMD. Maximum grip strength of the dominant hand was measured by a computerised 472 

dynamometer, as previously described46. Bone mineral density was estimated from a CT scan 473 

of the femur47. The AGES-Reykjavik study was approved by the NBC in Iceland (approval 474 

number VSN-00-063), and by the National Institute on Aging Intramural Institutional Review 475 

Board, and the Data Protection Authority in Iceland. All participants provided informed consent. 476 

 477 

Protein measurements 478 

Serum levels of 4,135 human proteins, targeted by 4,782 SOMAmers48, were determined at 479 

SomaLogic Inc. (Boulder, US) in samples from 5,457 AGES-Reykjavik participants as previously 480 

described8. A few SOMAmers are annotated to more than one gene, for example when the 481 

target is a protein complex, thus the 4,782 SOMAmers are annotated to a total of 4,118 unique 482 

targets (annotated as one or more Entrez gene symbols) in the most up to date inhouse 483 

annotation database, which were used in all analyses. Sample collection and processing for 484 

protein measurements were randomized and all samples run as a single set. The SOMAmers 485 

that passed quality control had median intra-assay and inter-assay coefficient of variation (CV) 486 

<5% similar to that reported on variability in the SOMAscan assays49. In addition to multiple 487 
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types of inferential support for SOMAmer specificity towards target proteins including cross-488 

platform validation and detection of cis-acting genetic effects8, direct measures of the SOMAmer 489 

specificity for 779 of the SOMAmers in complex biological samples was performed using 490 

tandem mass spectrometry8. Previous studies have shown that pQTLs replicate well across 491 

proteomics platforms8,9. While a recent comparisons of protein measurements across different 492 

platforms showed a wide range of correlations21,34, cis pQTLs and validation by mass 493 

spectrometry were predictive of a strong correlation across platforms and are likely good 494 

indicators of platform specificity when protein concentrations obtained by orthogonal methods 495 

differ34. Hybridization controls were used to correct for systematic variability in detection and 496 

calibrator samples of three dilution sets (40%, 1% and 0.005%) were included so that the 497 

degree of fluorescence was a quantitative reflection of protein concentration. In the main text 498 

the results are described  at a protein level instead of SOMAmer level, to avoid overcounting as 499 

some proteins are targeted by more than one SOMAmer that were selected to different forms or 500 

domains of the same protein. Thus, when we refer to a protein having a genetic signal, this 501 

indicates that any of the protein’s SOMAmers are associated with that genetic signal. 502 

 503 

Genotyping and imputation 504 

Within the AGES cohort, 3,219 individuals were genotyped with the Illumina hu370CNV array 505 

and 2,705 individuals genotyped with the Illumina Infinium Global Screening Array. Data from 506 

both genotype arrays underwent quality control procedure, separately, removing variants with 507 

call rate < 95% and HWE p-value < 1×10-6. Both arrays were imputed against the Haplotype 508 

Reference Consortium imputation panel r1.1 with the Minimac3 software50. Post-imputation 509 

quality control consisted of filtering out variants with imputation quality R2 < 0.7, MAF < 0.01, as 510 

well as monomorphic and multiallelic variants for each platform separately. Genotypes for 511 

remaining variants, with matching location and alleles between platforms, were merged to 512 

create a dataset with 7,506,463 variants for 5,656 individuals (268 individuals were genotyped 513 

on both platforms, with a 99% match of genotypes for the final set of variants between 514 

platforms). The quality control procedure was performed using bcftools (v1.9)51 and PLINK 515 

1.952. All positions are based on genome assembly GRCh37. 516 

 517 

GWAS and conditional analysis 518 

Box-Cox transformation was applied on the protein data53 and extreme outlier values were 519 

excluded, defined as values above the 99.5th percentile of the distribution of 99th percentile 520 
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cutoffs across all proteins after scaling, resulting in the removal of an average 11 samples per 521 

SOMAmer, as previously described18. Within the AGES cohort, 5,368 individuals had both 522 

genetic data and protein measurements. With that sample set, 7,506,463 variants were tested 523 

for association with each of the 4,782 SOMAmers separately, in a linear regression model with 524 

age, sex, 5 genetic principal components and genotyping platform as covariates using PLINK 525 

2.0. To obtain independent genetic signals, we performed a stepwise conditional association 526 

analysis for each SOMAmer separately with the GCTA-COJO software54,55. We conditioned on 527 

the current lead variant, defined as the variant with the lowest p-value, and then kept track of 528 

any new lead variants with study-wide-significant associations. Variants in strong LD (r2 > 0.9) 529 

with previously chosen lead variants were not considered for joint analysis to avoid 530 

multicollinearity. Associations with independent lead variants within 300kb window of the gene 531 

boundaries of the protein-coding gene were defined as cis-signals, and otherwise in trans. To 532 

compare independent signals between SOMAmers, we define any signals with lead variants in 533 

strong LD (r2 > 0.9) as the same signal. Due to the complex LD structure and high pleiotropy of 534 

the MHC region56 (chr.6, 28.47-34.45Mb) we collapsed all signals within that region to a single 535 

signal. To define loci harboring independent signals, we defined a 300 kb window around each 536 

independent signal (150 kb up- and downstream of lead variants) and collapsed all such 537 

intersecting windows. Therefore, the definition of loci is solely based on physical distances while 538 

the definition of independent signals is solely based on LD structure. The GWAS results were 539 

visualised using Circos57. Pathway enrichment was performed using gProfiler58, using the full 540 

set of measured proteins as background and considering Benjamini-Hochberg FDR<0.05 as 541 

statistically significant. Enrichment of tissue-elevated gene expression was performed using 542 

data from the Human Protein Atlas59 with a Fisher’s exact test, considering Benjamini-Hochberg 543 

FDR<0.05 as statistically significant.  544 

 545 

Comparison with previous proteogenomic studies 546 

To evaluate the novelty of the genetic associations identified in the current study, we compared 547 

our results to 20 previously published proteogenomic studies (Supplementary Table 5), 548 

including the protein GWAS in the INTERVAL study9, our previously reported genetic analysis of 549 

3,219 AGES cohort participants8, and a recent Illumina exome array analysis in 5,343 AGES 550 

participants20. In a previous proteogenomic analysis of AGES participants8, one cis variant was 551 

reported per protein using a locus-wide significance threshold, as well as cis-to-trans variants at 552 

a Bonferroni corrected significance threshold, whereas the more recent exome-array analysis20 553 

reported results at a study-wide significant threshold (P<1×10-10). Due to these differences in 554 
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reporting criteria, we only considered the associations in previous AGES results that met the 555 

current study-wide p-value threshold (P < 1.046×10-11). For all other studies we retained the 556 

pQTLs at the reported significance threshold. In addition, we performed a lookup of all 557 

independent pQTLs from the current study available in summary statistics from the INTERVAL 558 

study, considering them known if they reached a study-wide significance in their data. We 559 

calculated the LD structure between the reported significant variants for all studies, using 1000 560 

Genomes v3 EUR samples, but using AGES data when comparing to previously reported AGES 561 

results. We considered variants in LD (r2>0.9 for consistency for defining signals across 562 

SOMAmers described above, but results for r2>0.5 are additionally shown in Supplementary 563 

Note 1) to represent the same signal across studies. Comparison was performed on protein 564 

level, by matching the reported Entrez gene symbol from each study. 565 

 566 

Enrichment analysis 567 

We grouped the proteins into three categories derived from our GWAS results; a) proteins with 568 

at least one cis signal, b) proteins with no cis signals and at least one trans signal and c) 569 

proteins with no genetic signal. From our data we also derived three continuous traits for a given 570 

protein; a) number of associated independent signals, b) highest absolute beta coefficient of all 571 

associated signals and c) number of proteins that share genetic signals with the given protein, 572 

which is essentially a quantitative representation of whether a protein is a part of a trans 573 

hotspot. We fetched publicly available data regarding; a) tissue elevated gene expression, 574 

where “Tissue Enriched” in our analyses refers to the “Tissue Enriched”, “Tissue Enhanced” or 575 

“Group Enriched” categories defined by Uhlen et al.22, b) tissue elevated protein expression, 576 

where “Tissue Enriched” in our analyses refers to the “Tissue Enriched”, “Tissue Enhanced” or 577 

“Group Enriched” categories defined by Wang et al.23, c) annotation of secreted and 578 

transmembrane proteins, classifying proteins as secreted or transmembrane if it was predicted 579 

so by at least one method or one segment, respectfully22, d) gene-level loss-of-function 580 

intolerance24 and e) network degree in the InWeb protein-protein interaction network25. 581 

Furthermore, we estimated hub status of proteins within the serum protein co-regulation network 582 

derived from the AGES cohort8. Protein classifications were compared using a Fisher’s exact 583 

test, where the estimate is the odds ratio. Continuous parameters were compared between 584 

protein classes using the Wilcoxon Rank Sum test and for the estimate we calculated the 585 

median of the difference between values from the two classes, so the size of the estimate is 586 

dependent on the scale of the values. For comparing two continuous traits we used Spearman’s 587 

Rho correlation. We report 95% confidence intervals of all estimates.  588 
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 589 

GWAS colocalization analysis 590 

We included 81 phenotypic traits including major disease classes in the colocalization analysis, 591 

for which GWAS summary statistics were publicly available from consortium websites and the 592 

GWAS catalog60. We restricted the study selection to those with study sample sizes of n > 10K, 593 

of primarily European Ancestry (to match the AGES cohort's LD structure), having at least one 594 

genome-wide significant association (P<5×10-8) and selecting one study per phenotype (Table 595 

S8). For each trait, significant loci were defined by identifying all genome-wide variants 596 

(P<5×10-8) at least 500kb apart, defining a flanking region of 1 Mb around each lead variant and 597 

finally merging overlapping regions. For each GWAS locus, all SOMAmers with a study-wide 598 

significant association (cis or trans) within the given region were tested for colocalization, if at 599 

least 50 SNPs in the region had complete information from both trait and protein GWAS. When 600 

the MAF was not available for a given GWAS, the 1000 Genomes EUR MAF was used instead. 601 

Colocalization analysis was performed with coloc (v.3.2-1)61, using the coloc.abf function with 602 

default priors. High and medium colocalization support was defined as PP.H4>0.8 and 603 

PP.H4>0.5, respectively. Conditional colocalization analysis was performed using coloc 4.0-462, 604 

using the “allbutone” option and restricted to loci harboring more than one independent signal 605 

per protein. Unlike the primary coloc analysis, the conditional analysis requires the GWAS effect 606 

size to be included, thus the phenotypes AMD, ATD and PD were excluded from this analysis 607 

which did not have this information available in the GWAS summary statistics. Results were 608 

visualized with LocusCompare63. 609 

 610 

Phenotype associations 611 

For each GWAS phenotype with a corresponding measurement in AGES and well represented 612 

at the population level (Table S8), the colocalized proteins were tested for association with the 613 

phenotype in all AGES participants with protein data available (n = 5,457, see n missing per 614 

phenotype in Table S1), in a linear or logistic regression model adjusted for age and sex. The 615 

SOMAmer with the lowest P-value was chosen for each protein, and P-values were 616 

subsequently adjusted for the number of proteins tested for each trait by Benjamini-Hochberg 617 

FDR. For each phenotype with at least five colocalized proteins, the proportion of significantly 618 

associated proteins (FDR<0.05) was compared to that obtained by 1000 randomly sampled 619 

protein sets of the same size, again choosing the SOMAmer with the lowest P-value per protein, 620 

and an empirical P-value calculated. The analysis was repeated by excluding proteins 621 

originating from loci where five or more proteins colocalized with the same phenotype. The 622 
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same enrichment analysis was additionallly performed for each individual locus where where 623 

five or more proteins colocalized with the same phenotype. 624 

 625 
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Figures  656 

 657 

 658 

Fig. 1 - A) Circos plot showing every study-wide significant variant-protein association from the 659 

protein GWAS (n = 5,368). The innermost layer shows links between independent signals and 660 

trans gene locations of associated proteins. Trans hotspots are colored by the chromosome 661 

they originate from. The second layer states the nearest genes to these trans hotspots. The 662 

third layer is a histogram of the distribution of the independent signals, where each bar 663 

represents the number of independent signals within 300kb from each other, values ranging 664 

from 1 to 38. The outermost layer is a Manhattan plot for all proteins, P-values ranging from 665 

1×10-11 to 1×10-300 (capped), colored by cis (pink) or trans (green). B) Barplot showing number 666 

of proteins, binned by the number of associated independent signals, colored by cis (pink), trans 667 

(green) or both (mustard). C) Barplot showing number of independent signals, binned by the 668 

number of associated proteins, colored by cis (pink), trans (green) or both (mustard). D) Barplot 669 

showing the number of novel associations compared to similar large-scale genotype-protein 670 

association studies. 671 

  672 

 673 
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 675 

 676 

Fig. 2 - Enrichment analysis estimates and 95% confidence intervals comparing characteristics 677 

between proteins classified by types of genetic association signals. See main text for definitions. 678 

A) Fisher’s exact test for comparing classifications. B) Wilcoxon’s rank sum test for comparing 679 

classifications with continuous traits. The estimate and confidence interval represents the 680 

median of the difference between values from the two classes. The stars on the right indicate 681 

statistical significance; * p < 0.05, ** p < 0.001. 682 

 683 

 684 
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686 
Fig. 3 – Overivew of colocalization between protein and phenotype associations across the 687 

genome. Each dot represents a genetic locus (genomic location on x-axis) that is associated 688 

with a phenotype (y-axis), where the dots size indicates the number of colocalized proteins 689 

(coloc PP4>0.5). Phenotype abbreviations are available from Table S8. 690 

 691 
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 692 

 693 

Fig. 4 – A) An overview of independent genome-wide significant genetic signals (orange 694 

nodes), annotated by the SNP with the strongest protein association, at the ABO locus (chr 9, 695 

136,127,268 – 136,155,127) and their links to proteins (grey nodes) and phenotypes (purple 696 

nodes). Edges between genetic signals and proteins indicate primary (dark edges) and 697 

secondary (light edges) independent signals from the conditional analysis. Edges between 698 

genetic signals and traits indicate that any of the lead pQTL SNPs within that signal reaches 699 

P<5×10-8 in GWAS summary statistics for the given trait, and the primary signal is assigned for 700 
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the trait based on the lowest P-value. B) An overview of the independent genome-wide 701 

significant genetic signals (orange nodes), annotated by the SNP with the strongest protein 702 

association, at the FUT2 locus (chr 19, 49,206,108 – 49,252,151) and their links to proteins 703 

(grey nodes) and the phenotypes they colocalize with (purple nodes). The background color 704 

indicates tissue-elevated expression in salivary gland, intestine or stomach. C) Enrichment 705 

(Fisher’s exact test) of tissue-elevated expression among the 19 proteins regulated by the FUT2 706 

locus where Benjamini-Hochberg FDR<0.05 is considered significant (red). Phenotype 707 

abbreviations are available from Table S8. 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

Fig. 5 - Ridgeline plot illustrating for each GWAS phenotype the proportion of colocalized 716 

proteins that were significantly (FDR<0.05) associated with the same trait in AGES (n = 5,457) 717 

(black lines) compared to 1000 randomly sampled sets of proteins of the same size (density 718 

curves), here showing only those with empirical P<0.05, see full results in Fig. S19. The number 719 

of colocalized proteins for each trait are provided on the left-hand side, along with the number of 720 
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proteins remaining after the removal of proteins originating from loci with 5 or more colocalized 721 

proteins from the analysis, annotated as no transhotspots (nth). Empirical p-values for 722 

significant enrichment of trait-associations are denoted as such: *P < 0.05, **P < 0.001. 723 

WHRadjBMI, waist-to-hip ratio adjusted for BMI; TC, total cholesterol; T2D, type 2 diabetes; 724 

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TG, 725 

triglycerides; MCH, mean corpuscular hemoglobin; AMD, age-related macular degeneration; AD 726 

Alzheimer’s disease. 727 

 728 

 729 
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 730 

Fig. 6 – A-B, Colocalization between GWAS signals for eGFR and INHBB at A) the 731 

INHBB locus on chromosome 2 and B) the INHBC locus on chromosome 12. C) A 732 

schematic diagram showing the convergence of genetic effects on serum levels of 733 
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INHBB at the INHBB locus in cis and INHBC locus in trans. Variants in the INHBC locus 734 

furthermore affect INHBC serum levels in cis, albeit not reaching study-wide significance 735 

(P = 8.5×10-8). Serum levels of INHBB and INHBC are positively correlated (Pearson’s r 736 

= 0.32, P = 3.4×10-130), while both are negatively associated with eGFR (beta = -4.52, 737 

SE = 0.23, P = 1.3×10-82 and beta = -2.62, SE = 0.22, P = 5.4×10-32, respectively). 738 

  739 
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