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A multimodal AI system for out-of-distribution generalization of
seizure detection

Yikai Yang1, Nhan Duy Truong1, Jason K. Eshraghian3, Christina Maher1, Armin Nikpour2 and Omid Kavehei1,∗

Abstract—Epilepsy is one of the most common severe neu-
rological disorders worldwide. The International League Against
Epilepsy (ILAE) define epilepsy as a brain disorder that generates
(1) two unprovoked seizures more than 24 hrs apart, or (2) one
unprovoked seizure with at least 60% risk of recurrence over the
next ten years. Complete remission has been defined as ten years
seizure free with the last five years medication free. This requires
a cost-effective ambulatory ultra-long term out-patient monitor-
ing solution. The common practice of self-reporting is inaccurate.
Applying artificial intelligence (AI) to scalp electroencephalogram
(EEG) interpretation is becoming increasingly common, but other
data modalities such as electrocardiograms (ECGs) are simpler
to collect and often recorded simultaneously with EEG. Both
recordings contain biomarkers in the detection of seizures.

Here, we propose a state-of-the-art performing AI system
that combines EEG and ECG for seizure detection, tested on
clinical data with early evidence demonstrating generalization
across hospitals. The model was trained and validated on the
publicly available Temple University Hospital (TUH) dataset. To
evaluate performance in a clinical setting, we conducted non-
patient-specific inference-only tests on three out-of-distribution
datasets, including EPILEPSIAE (30 patients) and the Royal
Prince Alfred Hospital (RPAH) in Sydney, Australia (31 patients
shortlisted by neurologists and 30 randomly selected). Across
all datasets, our multimodal approach improves the area under
the receiver operating characteristic curve (AUC-ROC) by an
average margin of 6.71% and 14.42% for prior state-of-the-
art approaches using EEG and ECG alone, respectively. Our
model’s state-of-the-art performance and robustness to out-of-
distribution datasets can improve the accuracy and efficiency of
epilepsy diagnoses.

I. INTRODUCTION

Epilepsy affects about 1% of people globally, placing it
as one of the most common severe neurological disorders
worldwide [1]. It entails some severe neuropsychiatric and
psycho-social comorbidities that include stigmatization, so-
cial exclusion, and unemployment. The side-effects of daily
medicine consumption include depression and anxiety [2]–[5].
Accurate and objective seizure counting play an integral role in
a wide range of clinical diagnoses and management decisions
for epilepsy.

The International League Against Epilepsy (ILAE) define
epilepsy as a brain disorder that generates (1) two unprovoked

∗ Corresponding author
1 Y. Yang, N.D. Truong, C. Maher, and O. Kavehei are with the School

of Biomedical Engineering, and the Australian Research Council Training
Centre for Innovative BioEngineering, Faculty of Engineering, The University
of Sydney, NSW 2006, Australia.{yikai.yang, duy.truong, christina.maher,
omid.kavehei}@sydney.edu.au

2 A. Nikpour is with the Comprehensive Epilepsy Services, Department of
Neurology, The Royal Prince Alfred Hospital, NSW 2050. He is also with
the Faculty of Medicine and Health, The University of Sydney, NSW 2006,
Australia. armin@sydneyneurology.com.au

3 Jason K. Eshraghian is with the Department of Electrical Engineering and
Computer Science, University of Michigan and he is also with the School of
Medicine, University of Western Australia. jasonesh@umich.edu

seizures that are more than 24 hrs apart, or (2) one unprovoked
seizure with at least 60% risk of recurrence over the next
ten years [6]. Accurate seizure counting in the long-term
has important implications for driving the management of
epilepsy [6]. For instance, being seizure-free for ten years,
while off antiepileptic drugs (AEDs) for at least five, identifies
whether epilepsy is considered in remission. Epilepsy misdi-
agnosis or delayed diagnosis is unfortunately still common and
has serious consequences [7], [8]. False positives can lead to
inappropriate prescription of AEDs that result in mistreated
or worsening symptoms [8], [9]. This issue is compounded
by societal inequities, as 80% of patients with epilepsy are
amongst low to middle-income populations, and 75% of them
do not receive any treatment [10]. The treatment gap can be
attributed to inequities in distribution and access to services,
stigma associated with the disease, lack of sufficient expert
resources (neurologists), and an inadequate supply of AEDs.

The golden standard of epilepsy diagnosis relies on surface
or scalp electroencephalogram (EEG) readings and accurate
annotation [11]. Over the past two decades, there has been
widespread use of EEG signals for seizure documentation
and seizure forecasting [12], [13]. Plausible reasons for the
abnormally high level of false positives of clinician-readings
may include the lack of formal standards or mandatory training
in reading EEG, the time consuming nature of analyzing
lengthy recordings, and the absence of confirmatory readings.
A strong case can be made for secondary EEG interpretations
given the difficulties outlined, and is an opportunity for
automated seizure detection models to act as clinician support
systems. Beyond augmented intelligence systems, fully au-
tonomous agents performing seizure detection is a prerequisite
to developing closed-loop neurostimulation devices for seizure
suppression.

Recently, several deep learning techniques have achieved
promising results using EEG for non-patient-specific seizure
detection on the Temple University Hospital (TUH) EEG
dataset [14]. Beyond clinical use (in- and out-patients), EEG-
based methods are limited as the recording apparatus is
typically not designed for ongoing wear and would otherwise
cause discomfort. Attempts to reduce the number of EEG
channels have yielded limited results. A recent approach saw
the Neureka 2020 Epilepsy Challenge accounting for the
number of channels in their scoring formula. Despite this,
the winner of this challenge relied on a 16-channel EEG
and still only managed to achieve 12.37% sensitivity (with
one false alarm per 24 hours) [15]. 16-channels are clearly
inappropriate for ambient use, and the state-of-the-art result
highlights the challenges associated with developing a high-
performance EEG-based seizure detection system using a
constrained number of electrodes. Portability requires comple-
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mentary biomarkers to EEGs that are already integrated into
wearable devices [16].

Epileptic seizures are known to cause short-term and long-
term heart rate disturbances. Ictal tachycardia occurs in over
80% of partial onset-seizures [17], [18], which may precede
electrographic or clinical onset [19], [20]. Compared with
EEG, ECGs are relatively more portable, and are routinely
recorded simultaneously with EEG [21]. Most successful
studies using ECG have focused on identification of seizure
onset (early prediction) [22], [23], for instance, using heart-rate
variability (HRV) to predict events in children with temporal-
lobe epilepsy [19], [24]–[26]. In contrast, ECG for seizure
detection has had limited focus as its performance is not
yet comparable with multi-channel EEGs. Despite the lower
performance of lone usage, ECG recordings can also extract
markers of seizure events that EEGs may not pick up.

On clinical utility, a significant challenge in AI-based
seizure detection is the need for models that generalize across
patients, recording equipment, and hospitals. The reality is that
many clinics are unlikely to generate a sufficient amount of
labeled data in a format immediately usable as a training set for
deep learning models. The practices of one clinic are likely to
differ from those of another, as is the recording equipment and
parameters (e.g., variation in sampling rates, slight differences
in electrode positioning). There is no guarantee that the large
epilepsy datasets available can generalize sufficiently enough
to deploy hospital-specific models. Unfortunately, all prior
works reported in a recent review [27] on the application
of deep learning on seizure detection, are retrospective and
were only benchmarked on test sets sourced identically to
the training set. Such models provide low confidence for
deployment in clinics that differ from where the data was
gathered. This requires rigorous testing and high performance
on out-of-distribution datasets. Despite being a key barrier to
deployment, generalization across hospitals is not a common
metric that is optimized for due to its associated difficulties.

The recent study in [28] leveraged the abundance of weak
annotations that were analyzed by a mixed group of techni-
cians, fellows, students, and epileptologists to train a convo-
lutional neural network (CNN), achieving an area under the
receiver operating characteristic curve (AUC-ROC) score of
0.78. When generalizing the network to the Stanford hospital
dataset, the AUC-ROC score dropped to 0.70. This study
provides one of very few publicly available inter-hospital
results of a deep learning algorithm using EEG recordings.
In our recent work [29], our approach reached an AUC-ROC
score of 0.84 using a convolutional long short-term memory
(ConvLSTM) network tested on unseen patient data. These re-
sults show the potential of attaining specialist-level diagnostic
capability that can be used as either a primary diagnostic tool
or secondary decision support system. But not only is there
insufficient evidence of useful out-of-distribution performance,
these deep learning methods ignore insight provided by other
biomarkers that clinicians have access to.

This study aims to improve the seizure detection rate
in adults by combining simultaneously acquired EEG and
ECG recordings in a fused deep learning system. Our study
demonstrates that using both recordings in an appropriately

structured multimodal neural network can provide a more
robust diagnosis than either measurement alone, and also
improves upon previously reported state-of-the-art multimodal
neural networks applied to this task [30]. To the best of
our knowledge, only a set of limited works concatenates
EEG and ECG recordings for seizure detection, one in par-
ticular, achieving an AUC-ROC improvement of 0.01 and
0.11, when compared with EEG-only and ECG-only mod-
els, respectively [31], [32]. However, naively concatenating
different features in a machine learning model poses several
challenges. The use of more features opens up susceptibility to
overfitting; combining heterogeneous sources of data increases
the difficulty of feature extraction; the inability to isolate
the noise of correlated distributions can increase the bias
of the network. These issues can severely harm the out-of-
distribution performance on unseen patients and datasets.

In this paper, we demonstrate state-of-the-art performance
of non-patient-specific seizure detection, and provide early ev-
idence of generalization on out-of-distribution datasets across
continents with different data acquisition hardware infras-
tructure. We achieve this by designing a multimodal neural
network model that accounts for the independent contributions
of EEG and ECG towards the classification of seizure events,
in addition to their correlated contribution. We expect this
novel network architecture to be capable of improving other
multimodal tasks as well. The main contributions of this paper
are summarized below:

• A non-patient specific multimodal deep learning model
using both EEG and ECG data is developed. We train
and validate the model on the publicly available TUH
dataset (US). The model is evaluated on a carved out
test set, achieving an improvement of the AUC-ROC by
a margin of 2.18% over the use of EEGs alone, and by
1.67% over previously state-of-the-art multimodal neural
networks that use both EEG and ECG signals together.

• Early evidence of generalization is shown by pseudo-
prospectively assessing performance on datasets acquired
across hospitals in two different continents without any
retraining. The European EPILEPSIAE dataset (30 pa-
tients) and the Australian RPAH datasets (total of 61
patients in two separate groups) are acquired with dif-
ferent electrophysiological recording infrastructure. The
AUC-ROC on the European dataset is 0.8595, and 0.8549
for the Australian dataset. The average improvement of
the AUC-ROC across all three out-of-distribution datasets
over the prior state-of-the-art deep learning using EEG
and ECG are 6.71% and 14.42%, respectively.

• We introduce a novel and robust multimodal deep learn-
ing model which advances upon the previous state-of-the-
art in modality fusion, ‘EmbraceNet’ [30]. Our model
utilizes both independent and cross-modal relationships
between the two input data distributions. We develop
a separate baseline using EmbraceNet and maintain a
higher AUC-ROC by a margin of 1.76%.

• We evaluate the performance of our network when either
EEG or ECG data modalities are missing in order to
assess the usefulness of our model for patients that lack
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either measurement. Our proposed model performance
drops by an average of only 1.53% when compared
to the dedicated ECG-only baseline, and improves by
an average of 1.30% when compared to the EEG-only
baseline. These values are obtained by averaging the
AUC-ROC of the TUH dataset and the out-of-distribution
datasets, showing that our network is still effective in the
absence of either recording.

To the best of our knowledge, this is the first inference-only
(pseudo-prospective) study combining EEG and ECG modal-
ities for seizure detection using a fusion of two deep learning
networks. At the time of writing, this approach achieves
the highest AUC-ROC on the TUH dataset. The remainder
of the paper is organized as follows. The following section
describes the features of the datasets used in the models.
Section III introduces the proposed method for automatic
seizure detection and the multimodal network. Finally, we
discuss the results and conclude the paper.

II. DATASET

Three datasets are used in this work: the Temple University
Hospital (TUH) seizure corpus [14], EPILEPSIAE [33], and
two sets from the Royal Prince Alfred Hospital (RPAH) [29].
All datasets contain surface EEG data from adult individu-
als living with epilepsy. These datasets are summarized in
Tables I, II, and III. Only the TUH dataset is used to train
and validate our network. Pseudo-prospective evaluations are
performed on the EPILEPSIAE and RPAH datasets (without
any re-training). The TUH (US), EPILEPSIAE (Germany),
and RPAH (Australia) datasets are from three continents
recorded with different data acquisition infrastructures.

For a rigorous evaluation on challenging data, such as a
variety of seizure types, and various foci on the brain network
inputs to the autonomic nervous system [34], the RPAH dataset
is divided into two test sets: one set includes 31 patients
with different seizure foci and are shortlisted (selected) by
neurologists from a long list of patients. The aim was to
consider seizure type and semiology in expert selection of
patients. The second set includes 30 patients who are randomly
selected from the same pool without any prior information.

A. TUH dataset

The world’s largest open database, the Temple University
Hospital (TUH) seizure corpus [14], was used for training and
validation of our deep learning model. The TUH dataset con-
sists of simultaneously recorded EEG and ECG data. Patients
with missing ECG recordings were omitted, leaving 1,095
sessions with 540 patients (174 participants with seizures) in
the training set. The training set was randomly split (80/20) for
training and validation. After training and parameter tuning,
the model is then fixed for all future evaluation, hence a
pseudo-prospective analysis can be undertaken.

For testing on the TUH dataset, we used 228 sessions
with 46 patients (36 patients with seizures). In the absence
of a publicly released labeled test set, we treat the TUH
development dataset as the unseen test set to reduce bias in
our assessment. This is summarized in Table I. To assess

TABLE I: TUH dataset summary (EEG and ECG)

Attribute Train/Dev (80/20) Test

Files 4141 953
Sessions 1095 228
Patients 540 46
Files with seizures 746 258
Sessions with seizures 301 94
Patients with seizures 174 36
Number of seizures 2129 650
Background duration (hours) 669.3 149.2
Seizure duration (hours) 43.0 14.6
Total duration (hours) 712.3 163.8

*The default training set was randomly split with a ratio of 80-20 to create a validation
subset. The dedicated development set from the TUH seizure corpus was used as the
carved-out test set.

clinical utility, strictly no further training, tuning, or model
selection took place beyond what we were satisfied with on
the TUH train and development sets. This strictly inference-
only approach on the out-of-distribution test sets is adopted to
emulate a prospective study.

B. EPILEPSIAE dataset

EPILEPSIAE is the largest epilepsy EEG database in Eu-
rope, containing EEG and ECG data from 275 patients [33]. In
this work, we analyze scalp-EEG and ECG with 19 electrodes
of 30 patients with 238 seizures and 4,604 recording hours in
total. The sampling rate of the EEG is 256 Hz.

C. RPAH dataset

We have extracted 192 adult in-patient EEG monitoring
data between 2011 to 2019 at RPA Hospital in Sydney, and
long-listed 111 patients with seizures recorded. In this study,
RPAH neurologists assist in shortlisting 31 epilepsy adults
with different seizure foci. Specifically, neurologists were
asked to select patients with the six most common seizure
types, namely generalized, frontal, frontotemporal, temporal,
parietal, and unspecified focal epilepsy (see Table III). The
total number of seizures and the mean seizure duration are
238 and 97.2 seconds, respectively. To confirm the reliability
of our fused network, a randomized test is also performed
where 30 patients from 111 adult patients with seizures are
randomly selected without any prior information. Note that
the ratio of the total seizure duration (time) over the total
background data for RPAH data is significantly higher than
the curated TUH dataset; hence it creates a highly realistic
inference-only evaluation for false positives. This is mainly
due to more network exposure to noise and artifacts.

III. METHODS

A. Pre-processing

1) EEG: Prior to being passed into the neural network, eye
artifacts are removed, and frequency information is extracted
by using independent component analysis (ICA) [35] and
short-time Fourier Transform (STFT).

The EEG signals are first split into 12-second segments,
and then the ICA algorithm is applied to decompose the signal
into several statistically independent components. Blind source
separation (BSS) [36] is used in the ICA [35] algorithm
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TABLE II: The EPILEPSIAE scalp-EEG (ECG) dataset.

Patient Gender Age SN Seizure-Foci Surgery RD (h) Mean SD (s) Range SD (s)

1 M 36 11 Central&Parietal N 164.7 78.3 [54.5, 162.0]
2 F 46 8 Temporal N 177.4 52.9 [4.3, 71.3]
3 M 41 8 Temporal Y 143.3 58.6 [34.3, 102.8]
4 F 67 5 Temporal N 167.8 121.0 [84.3, 166.1]
5 F 52 8 Frontal&Temporal N 266.4 92.3 [11.3, 379.1]
6 M 65 8 Temporal N 135.4 50.2 [0.0, 105.1]
7 M 36 5 Temporal Y 118.1 46.7 [29.3, 79.6]
8 M 26 22 Frontal N 115.6 20.1 [0.9, 96.3]
9 M 47 6 Temporal Y 94.0 71.4 [65.9, 83.8]
10 M 44 11 Frontal&Temporal Y 138.0 39.9 [0.0, 68.1]
11 M 48 14 Central&Temporal N 138.1 63.6 [19.4, 100.4]
12 M 28 9 Temporal Y 159.7 41.4 [31.2, 60.8]
13 M 46 8 Frontal&Temporal N 158.1 91.0 [55.0, 125.5]
14 F 62 6 Temporal N 162.2 124.0 [83.0, 174.1]
15 F 41 5 Temporal N 118.7 64.9 [7.6, 144.0]
16 F 15 6 Temporal Y 92.9 56.1 [2.5, 99.0]
17 F 17 9 Temporal N 159.1 55.8 [33.3, 76.5]
18 M 47 7 Temporal N 178.2 41.7 [22.7, 69.4]
19 M 32 22 Temporal N 161.1 65.2 [43.1, 96.5]
20 M 47 7 Temporal Y 164.6 59.5 [19.1, 119.8]
21 F 31 8 Occipital Y 159.4 51.9 [9.3, 118.9]
22 M 38 7 Parietal Y 137.9 95.7 [55.5, 145.1]
23 M 50 9 Temporal N 237.5 56.1 [18.8, 88.0]
24 F 54 10 Temporal Y 94.4 72.9 [49.6, 122.8]
25 M 42 8 Central N 159.7 329.3 [73.8, 909.2]
26 M 13 9 Temporal Y 159.0 62.7 [38.0, 104.5]
27 M 58 9 Temporal Y 159.5 95.3 [43.9, 331.2]
28 F 35 9 Temporal&Parietal N 162.3 86.2 [59.4, 216.9]
29 M 50 10 Temporal N 161.1 180.7 [62.1, 270.0]
30 F 16 12 Temporal N 159.8 75.2 [10.0, 151.9]

Total − − 238 − − 4604 75.9 [0.0, 909.2]

M: Male, F: Female, SN: Number of seizures, RD: Recording duration, Mean SD: Mean of seizure duration, Range SD: Seizure duration range

to obtain several statistically independent topographic maps.
Eq. 1 shows the working principle of BSS, where T ∈ RIt×Ie

is the multi-channel EEG signal, It represents the number of
samples over time, and Ie is the number of electrodes. After
decomposition, M ∈ RIt×R contains temporal information of
the decomposed signal, A ∈ RIe×R contains the topographic
weight map, and R is the source number estimation.

T ≈MA> (1)

Eye movement information is recorded on the electro-
oculography (EOG) channel, which is physically close to the
EEG channels labeled ‘FP1’ and ‘FP2’. To remove this artifact,
a fully automated approach based on Pearson correlation
is used [37]. Independent signal information with a strong
correlation with channels ‘FP1’ and ‘FP2’ above a given
threshold (based on adaptive z-scoring) are removed. STFT
is then applied to the clean EEG signals with a 250 sample
(or 1 second) window length and 50% overlapping. The DC
component of the transform is removed as it is known to
have no relation to seizure occurrences. The pre-processed
dimensionality of the input data becomes (n×23×125), where

n is the number of electrodes, 23 is the time sample, and 125 is
the range of frequencies. Artifact removal is performed using
the MNE Python package. [38].

2) ECG: Heart rate variability (HRV) [39] is one of
the most common features extracted from ECG for seizure
detection. However, for deep learning, feature engineering
using HRV is unsuitable as it potentially eliminates useful
information. As the ECG will ultimately be processed by a
CNN, we expect the network can inherently extract relevant
information without manual feature engineering. Although raw
ECG signals can be directly fed into the neural network,
the lack of explicit frequency information makes it difficult
for the network to extract essential features. As with the
EEG recordings, we apply an STFT to the ECG to translate
12 second segments of raw ECG signals into spectra as input
to the neural network. To address differences in sample rates
of recording equipment, all ECG signals are re-sampled to
250 Hz. Therefore, a 12 s ECG signal contains a total of 3, 000
samples. We used a window length of 250 samples (or 1 s)
with 50% overlapping when applying the STFT to transform
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TABLE III: Summary of the RPAH neurologist-selected dataset

Patient Gender Age SN Seizure-Foci Severity of motor activity RD (h) Mean SD (s) Range SD (s)

1 M 20 10 Generalised Moderate 86.9 13 [7.2, 17.6]
2 M 33 4 Generalised Minor 93.6 91.9 [51.2, 117.1]
3 M 22 9 Generalised Moderate 8.0 76.4 [26.2, 191.0]
4 F 41 1 Generalised Severe 57.8 47.5 [47.5, 47.5]
5 M 21 7 Generalised Moderate 71.9 423.1 [21.9, 1324.4]
6 F 22 6 Frontal Moderate 97.7 74.5 [57.1, 95.3]
7 M 39 11 Frontal Moderate 47.8 72.5 [32.1, 132.3]
8 M 38 2 Frontal Minor 16.4 43.5 [40.2, 46.7]
9 M 62 7 Frontal Severe 73.2 98.4 [40.1, 158.6]
10 M 31 7 Frontal Moderate 34.7 63 [17.4, 102.0]
11 F 51 11 Frontotemporal Severe 93.4 161.2 [92.5, 175.4]
12 M 25 8 Frontotemporal Moderate 93.0 77.5 [42.4, 154.6]
13 F 43 8 Frontotemporal Minor 90.1 178.7 [28.0, 1095.9]
14 F 22 5 Frontotemporal Minor 138.2 79.4 [62.5, 105.2]
15 M 31 11 Frontotemporal Severe 82.4 73.1 [50.8, 202.7]
16 F 58 14 Frontotemporal Moderate 68.3 102.2 [17.0, 237.7]
17 M 41 8 Temporal Minor 97.0 44 [29.9, 69.6]
18 M 39 9 Temporal Minor 91.3 67.5 [45.0, 78.1]
19 M 51 7 Temporal Minor 162.4 69.9 [13.9, 147.5]
20 F 41 14 Temporal Minor 90.2 126.5 [45.1, 719.7]
21 F 32 9 Temporal Minor 45.8 74.7 [10.9, 118.1]
22 M 32 8 Temporal Minor 92.2 67.3 [41.9, 135.0]
23 M 33 8 Temporal Minor 87.4 59.8 [41.3, 113.1]
24 M 32 9 Temporal Minor 64.4 71.4 [17.4, 138.3]
25 M 41 8 Temporal Minor 72.4 57.1 [31.4, 112.7]
26 F 25 11 Parietal Moderate 92.5 134.7 [10.5, 1074.6]
27 F 48 2 Parietal Minor 91.8 401.9 [320.7, 483.1]
28 M 28 4 Parietal Minor 65.8 213.4 [58.3, 485.8]
29 F 24 6 Focal vertex Moderate 113.0 24.8 [3.5, 95.7]
30 M 21 3 Left hemisphere focal Moderate 87.9 98.7 [88.7, 107.7]
31 F 45 11 Left insula Minor 88.2 38.3 [9.7, 46.4]

Total − − 238 − − 2495.7 97.2 [3.5, 1324.4]

M: Male, F: Female, SN: Number of seizures, RD: Recording duration, Mean SD: Mean of seizure duration, Range SD: Seizure duration range

the data dimensions to (23× 1× 126). The DC component in
the spectrogram is removed, resulting in the dimensionality of
(23× 1× 125).

B. Deep learning network

The overall model structure can be separated into three
parts. A ConvLSTM network dedicated to the EEG data, a
residual CNN for the ECG data, and a fused network that
takes the outputs of the individual networks to model the
cross-modal representation of the EEG and ECG signals.
All three networks are then connected (using both sequential
and residual connections) to a terminal network consisting of
several dense layers. Further details are provided in subsequent
sections.

1) EEG-ConvLSTM network: The deep learning network
used for training the EEG signal is adopted from our pre-
vious work [29]. Three deep convolutional long short term
memory (ConvLSTM) blocks [40] are combined with three
fully-connected layers. The detailed structure is shown in the
supplementary information Fig 3. The first ConvLSTM layer
uses 16 (n × 2 × 3) kernels with (1 × 2) stride, where n
represents the number of channels. The next two ConvLSTM
blocks both use (1×2) stride and (1×3) kernel sizes. 32 filters
and 64 for the ConvLSTM block 2 and 3, respectively. The

three ConvLSTM blocks are two fully connected layers with
sigmoid activation and output sizes of 256 and 2, respectively.

2) ECG-ResConv network: Recently, a deep network based
on convolutional neural network (CNN)-residual [41] blocks
achieved excellent performance on cardiovascular disease clas-
sification problems using 12-lead ECG channels [42]. Our
model fine-tunes this ResConv (CNN-residual) network to ef-
ficiently and accurately use ECG signals for seizure detection.
As shown in the supplementary information Fig. 4, the input
was first fed into a batch normalization layer, ensuring the
input data has zero mean and unit variance to reduce the
internal covariate shift [43]. The ReLU activation function
was used inside the network [44], and the kernel size for
all blocks was (3 × 1). The residual block was designed
with a skip connection combined with two branches, and the
down-sampling value in the max-pooling layer was selected
to normalize the output sample sizes. The output feature size
was halved block-by-block, from 64 to 8, while the number of
filters was doubled block-by- block, from 32 to 256. The four
residual blocks were flattened, followed by a fully connected
layer with sigmoid activation and output dimension of 2. Both
the flattened layer and fully connected layer had a 0.5 dropout
rate.

To avoid over-fitting to the training data, dropout was
used and early-stopping was applied to terminate the training
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process when the combined training and validation loss had
not decreased after 20 epochs of patience. We implemented
our model in Python with Keras 2.0 with a Tensorflow 1.4.0
backend.

C. Proposed multimodal network

1) Additive representation of multimodal data distributions:
The proposed network is derived from the calculation of addi-
tive signal power from a pair of correlated random variables.
Multimodal data obtained from the same target is typically
expected to be correlated. As an example, the average power
of two superimposed waveforms containing noise content is
calculated using the following equation:

Pav = Pav1 + Pav2 + lim
∆T→∞

1

T

∫ +T/2

−T/2

2x1(t)x2(t)dt (2)

where Pav1 and Pav2 denote the average power of time-
varying input signals x1(t) and x2(t) respectively. The third
term is the correlation between the two input signals. The
EmbraceNet architecture from [30] models the cross-modal
correlation from the integral term, lessening the dependence
on the independent contributions of the input signals present
in the first two terms of Eq. 2.

To address the lack of contribution from the independent
input data distributions, the EmbraceNet architecture is stacked
with residual connections from the EEG-ConvLSTM network
and the ECG-ResConv network (see Fig 1). This provides
a more faithful representation of correlated signals, and also
addresses the vanishing gradient problem in deep networks by
introducing skipped pathways for gradient backpropagation.

2) Network structure: The fused network takes flattened
vectors x(k) of the independent network models as inputs. In
our case, the flattened layers of the EEG and ECG network
are denoted as x(1) and x(2), respectively. The i-th input for
both networks are x

(1)
i , x

(2)
i .

a) Cross-modal correlation using EmbraceNet: The
cross-modal network that finds a joint representation of the two
data modalities originates from the state-of-the-art network
“EmbraceNet” [30]. The outputs of the independent EEG and
ECG networks are first connected to a pair of dense layers
to standardize the input feature vector (c = 256 in our tests),
reflected in the equation below:

z
(k)
i = w

(k)
i · x(k)

i + b
(k)
i (3)

where k = 1, indicates the EEG network output, and k = 2 is
the ECG network modality output. w(k)

i , b
(k)
i are the weights

and biases, respectively.
A nonlinear activation function fa (e.g. ReLU) is applied

to z
(k)
i , obtaining:

d
(k)
i = fa(z

(k)
i ) (4)

Note that d(k) is of dimension c.
Rather than using summation to fuse the vectors, the Em-

braceNet model employs an elaborate fusion technique based
on a multinomial sampling process:

ri = [r
(1)
i , r

(2)
i ]ᵀ which is drawn from a multinomial

distribution.
ri ∼Multinomial(1,p) (5)

where p = [p1, p2]
ᵀ and

∑
j pj = 1, indicating that only one

element of the vector ri is equal to 1, while the rest are 0.
The Hadamard product between rk and dk is taken to obtain
the output d

′(k) in EmbraceNet.

d
′(k) = r(k) ◦ d(k) (6)

Finally, the output vector is the sum across all elements of
d

′(k).
ei =

∑
k

d
′(k)
i (7)

b) Residual Connections: To include the independent
contributions of the input data distributions, residual connec-
tions are applied to the outputs of the EEG-ConvLSTM and
ECG-ResConv networks (i.e., the inputs to EmbraceNet), xk.

x
′k = gk

c/t∑
i=0

max(xk
i , ...x

k
i+t−1) (8)

where c is the dimension of xk, and t is the 1D max pooling
stride. In our experiments, t is chosen to be a power of 2
which sets the dimensions of x

′k close to that of e. This is
desirable as by setting the dimensions of the latent represen-
tations of each data modality to be close to the cross-modal
representation, the network capacity for each distribution is
normalized before being combined. The practical effect is that
the complexity of relationships that are learnable for each data
modality are made to be uniform.

Finally, the output of the fused network e
′

is the combina-
tion of both residual networks (Fig. 1, labeled part I: x

′1 and
part II: x

′2), with the EmbraceNet output e. In our case, the
terminal network is three dense layers of sizes 256, 128, and
2, sequentially.

D. Performance metrics

1) AUC-ROC score: To evaluate the performance of the
proposed method for the seizure detection task, we used the
area under the Receiver Operating Characteristic curve (AUC-
ROC). The AUC-ROC measures the area under the recall vs.
the false-positive rate (FPR) plots. Formal definitions of the
recall and the FPR are provided below:

Recall =
TP

TP+FN
(9)

FPR =
FP

TN+FP
(10)

where TP, TN, FP, and FN represent true positives (correct
seizure detection), true negatives (correct non-seizure detec-
tion), false positives (incorrect seizure detection), and false
negatives (incorrect non-seizure detection).

2) The Wilcoxon signed-rank test: To evaluate the perfor-
mance of our model, the Wilcoxon signed-rank statistic is
used. The obtained p-value provides a metric indicating the
significance of performance improvement.
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Fig. 1: Proposed multimodal network.

IV. RESULTS

A. Test Cases

The following tests are applied to the TUH test set, with
a pseudo-prospective study on the EPILEPSIAE and RPAH
(selected and randomized) groups.

1) Multimodal approach: To explore the effectiveness of
our proposed network, we compare the following options,
using the networks shown in Fig 1, on EEG and ECG
recordings:

• ConvLSTM (EEG only)
• ResConv (ECG only)
• EmbraceNet (EN), prior state-of-the-art for multimodal

data (EEG and ECG)
• Proposed (ECG and EEG)

2) Missing modalities: The above networks are then tested
for the cases where either EEG or ECG recordings are
unavailable, which may occur due to poor electrode contact
or unexpected signal dropout during recording.

a) Missing ECG (MC): The ECG channel is treated as
missing and is set to zero. The EEG channel is kept the
same, and the same network models described above are used
for testing (without retraining). Our proposed approach is
compared to EmbraceNet, and the single-modal ConvLSTM
EEG only network.

b) Missing EEG (ME): All EEG inputs are set to zero
while ECG recordings are used as per normal. The same
comparison as the missing ECG case is made, but with the
single-modal ResConv ECG only network instead.

B. Performance

The distribution of AUC-ROC for the pseudo-prospective
out-of-distribution analyses are shown in Fig. 2, tabulated in
Table IV, and the ROCs under all test scenarios are provided
in Fig. 5.

The AUC-ROC for each individual patient across the
EPILEPSIAE, RPA-selected and randomized groups is shown
in Fig. 2. The first column depicts the results for the
multimodal approach. Combining EEG and ECG data us-
ing a fused network (for both EmbraceNet and our pro-
posed method) improves performance across all three out-
of-distribution datasets. Our proposed method consistently
outperforms EmbraceNet across the three experiments. From
Table IV, the absolute AUC improvement of our proposed
method when compared with EmbraceNet is 0.014 for the
TUH test set, 0.008 for the ELIEPSIAE set, 0.018 for the
selected RPA group, and 0.019 for the randomized RPA group.

The absolute margin of the AUC-ROC from our ap-
proach improves upon the prior state-of-the-art on the out-
of-distribution datasets by 6.71% for EEG-only, 14.42% for
ECG-only, and 1.76% for EmbraceNet’s multimodal approach.
The AUC-ROC curves across each dataset are shown in
Fig. 5. The p-value derived from the Wilcoxon signed-rank
test for our proposed model (EEG+ECG) when compared with
EEG only, ECG only and EmbraceNet (EEG+ECG) is (p <
0.0001, p < 0.0001, p = 0.04182) in the EPILEPSIAE dataset,
(p < 0.0001, p = 0.00368, p = 0.00126) for the selected RPA
group, and (p = 0.00011, p = 0.00056, p = 0.00028) RPA-
random group. This demonstrates the statistically significant
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Fig. 2: Pseudo-prospective seizure detection performance comparison. ConvLSTM: EEG-only with ConvLSTM network,
ResConv: ECG-only with ResConv network, EmbraceNet: EmbraceNet architecture trained on combined EEG and
ECG data, Proposed: our approach to combined EEG and ECG data, EmbraceNet (MC): EmbraceNet architecture
trained on EEG and ECG data, but missing ECG during inference, EmbraceNet (ME): as above but missing EEG
during inference, Proposed (MC): our proposed approach trained on EEG and ECG data, but missing ECG data during
inference, Proposed (ME): as above, but missing EEG data during inference.

performance of our model for a specified threshold of 0.01.

For the test case of the missing ECG modality (MC),
we repeat the above tests for when the two fused net-
works (our proposed and EmbraceNet) are missing ECG
information. Compared with EEG-only performance using
the ConvLSTM network, the performance of EmbraceNet
dropped by 8.86% (TUH), 6.51% (EPILEPSIAE), 5.70%
(RPA-selected), and 8.99% (RPA-random). In contrast, our
proposed method increases performance of the ConvLSTM
EEG-only network by 0.33% (TUH), 1.93% (EPILEPSIAE),
2.66% (RPA-selected), and 0.44% (RPA-random). The p-value
under this case for our proposed approach against EmbraceNet
is (p < 0.0001, p = 0.00013, p < 0.0001 EPILEPSIAE, RPA-
selected and -random datasets, respectively.

The above process was repeated for the missing EEG
modality case (ME). When compared with the ECG-only Resi-
Conv network, the performance of EmbraceNet with missing
EEG information dropped by 3.12% (TUH), 2.27% (RPA-
selected), and 4.84% (RPA-random) and improved by 2.88%

(EPILEPSIAE). The proposed method dropped by 1.99%
(TUH), 1.45% (RPA-selected), and 2.87% (RPA-random),
and improved by 0.33% (EPILEPSIAE). The p-values when
compared to EmbraceNet (ME) p = 0.26435 (RPA-selected),
and p = 0.38974. (RPA-random). Other than the EPILEPSIAE
dataset, the decrease in our model’s performance is less than
the decrease in EmbraceNet’s performance, demonstrating it
is robust when the EEG modality is missing.

V. DISCUSSION

For the multimodal case, described in Section IV-A1, our
proposed model outperforms the AUC-ROC for seizure detec-
tion compared to the EEG-only network, ECG-only network,
and the EmbraceNet fused approach across all datasets.

Our approach on the non-prospective TUH test set improved
the AUC-ROC attained using EmbraceNet from 0.8311 to
0.8450. This improvement of 1.67% is the smallest margin
of all cases. All pseudo-prospective trials showed a larger im-
provement other than for EPILEPSIAE (0.008), thus demon-
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TABLE IV: Inference-only results comparison

Inference-only test

Non-prospective Pseudo-prospective

TUH development EPILEPSIAE RPA-selected RPA-random

EEG Hardware Manufacturer Natus Medical
Incorporated NicoletOne Multiple devices Compumedics

Limited
Compumedics
Limited

Multimodal Input (Section IV-A1)

ConvLSTM (EEG) 0.8270 0.8094 0.7511 0.8473

ResConv (ECG) 0.6344 0.7012 0.7493 0.7950

EmbraceNet (EEG+ECG) 0.8311 0.8517 0.7994 0.8732

Proposed (EEG+ECG) 0.8450 0.8595 0.8175 0.8923

EEG-Only Input (Section IV-A2a)

ConvLSTM (EEG) 0.8270 0.8094 0.7511 0.8473

EmbraceNet (MC) 0.7537 (−8.86%) 0.7567 (−6.51%) 0.7083 (−5.70%) 0.7711 (−8.99%)

Proposed (MC) 0.8297 (+0.33%) 0.8250 (+1.93%) 0.7711 (+2.66%) 0.8510 (+0.44%)

ECG-Only Input (Sec. IV-A2b)

ResConv (ECG) 0.6344 0.7012 0.7493 0.7950

EmbraceNet (ME) 0.6146 (−3.12%) 0.7214 (+2.88%) 0.7323 (−2.27%) 0.7565 (−4.84%)

Proposed (ME) 0.6218 (−1.99%) 0.7035 (+0.33%) 0.7384 (−1.45%) 0.7722 (−2.87%)

EmbraceNet (MC): Missing ECG information to the EmbraceNet fused network, Proposed (MC): Missing ECG information to the proposed fused network, EmbraceNet (ME):
Missing EEG information to the EmbraceNet fused network, Proposed (ME): Missing EEG information to the Proposed fused network

strating our method’s capacity for generalization and potential
for use in a clinical setting. The ECG-only network was the
only approach to improve upon the TUH test set baseline on
pseudo-prospective samples, but came with the cost of large
performance variation and significantly lower absolute AUC-
ROC. We expect this variation arises from individuals with dif-
ferent seizure origins which variably influence the autonomic
nervous system [45]. The table shows that performance on
the RPA-random set is better than the RPA-selected by 9.15%
when using the proposed method to test. This may be due
to most patients’ seizure foci are on the temporal lobe in the
RPA dataset, and patients with seizure foci on the temporal
lobe typically show higher performance than other locations.

For the ECG-missing case, described in Section IV-A2a,
we evaluated the AUC performance when all ECG data was
omitted. Our results show that the proposed method is still
able to marginally improve the performance over the EEG-
only network (average improvement of 1.30%), whereas the
EmbraceNet approach has a significant drop in performance
(average drop of 7.51%). This reflects that our proposed net-
work has high robustness for missing (potentially corrupted)
ECG recordings.

Finally, we analyze the case for missing EEG informa-

tion, discussed in Section IV-A2b. Our proposed method
experienced a slight drop in performance when compared to
the dedicated ECG-only ResConv model on the TUH and
RPAH groups, and an increase on the EPILEPSIAE dataset
by 0.33%. The performance of EmbraceNet dropped more
when compared (in the range of 2.27% and 4.84%) other
than for the EPILEPSIAE dataset. Our network is much more
stable than EmbraceNet, although this test makes it evident
that our network relies more on EEG data to surpass the other
networks.

Our results illustrate that our proposed model and method
are generalizable across different countries’ datasets which use
different recording equipment. We have also shown the robust-
ness of our network in terms of performance and susceptibility
to missing data modalities when compared to the state-of-
the-art in data fusion. Our experiments also prove that using
multimodal data can achieve better performance than either
EEG or ECG alone.

VI. CONCLUSION

Despite the extensive studies over the past four decades of
using EEG in seizure detection, the use of ECGs is quite
limited and never previously reported in a multimodal deep
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learning model. Our proposed model and fused modality ap-
proach show promise in using EEG and ECG signals together,
and were demonstrated to generalize to pseudo-prospective
studies. Our analysis shows that a seizure detection system
can sustain state-of-the-art performance on out-of-distribution
samples, which is a critical feature for clinical translation.
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Fig. 5: Receiver operating characteristic (ROC) curves for seizure detection. TUH-TUH, TUH-EPILEPSIAE, TUH-RPA
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TABLE V: RPA-selected results
Pat ID ConvLSTM (EEG) ResiConv (ECG) EmbraceNet (EEG+ECG) Proposed (EEG+ECG) EmbraceNet (MC) Proposed (MC) EmbraceNet (ME) Proposed (ME)

1 0.3168 0.9474 0.7667 0.8202 0.4113 0.5712 0.9086 0.9332
2 0.9145 0.8754 0.9236 0.9308 0.8650 0.9007 0.8316 0.8531
3 0.8446 0.8276 0.8794 0.9194 0.7633 0.8499 0.8248 0.7952
4 0.9649 0.7040 0.9507 0.9551 0.9126 0.8269 0.7247 0.6128
5 0.7499 0.7777 0.7924 0.8177 0.7035 0.7697 0.7114 0.7460
6 0.7068 0.7963 0.6872 0.8062 0.6829 0.7051 0.6937 0.6879
7 0.4558 0.8178 0.5868 0.6003 0.4502 0.5072 0.7543 0.7721
8 0.2626 0.5760 0.4695 0.3058 0.5504 0.1901 0.5969 0.5454
9 0.3330 0.4761 0.3527 0.4949 0.4913 0.4893 0.4365 0.4659
10 0.6079 0.6470 0.6800 0.7367 0.5131 0.6832 0.6516 0.6475
11 0.8888 0.8394 0.9092 0.9322 0.8186 0.9154 0.8261 0.8338
12 0.7970 0.5861 0.8439 0.8129 0.6921 0.7744 0.7404 0.6060
13 0.9372 0.8105 0.9668 0.9769 0.8815 0.9466 0.8290 0.8158
14 0.8349 0.9160 0.9346 0.9369 0.7083 0.8833 0.8846 0.9067
15 0.8774 0.8358 0.9450 0.9689 0.6927 0.9218 0.8296 0.8321
16 0.9682 0.6296 0.9659 0.9790 0.8799 0.9629 0.6373 0.6221
17 0.8069 0.6326 0.8533 0.8320 0.6952 0.7874 0.5132 0.5734
18 0.9711 0.8897 0.9853 0.9935 0.9017 0.9820 0.8797 0.8968
19 0.8273 0.8425 0.8942 0.9345 0.6893 0.9076 0.7979 0.8209
20 0.6143 0.5909 0.6475 0.6722 0.5649 0.6331 0.5639 0.5663
21 0.8964 0.7536 0.9140 0.9156 0.8496 0.9056 0.7172 0.7210
22 0.9182 0.9284 0.9826 0.9815 0.8119 0.9596 0.9310 0.9334
23 0.6681 0.7673 0.6955 0.7346 0.6067 0.6985 0.6868 0.7322
24 0.7694 0.5914 0.7508 0.8236 0.6624 0.7815 0.6143 0.6069
25 0.6463 0.4647 0.6787 0.7018 0.6764 0.7133 0.5195 0.4715
26 0.7256 0.7661 0.7703 0.7822 0.6681 0.6953 0.7098 0.7346
27 0.5520 0.6834 0.6751 0.6433 0.5848 0.5938 0.6734 0.6853
28 0.7250 0.8971 0.8694 0.8901 0.7534 0.7790 0.8835 0.8955
29 0.3986 0.7851 0.6252 0.6417 0.4710 0.5041 0.8243 0.7890
30 0.9203 0.6220 0.8949 0.8921 0.8997 0.8863 0.4956 0.5191
31 0.3942 0.3756 0.3623 0.3678 0.5205 0.4929 0.3731 0.3637

Overall 0.7511 0.7493 0.7994 0.8175 0.7083 0.7711 0.7323 0.7384

TABLE VI: EPILEPSIAE dataset results
Pat ID ConvLSTM (EEG) ResConv (ECG) EmbraceNet (EEG+ECG) Proposed (EEG+ECG) EmbraceNet (MC) Proposed (MC) EmbraceNet (ME) Proposed (ME)

1 0.8843 0.6913 0.8967 0.926 0.7752 0.9200 0.7055 0.6942
2 0.8876 0.4561 0.9200 0.9058 0.8455 0.8869 0.5677 0.5115
3 0.8596 0.8838 0.9292 0.9293 0.7740 0.8810 0.9135 0.9074
4 0.9311 0.5172 0.9153 0.9149 0.8736 0.9274 0.5680 0.5283
5 0.7449 0.5888 0.8159 0.8023 0.7542 0.7442 0.6331 0.6142
6 0.7 0.7311 0.7163 0.7402 0.6570 0.6534 0.6639 0.6858
7 0.8352 0.785 0.8801 0.893 0.6873 0.7982 0.8244 0.7811
8 0.8266 0.9023 0.9131 0.8979 0.7876 0.8844 0.8851 0.8736
9 0.9347 0.6483 0.9245 0.9395 0.9182 0.9450 0.6504 0.6387
10 0.6768 0.6737 0.8251 0.8094 0.7171 0.7467 0.7274 0.7000
11 0.8379 0.73 0.8595 0.8879 0.7220 0.8794 0.7239 0.7047
12 0.8476 0.795 0.9321 0.9332 0.7830 0.8670 0.7940 0.8001
13 0.9009 0.7533 0.9114 0.9281 0.8371 0.9124 0.7873 0.7652
14 0.8839 0.7015 0.9271 0.9183 0.8234 0.8860 0.7503 0.7192
15 0.708 0.7452 0.7650 0.774 0.7345 0.7017 0.7318 0.7119
16 0.8931 0.7481 0.8974 0.9021 0.7757 0.8480 0.7615 0.7182
17 0.8322 0.7481 0.9004 0.8938 0.7354 0.8351 0.7776 0.7534
18 0.7605 0.846 0.8476 0.8663 0.6995 0.7495 0.8373 0.8535
19 0.929 0.7892 0.9295 0.9415 0.8359 0.9147 0.8441 0.7994
20 0.6692 0.8621 0.8604 0.8581 0.6746 0.7141 0.8922 0.8701
21 0.8692 0.7291 0.8955 0.9047 0.8282 0.9044 0.7961 0.7472
22 0.7439 0.761 0.8479 0.8338 0.7513 0.7630 0.7818 0.7646
23 0.9715 0.7369 0.9735 0.9801 0.8911 0.9670 0.7873 0.7533
24 0.7528 0.6739 0.7526 0.7843 0.6545 0.7515 0.7411 0.7161
25 0.7815 0.6334 0.8554 0.8409 0.7665 0.7871 0.6456 0.6290
26 0.6157 0.5805 0.6227 0.675 0.6110 0.6743 0.5828 0.5726
27 0.8838 0.8691 0.9390 0.9381 0.7682 0.8690 0.8758 0.8609
28 0.905 0.7212 0.8809 0.8893 0.8104 0.8741 0.7045 0.7075
29 0.6815 0.7006 0.8110 0.829 0.6882 0.7939 0.7251 0.7213
30 0.7842 0.6461 0.8485 0.8472 0.7053 0.8485 0.6859 0.6316

Overall 0.8094 0.7012 0.8517 0.8595 0.7567 0.825 0.7214 0.7035
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TABLE VII: RPA-random results
Pat ID ConvLSTM (EEG) ResConv (ECG) EmbraceNet (EEG+ECG) Proposed (EEG+ECG) EmbraceNet (MC) Proposed (MC) EmbraceNet (ME) Proposed (ME)

1 0.9682 0.6296 0.9673 0.9785 0.8682 0.9662 0.6386 0.6370
2 0.9949 0.7907 0.9923 0.9962 0.9678 0.9864 0.6492 0.7397
3 0.9950 0.9202 0.9952 0.9983 0.8604 0.9869 0.7303 0.8500
4 0.9372 0.8105 0.9660 0.9762 0.8728 0.9450 0.8440 0.8126
5 0.9452 0.7648 0.9724 0.9606 0.9228 0.9521 0.7846 0.7668
6 0.9790 0.7787 0.9607 0.9927 0.8438 0.9678 0.7650 0.7594
7 0.9149 0.7064 0.9176 0.9297 0.7842 0.8087 0.7094 0.6834
8 0.8349 0.9160 0.9256 0.9386 0.6034 0.8603 0.8910 0.8971
9 0.8197 0.8674 0.9539 0.9678 0.7058 0.8916 0.8750 0.8604
10 0.9936 0.9266 0.9970 0.9951 0.7537 0.9932 0.9404 0.9064
11 0.9377 0.7245 0.8834 0.9247 0.7533 0.9203 0.5373 0.5808
12 0.9204 0.9185 0.9729 0.9796 0.7613 0.8819 0.8996 0.8987
13 0.7499 0.7777 0.7934 0.8177 0.7027 0.7697 0.7134 0.5526
14 0.9704 0.7738 0.9785 0.9919 0.9398 0.9787 0.7807 0.7626
15 0.9960 0.8255 0.9980 0.9978 0.9182 0.9919 0.7642 0.7619
16 0.9785 0.9384 0.9869 0.9927 0.9198 0.9736 0.8946 0.9139
17 0.9659 0.8843 0.9667 0.9886 0.7366 0.9622 0.8605 0.8626
18 0.9792 0.8493 0.9742 0.9900 0.8566 0.9519 0.7612 0.8113
19 0.9271 0.8818 0.9427 0.9738 0.8313 0.9398 0.7829 0.8367
20 0.4558 0.8178 0.5949 0.6127 0.4635 0.5042 0.7530 0.7940
21 0.3168 0.9474 0.7600 0.8066 0.5024 0.4524 0.9063 0.9388
22 0.8446 0.8276 0.8680 0.9152 0.7160 0.8699 0.8191 0.8088
23 0.4414 0.4865 0.3430 0.3795 0.3166 0.5053 0.4887 0.4895
24 0.8812 0.8631 0.9331 0.9421 0.8754 0.8722 0.8315 0.8078
25 0.6681 0.7673 0.6904 0.7616 0.5885 0.6967 0.6872 0.7367
26 0.3942 0.3756 0.3825 0.3806 0.5498 0.5189 0.4029 0.3905
27 0.8858 0.8244 0.9689 0.9862 0.9032 0.9174 0.7148 0.7834
28 0.2725 0.6085 0.1983 0.4427 0.4669 0.4618 0.5677 0.5916
29 0.9649 0.7040 0.9536 0.9217 0.9345 0.8905 0.7372 0.6065
30 0.7970 0.5861 0.8664 0.8212 0.6901 0.7699 0.7283 0.6017

Overall 0.8473 0.7950 0.8732 0.8923 0.7711 0.8510 0.7565 0.7722
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