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Abstract 37 

Circulating proteins are prognostic for human outcomes including cancer, heart failure, 38 

brain trauma and brain amyloid plaque burden. A deep serum proteome survey 39 

recently revealed close associations of serum protein networks and common diseases. 40 

The present study reveals unprecedented number of individual serum proteins that 41 

overlap genetic signatures of diseases emanating from different tissues of the body. 42 

Here, 54,469 low-frequency and common exome-array variants were compared with 43 

4782 protein measurements in the serum of 5343 individuals of the deeply annotated 44 

AGES Reykjavik cohort. Using a study-wide significant threshold, 2019 independent 45 

exome array variants affecting levels of 2135 serum proteins were identified. These 46 

variants overlapped genetic loci for hundreds of complex disease traits, emphasizing the 47 

emerging role for serum proteins as biomarkers of and potential causative agents of 48 

multiple diseases. 49 

Large-scale genome-wide association studies (GWASs) have expanded our knowledge of the 50 

genetic basis of complex disease. As of 2018, approximately 5687 GWASs have been 51 

published revealing 71,673 DNA variants to phenotype associations1. Furthermore, exome-52 

wide genotyping arrays have linked rare and common variants to many complex traits. For 53 

example, 444 independent risk variants were recently identified for lipoprotein fractions 54 

across 250 genes2.  Despite the overall success of GWAS, the common lead SNPs rarely point 55 

directly to a clear causative polymorphism, making determination of the underlying disease 56 

mechanism difficult3-6. Regulatory variants affecting mRNA and/or protein levels and 57 

structural variants like missense mutations can point directly to the causal candidate.  58 

Alteration of the amino acid sequence may affect protein activity and/or influence 59 

transcription, translation, stability, processing, and secretion of the protein in question7-9. 60 
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Thus, by integrating intermediate traits like mRNA and/or protein levels with genetics and 61 

disease traits, the identification of the causal candidates can be enhanced3-6.  62 

Proteins are arguably the ultimate players in all life processes in disease and health, however, 63 

high throughput detection and quantification of proteins has been hampered by the limitations 64 

of available proteomic technologies. Recently, a custom-designed Slow-Off rate Modified 65 

Aptamer (SOMAmer) protein profiling platform was developed to measure 4782 proteins 66 

encoded by 4137 human genes in the serum of 5457 individuals from the AGES Reykjavik 67 

study (AGES-RS)10, resulting in 26.1 million individual protein measurements. Various 68 

metrics related to the performance of the proteomic platform including aptamer specificity, 69 

assay variability and reproducibility have already been described10. We demonstrated that the 70 

human serum proteome is under strong genetic control10, in line with findings of others 71 

applying identical or different proteomics technologies11,12. Moreover, serum proteins were 72 

found to exist in regulatory groups of network modules composed of members synthesized in 73 

all tissues of the body, suggesting that system level coordination or homeostasis is mediated 74 

to a significant degree by thousands of proteins in blood13. Importantly, the deep serum and 75 

plasma proteome is associated with and prognostic for various diseases as well as human life 76 

span10,14-20.  77 

Here, we regressed levels of 4782 proteins on 54,469 low-frequency and common variants 78 

from the HumanExome BeadChip exome array, in sera from 5343 individuals of the deeply 79 

phenotyped AGES-RS cohort. Further cross-referencing of all significant genotype-to-protein 80 

associations to hundreds of genetic loci for various disease endpoints and clinical traits, 81 

demonstrated profound overlap between the genetics of circulating proteins and disease 82 

related phenotypes. We highlight how triangulation of data from different sources can link 83 
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genetics, protein levels and disease(s), with the intention of cross-validating one another and 84 

point to potentially causal relationship between proteins and complex disease(s).  85 

Using genotype data from an exome array (HumanExome BeadChip) enriched for structural 86 

variants and tagged for many GWAS risk loci (Methods), the effect of low-frequency and 87 

common variants on the deep serum proteome was examined. Quality control filters21, and 88 

exclusion of monomorphic variants reduced the available variants to 76,891. Additionally, we 89 

excluded variants at minor allele frequency (MAF) < 0.001 as they provide insufficient power 90 

for single-point association analysis22. This resulted in 54,469 low-frequency (54%, 91 

MAF<0.05) and common variants (46%, MAF ≥0.05) that were tested for association to each 92 

of the 4782 human serum protein measurements using linear regression analysis adjusted for 93 

the confounders age and sex (Methods). The current platform targets the serum proteome 94 

arising largely from active or passive secretion, ectodomain shedding, lysis and/or cell 95 

death10,23. Figure 1a highlights the classification of the protein population targeted by the 96 

aptamer-based profiling platform, showing over 68.7% of the proteins are secreted or single 97 

pass transmembrane (SPTM) receptors.  98 

Applying a Bonferroni corrected significance threshold of P < 1.92×10-10 (0.05/54469/4782) 99 

we detected 5472 exome array variants that were associated with variable levels of 2135 100 

serum proteins (Supplementary Table 1 and Fig. 1b), of which 2019 variants are 101 

independent (Supplementary Table S2). Supplementary Table 1 lists all associations at P-102 

value < 1x10-6, or 10,200 exome array variants affecting 3096 human proteins. These protein 103 

quantitative trait loci (pQTLs) were cis and/or trans acting including several trans acting 104 

hotspots with pleiotropic effects on multiple co-regulated proteins (Fig. 1b). Secreted proteins 105 

were enriched for pQTLs (P-value < 0.0001) as compared to non-secreted proteins using 106 

10,000 permutations to obtain the empirical distribution of the χ2 test of equality of 107 
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proportions (Supplementary Fig. S1). This suggests that proteins bound for the systemic 108 

environment are subject to more genetic regulation than other proteins identified by the 109 

current platform. Supplementary Table S3 summarizes various pathogenicity prediction 110 

scores for all independent study-wide significant pQTLs in Supplementary Table S2, using 111 

the Ensembl Variant Effect Predictor (VEP)24,25. Next, we cross-referenced all the 5472 112 

study-wide significant pQTLs with a comprehensive collection of genetic loci associated with 113 

diseases and clinical traits from the curated PhenoScanner database26, revealing that 60% of 114 

all pQTLs were linked to at least one disease-related trait (Supplementary Table S4). We 115 

have shown in our previous studies that genetic loci affecting several serum proteins exhibit 116 

pleiotropy in relation to complex diseases10. An example of a possible pleiotropic effect 117 

mediated by the variant rs2251219 within the gene PBRM1 affecting multiple proteins and 118 

sharing genetics with various diseases and clinical features is illustrated in Fig. 2.  119 

Supplementary Fig. S2 depicts the relationship between all proteins and some quantitative 120 

traits associated with rs2251219. Table 1 highlights a selected set of pQTLs that share 121 

genetics with diseases of different etiologies including disorders of the brain, metabolism, 122 

immune and cardiovascular system and cancer. In the sections that follow, we give examples 123 

of serum pQTLs that overlap disease risk loci and demonstrate how different data sources can 124 

cross-validate one another.  Although data triangulation can be used to infer directional 125 

consistency, it cannot tell whether the relationship is causal or reactive to a given outcome. As 126 

a result, we used two-sample Mendelian randomization analysis (MR) on highlighted 127 

examples to test support for a protein's causality to an outcome. 128 

Variable levels of the anti-inflammatory protein TREM2 were associated with two distinct 129 

genomic regions (Fig. 3a and Supplementary Fig. S3). This included the missense variant 130 

rs75932628 (NP_061838.1: p.R47H) in TREM2 at chromosome 6 (Fig. 3b), known to confer 131 

a strong risk of late-onset Alzheimer´s disease (LOAD)27.  The variant was also associated 132 
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with IGFBPL1 (P = 3×10-18) in serum (Supplementary Table 1), a protein recently 133 

implicated in axonal growth28. Intriguingly, the region at chromosome 11 associated with 134 

soluble TREM2 levels harbors variants adjacent to the genes MS4A4A and MS4A6A including 135 

rs610932 known to influence genetic susceptibility for LOAD29 (Table 1 and Fig. 3a, b).  136 

The variant rs610932 was also associated with the proteins GLTPD2 and A4GALT 137 

(Supplementary Table 1). The alleles increasing risk of LOAD for both the common variant 138 

rs610932 and the low-frequency variant rs75932628 were associated with low levels of 139 

soluble TREM2 (Fig. 3b). Consistently, we find that the high-risk allele for rs75932628 was 140 

associated with accelerated mortality post incident LOAD in the AGES-RS (Fig. 3c). It is of 141 

note that the levels of TREM2 in the cerebrospinal fluid (CSF) reflect the activity of brain 142 

TREM2-triggered microglia4,30, while high levels of CSF TREM2 have been associated with 143 

improved cognitive functioning31. Supplementary Fig. S4 highlights the correlation 144 

(Spearman rank) between the different proteins affected by the LOAD risk loci at 145 

chromosomes 6 and 11. The accumulated data show a directionally consistent effect at 146 

independent risk loci for LOAD converging on the same causal candidate TREM2. 147 

Furthermore, a two-sample MR analysis using genetic instruments across the TREM2 and 148 

MS4A4A/MS4A6A loci and GWAS associations for LOAD in Europeans as outcome32, 149 

provided evidence that variable TREM2 protein levels are causally related to LOAD (P = 150 

7.6×10-5) (Fig 3d). In summary, these results demonstrate that the effect of genetic drivers on 151 

major brain-linked disease like LOAD can be readily detected in serum to both inform on the 152 

causal relationship and the directionality of the risk mediating effect. This would also suggest 153 

that serum may be an accessible proxy for microglia function and cognition.  154 

Variable levels of the cell adhesion protein SVEP1 are associated with variants located at 155 

chromosomes 1 and 9 (Supplementary Table 1, Fig. 4a and Supplementary Fig. S5). 156 

Genetic associations to SVEP1 levels at chromosome 9 include the low-frequency missense 157 
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variant rs111245230 in SVEP1 (NP_699197.3: pD2702G) (Fig. 4b), which was recently 158 

linked to coronary heart disease (CHD), blood pressure and type-2-diabetes (T2D)33. Overall, 159 

we found eight different missense mutations in SVEP1 that were associated with SVEP1 160 

serum levels (Supplementary Table 1). The CHD and T2D risk allele (C) of rs111245230 161 

was associated with elevated levels of SVEP1, and SVEP1 levels were consistently elevated 162 

in CHD and T2D patients (Fig. 4c). Furthermore, high SVEP1 levels were positively 163 

correlated with systolic blood pressure (β = 2.10, P = 4×10-12) (Fig. 4c), but not with diastolic 164 

blood pressure (β = 0.115, P = 0.413). Consistently, higher serum levels of SVEP1 were 165 

associated with increased mortality post-incident CHD in the AGES-RS (HR = 1.27, P = 166 

9×10-9) (Fig. 4d). The variants at chromosome 1 linked to SVEP1 levels (Fig. 4a), have not 167 

previously been linked to any disease. Given the currently available GWAS summary 168 

statistics, a two-sample MR analysis using cis-variants on chromosome 9 for SVEP1 as 169 

instruments and a GWAS associations for T2D34 support a causal relationship of SVEP1 with 170 

T2D (P = 1.2×10-5) (Fig. 4e), but not with CHD35 or systolic blood pressure36 (P > 0.05). Our 171 

data triangulation and causal tests integrating genetics, serum protein levels and disease(s), 172 

indicate that SVEP1 may be a therapeutic target for T2D. 173 

The ILMN exome array contains several tags related to previous GWAS findings37, including 174 

many risk loci for cancer.  For example, 21 loci associated with melanoma38 and 50 loci 175 

associated with colorectal cancer39. The exome array variant rs910873 located in an intron of 176 

the GPI transamidase gene PIGU was previously linked to melanoma risk40. The reported 177 

candidate gene PIGU is the gene most proximal to the lead SNP rs910873 and may be a novel 178 

candidate gene involved in melanoma. However, a more biologically relevant candidate is the 179 

agouti-signaling protein (ASIP) gene that is located 314kb downstream of the lead SNP 180 

rs910873. ASIP is a competitive inhibitor of MC1R41, and is thus strongly biologically 181 

implicated in melanoma risk42. We found that the melanoma risk allele for rs910873 was 182 
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associated with elevated ASIP serum levels (P = 3×10-179) and the variant had no effect on 183 

other proteins measured with the current proteomic platform (Fig. 5a, Supplementary Table 184 

1 and Table 1). Interestingly, the pQTL rs910873 is also an eQTL for ASIP gene expression 185 

in skin43, showing directionally consistent effect on the mRNA and protein. Importantly, we 186 

found that serum ASIP levels were supported as causally related to malignant melanoma (P = 187 

4.8 x 10-26) using a two-sample MR analysis on the protein-to-outcome causal sequence of 188 

events (Fig. 5b). Our data point to the ASIP protein underlying the risk at rs910873, thus 189 

providing supportive evidence for the hypothesis that ASIP mediated inhibition of MC1R 190 

results in suppression of melanogenesis and increased risk of melanoma44. An additional 191 

example is the susceptibility variant rs1800469 for colorectal cancer45, which is a proxy to the 192 

pQTL rs2241714 (r2=0.978) (Table 1 and Fig. 5b). While the TMEM91 gene was the 193 

reported candidate gene for the colorectal cancer risk at the rs1800469 (Table 1), we find that 194 

the risk variant affected three proteins in either cis (B3GNT8 and TGFB1) or trans (B3GNT2) 195 

(Fig. 5b). Intriguingly, all three proteins have previously been implicated in colorectal 196 

cancer46-48.  Due to a lack of available and powered GWAS summary statistics data, we were 197 

unable to formally test the causality of these proteins to colorectal cancer. In conclusion, 198 

while we cannot rule out PIGU as a candidate gene for malignant melanoma, these findings 199 

point to an alternate, and possibly more biologically relevant, candidate, ASIP. 200 

We outlined the construction of the serum protein network in our previous report and 201 

identified common genetic variants underlying the network structure10. This included a 202 

targeted study of the effects of common cis and cis-to-trans acting variants on levels of serum 203 

proteins. The comparison between that study and the current one using all independent study-204 

wide signficiant associations (Supplementary Table S2) and linkage disequilibrium (LD) 205 

thresold of r2>0.50 for known associations, shows that 77.2% of the current study's variant-to-206 

protein associations are novel.  Importantly, while 70% of the variants detected with the 207 
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exome array are exonic and 59% of mapped pQTLs in the current study are exonic, only 7% 208 

of the identified pQTLs were exonic in our earlier report10. Previously, we discovered that 209 

80% of cis pQTL effects and 74% of trans pQTL effects were replicated across populations 210 

and proteomics platforms measuring common variants10. Given that the exome array platform 211 

is enriched for rare and low-frequency variants, a comparable test of replication is not 212 

straightforward. Examining the proteins and variants measured across studies, we find that 213 

76.0% of SNP-to-protein associations are novel in the present study when compared to, say, 214 

Sun et al.11, and 60.1% are novel when compared to the majority of studies published to date 215 

(Supplementary Table S5), for all independent associations in the current study and LD of 216 

r2<0.5 between study specific markers. 217 

We report here that many of the measured serum proteins under genetic control share genetics 218 

with a variety of clinical features, including major diseases arising from various body tissues. 219 

This is in line with a recent population-scale survey of human induced pluripotent stem cells, 220 

demonstrating that pQTLs are 1.93-fold enriched in disease risk variants compared to a 1.36-221 

fold enrichment for eQTLs12, underscoring the added value in pQTL mapping. We reaffirm 222 

widespread associations between genetic variants and their cognate proteins as well as distant 223 

trans-acting effects on serum proteins and demonstrate that many proteins are often involved 224 

in mediating the biological effect of a single causal variant affecting complex disease.  Protein 225 

coding variants may cause technical artifacts in both affinity proteomics and mass 226 

spectrometry49,50. Systematic conditional and colocalization studies have shown, however, 227 

that pQTLs powered by common missense variants being artifactual are not a common event 228 

using the aptamer-based technology11,51, however, given the enrichment of missense variants 229 

in the present study, it may occur in some cases. 230 
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We note that with the ever-increasing availability of large-scale omics data aligned with the 231 

human genome, cross-referencing different datasets can result in findings that occurred by 232 

sheer chance. Hence, a systematic colocalization analysis has been proposed for identifying 233 

shared causal variants between intermediate traits and disease endpoints52. This is, however, 234 

not feasible for application of the exome array given its sparse genomic coverage. Instead, 235 

multi-omics data triangulation to infer consistency in directionality, the approach used in the 236 

present study, can enhance confidence in the causal call and offer insights and guidelines for 237 

experimental follow-up studies. In fact, the causal calls for TREM2 (LOAD), SVEP1 (T2D) 238 

and ASIP (melanoma) were validated, using a two-sample MR analysis. We previously 239 

asserted that serum proteins are intimately connected to and may mediate global 240 

homeostasis10.  The accumulated data show that serum proteins are under strong genetic 241 

control and closely associated with diseases of different aetiologies, which in turn suggests 242 

that serum proteins may be significant mediators of systemic homeostasis in human health 243 

and disease. 244 

METHODS 245 

Study population 246 

Participants aged 66 through 96 are from the Age, Gene/Environment Susceptibility 247 

Reykjavik Study (AGES-RS) cohort53.  AGES-RS is a single-center prospective population-248 

based study of deeply phenotyped subjects (5764, mean age 75±6 years) and survivors of the 249 

40-year-long prospective Reykjavik study (n∼18,000), an epidemiologic study aimed to 250 

understand aging in the context of gene/environment interaction by focusing on four biologic 251 

systems: vascular, neurocognitive (including sensory), musculoskeletal, and body 252 

composition/metabolism. Descriptive statistics of this cohort as well as detailed definition of 253 

the various disease endpoints and relevant phenotypes measured have been published10,53. The 254 
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AGES-RS was approved by the NBC in Iceland (approval number VSN-00-063), and by the 255 

National Institute on Aging Intramural Institutional Review Board, and the Data Protection 256 

Authority in Iceland. 257 

Genotyping platform 258 

Genotyping was conducted using the exome-wide genotyping array Illumina HumanExome-259 

24 v1.1 Beadchip from Illumina (San Diego, CA, USA) for all AGES-RS participants as 260 

previously described54. The exome array was enriched for exonic variants selected from over 261 

12,000 individual exome and whole-genome sequences from different study populations37, 262 

and includes as well tags for previously described GWAS hits, ancestry informative markers, 263 

mitochondrial SNPs and human leukocyte antigen tags37. A total of 244,883 variants were 264 

included on the exome array. Genotype call and quality control filters including call rate, 265 

heterozygosity, sex discordance and PCA outliers were performed as previously described2,21. 266 

Variants with call rate <90% or with Hardy–Weinberg P values <1×10−7 were removed from 267 

the study. 72,766 variants were detected in at least one individual of the AGES-RS cohort. Of 268 

these variants, 54,469 had a minor allele frequency > 0.001 and were examined for 269 

association against each of the 4782 human serum protein measurements (see below). 270 

Protein measurements 271 

Each protein has its own detection reagent selected from chemically modified DNA libraries, 272 

referred to as Slow Off-rate Modified Aptamers (SOMAmers)55.  The design and quality 273 

control of the SOMApanel platform's custom version to include proteins known or predicted 274 

to be present in the extracellular milieu have been described in detail elsewhere10.   Briefly 275 

though, the aptamer-based platform measures 5034 protein analytes in a single serum sample, 276 

of which 4782 SOMAmers bind specifically to 4137 human proteins (some proteins are 277 

identified by more than one aptamer) and 250 SOMAmers that recognize non-human targets 278 

(47 non-human vertebrate proteins and 203 targeting human pathogens)10.   Consistent target 279 
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specificity across the platform was indicated by direct (through mass spectrometry) and/or 280 

indirect validation of the SOMAmers10. Both sample selection and sample processing for 281 

protein measurements were randomized, and all samples were run as a single set to prevent 282 

batch or time of processing biases.  283 

Statistical analysis 284 

Prior to the analysis of the proteins measurements, we applied a Box-Cox transformation on 285 

all proteins to improve normality, symmetry and to maintain all protein variables on a similar 286 

scale56. In the association analysis, we obtained residuals after controlling for sex, age, 287 

potential population stratification using principal component (PCs) analysis57, and for all 288 

single-variant associations to serum proteins tested under an additive genetic model applying 289 

linear regression analysis (protein ∼ SNP + age + sex + PC1 + PC2 + ….PC5). We report both 290 

variants to protein associations at P < 1×10-6 for suggestive evidence and Bonferroni 291 

correction for multiple comparisons by adjusting for the 54,469 variants and 4782 human 292 

protein analytes where single variant associations with P < 1.9×10-10 were considered study-293 

wide significant (Supplementary Table S1). P-values corresponding to the estimated effect 294 

size and standard errors of the genotypes, were recalculated to increase accuracy. Independent 295 

genetic signals were found through a stepwise conditional and joint association analysis for 296 

each protein analyte separately with the GCTA-COJO software58,59. We conditioned on the 297 

current lead variant listed in Supplementary Table S1, defined as the variant with the lowest 298 

P-value, and then kept track of any new variants that were not in LD (the default GCTA-299 

COJO option r2 < 0.9 for colinearity) with previously chosen lead variants and reported 300 

findings at P-value < 1×10-6 (Supplementary Table S2). In the joint model all conditionally 301 

significant SNPs for each protein analyte were combined in the regression model.  302 
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Supplementary Table S3 summarizes, through use of VEP24,25, various pathogenicity 303 

prediction scores for all independent study-wide significant pQTLs in Supplementary Table 304 

S2, including the Likelihood Ratio Test (LRT)60, Variant Effect Scoring Tool (VEST)61, 305 

MutationAssessor62 and MutationTaster63. To test whether the percentage of secreted proteins 306 

among pQTLs is equal to the percentage of secreted proteins among non-pQTLs, 10,000 307 

permutations were performed to obtain the empirical distribution of the χ2 test of equality of 308 

proportions. Our null and alternate hypotheses were:  309 

      H0: P(pQTL | Secreted) = P(pQTL | Not Secreted)  and  H1: P(pQTL | Secreted) > P(pQTL | Not Secreted)  310 

The test statistics calculated from our data was compared to the quantiles of this distribution 311 

to obtain P(Data|H0) (Supplementary Fig. S1).   312 

We applied the “TwoSampleMR” R package64 to perform a two-sample MR analysis to test 313 

for causal associations between protein and outcome (protein-to-outcome). For different 314 

outcomes we used GWAS associations for LOAD in Europeans32, malignant melanoma in 315 

European individuals from the UK biobank data (UKB-b-12915)65 and T2D in Europeans34.  316 

Genetic variants (SNPs) associated with serum protein levels at a genome-wide significant 317 

threshold (P<5×10-8) identified in the AGES dataset and filtered to only include uncorrelated 318 

variants (r2<0.2) were used as instruments. The inverse variance weighted (IVW) method66 319 

was used for the MR analysis, with P-values < 0.05 considered significant.  320 

For the associations of individual proteins to different phenotypic measures we used linear or 321 

logistic regression or Cox proportional hazards regression, depending on the outcome being 322 

continuous, binary or a time to an event. Given consistency in terms of sample handling 323 

including time from blood draw to processing (between 9-11 am), same personnel handling 324 

all specimens and the ethnic homogeneity of the population we adjusted only for age and sex 325 

in all our regression analyses. All statistical analysis was performed using R version 3.6.0 (R 326 

Foundation for Statistical Computing, Vienna, Austria). 327 
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We compared our pQTL results to 19 previously published proteogenomic studies 328 

(Supplementary Table 5), including the protein GWAS in the INTERVAL study11, and our 329 

previously reported genetic analysis of 3,219 AGES cohort participants10. In the previous 330 

proteogenomic analysis of AGES participants, one cis variant was reported per protein using a 331 

locus-wide significance threshold, as well as cis-to-trans variants at a Bonferroni corrected 332 

significance threshold. Due to these differences in reporting criteria, we only considered the 333 

associations in previous AGES results that met the current study-wide P-value threshold. For 334 

all other studies we retained the pQTLs at the reported significance threshold. In addition, we 335 

performed a lookup of all independent pQTLs from the current study available in summary 336 

statistics from the INTERVAL study, considering them known if they reached a study-wide 337 

significance in their data. We calculated the LD structure between the reported significant 338 

variants for all studies, using 1000 Genomes v3 EUR samples, but using AGES data when 339 

comparing to previously reported AGES results. We considered variants in LD at r2>0.5 to 340 

represent the same signal across studies. Comparison was performed on protein level, by 341 

matching the reported Entrez gene symbol from each study. 342 
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Table 1│Selected examples of exome array variants affecting serum protein levels and complex disease. CHD, coronary heart disease; 
VTE, venous thromboembolism; CKD, chronic kidney disease; T2D, type 2 diabetes; VAT, visceral adipose tissue; LOAD, late-onset 
Alzheimer´s disease; SLE, systemic lupus erythematous; IBD, inflammatory bowel disease; AMD, age-related macular degeneration; N/A, not 
applicable. All reported effects are genome-wide significant at P < 1.92×10-10. 
Disease 
class 

Disease trait PMID or  
database 

pQTL GWAS lead SNP(s)a Function 
pSNPb 

Mapped  
GWAS locusc 

#Proteins  
affected 

Example of cis and/or 
trans affected proteinsd  

Cardiovascular  
 CHD 

VTE 
Stroke 

28714975 
UKBB, 28373160 
26708676 

rs12740374 
rs2343596 
rs653178 

rs12740374 
rs16873402, rs4602861 
rs653178 

3'-UTR  
Intron 
Intron 

CELSR2 
ZFPM2 
ATXN2 

8 
7 
2 

C1QTNF1, IGFBP1 
VEGFA, DKK1 
THPO, CXCL11 

Metabolic  
 T2D 

VAT 
Triglyceride 

22885922 
20935629 
21386085 

rs7202877 
rs9491696 
rs2266788 

rs7202877 
rs9491696 
rs2266788 

 Intergenic 
 Intron 
 3'-UTR             

CTRB1 
RSPO3 
APOA5 

   5 
   1 
   5 

CTRB1, PRSS2, CPB1 
RSPO3 
APOA5, PCSK7, ANGPTL3 

CNS  
 LOAD 

Parkinson 
Schizophrenia 

21460840 
21738487 
25056061 

rs610932 
rs6599389 
rs3617 

rs610932 
rs6599389 
rs3617 

3'-UTR  
Intron 
Q315K 

MS4A6A  
GAK 
ITIH3 

3 
1 
8 

TREM2, GLTPD2 
IDUA 
ITIH3, JAKMIP3 

Inflammatory  
 SLE, T1D 

Crohn´s, IBD 
AMD 

26502338 
21102463 
2355636 

rs2304256 
rs11209026 
rs10737680 

rs2304256 
rs11209026 
rs10737680 

V362F 
R381Q 
Intron 

TYK2 
IL23R 
CFH 

2 
1 
22 

ICAM1, ICAM5 
IL23R 
CFH, CFHR1, CFB 

Cancer 
 Colorectal 

Lung 
Melanoma 

24836286 
18978787 
18488026 

rs2241714 
rs3117582 
rs910873 

rs1800469 
rs3117582 
rs910873 

I11M 
Intron 
Intron 

TMEM91 
APOM 
PIGU 

3 
10 
1 

B3GNT2, TGFB1 
MICB, ISG15 
ASIP 

aProtein QTLs overlapping GWAS lead SNPs using the PhenoScanner database23. No SNP proxies were applied except when the lead pSNP was not in the 
query then we used the best proxy (r2

≥0.8 between markers). bThe functional annotation of pQTLs was obtained from the PhenoScanner database23. cReported 
causal candidates are from the GWAS Catalog67.  dThe definition of cis vs. trans effects is somewhat arbitrary depending on the window size chosen across 
the protein gene in question. However, all affected proteins located at other chromosomes than the pQTL location, were considered trans acting and are 
highlighted in bold letters. All significant pQTLs are listed in Supplementary Table 1 and the overlap with GWAS risk loci summarized in Supplementary 
Table 4. 
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Fig. 1. Classification of the target protein population and genomic locations of observed 

pQTLs. a. Pie chart showing the relative distribution (percentage) of the different protein 

classes targeted by the present proteomics platform, with secreted proteins (38.4%) and single 
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pass transmembrane (SPTM) receptors (32.2%) dominating the target protein population. 

Protein classes were manually curated based on information from the SecTrans, Gene 

Ontology (GO) and Swiss-Prot databases, and were composed of secreted proteins (e.g. 

cytokines, adipokines, hormones, chemokines and growth factors), SPTM receptors (e.g. 

tyrosine and serine/threonine kinase receptors), multi-pass transmembrane (MPTM) receptors 

(e.g. GPCR, ion channels, transporters), enzymes (intracellular), kinases, nuclear hormone 

receptors, structural molecules, transcriptional regulators and signal transducers. b. The 

Manhattan plot in the top panel uses precise P-values to highlight all study-wide significant 

associations in Supplementary Table S1. The bottom panel shows the genomic locations of all 

study-wide significant pQTLs (P < 1.92×10-10), where the start position of the protein 

encoding gene is shown on the y-axis and the location of the pSNP at the x-axis. Cis acting 

effects, using a 300kb window, appear at the diagonal while trans acting pQTL effects 

including trans hot spots show up off-diagonally. The genetic loci highlighted across the x-

axis are trans-acting hotspots. 
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Fig. 2. Pleiotropy of rs2251219 affecting many proteins and disease traits. a. Circos plot 

showing the effect of the variant rs2251219 (Supplementary Tables 1 and 2) on 13 proteins 

acting in cis or trans and sharing genetics with various diseases of different etiologies. Only 

study-wide significant (P < 1.92 x 10-10) genotype-to-protein associations are shown. Lines 

going from rs225121show links to genomic locations of the protein encoding genes affected 

while numbers refer to chromosomes.  
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Fig. 3. Effects of distinct risk loci for LOAD converge on the protein TREM2. a. The 

Manhattan plot highlights variants at two distinct chromosomes associated with serum 

TREM2 levels. Study-wide significant associations at P < 1.92×10-10 are indicated by the 

horizontal line. The y-axis shows the -(log10) of the P-values for the association of each 

genetic variant on the exome array present along the x-axis. Variants at both chromosomes 6 
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and 11 associated with TREM2 have been independently linked to risk of LOAD including 

the rs75932628 (NP_061838.1: p.R47H) in TREM2 at chromosome 6 and the variant 

rs610932 at chromosome 11. b.  Boxplot of the trans effect of the well-established GWAS 

risk variant rs610932 for LOAD on TREM2 serum levels (upper panel), where the LOAD 

risk allele G (highlighted in bold) is associated with lower levels of TREM2. Similarly, the 

LOAD causing p.R47H mutation was associated with low levels of TREM2 (lower panel). c. 

TREM2p.R47H carriers demonstrated lower survival probability post-incident LOAD 

compared to TREM2p.R47R carriers (P = 0.04). d.  Scatterplot for the TREM2 protein 

supported as having a causal effect on LOAD in a two sample MR analysis. The figure 

demonstrates the estimated effects (with 95% confidence intervals) of their respective cis- and 

trans-acting genetic instruments on the serum TREM2 levels in AGES-RS (x-axis) and risk of 

LOAD through a GWAS by Kunkle et al.32 (y-axis), using 21,982 LOAD cases and 41,944 

controls. The line indicates the inverse variance weighted causal estimate (β = -0.226, SE = 

0.057, P = 7.6×10-5). 
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Fig. 4. Variants affecting SVEP1 levels are 

associated with CHD and T2D.  

a. The Manhattan plot reveals variants at 

chromosomes 1 and 9 associated with serum 

SVEP1 levels. Study-wide significant 

associations at P < 1.92×10-10 are indicated by 

the horizontal line. The y-axis shows the -

(log10) of the P-values for the association of 

each genetic variant on the exome array present along the x-axis. b. One of the variants 

associated with SVEP1 levels and underlying the peak at chromosome 9 is the low-frequency 
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CHD risk variant rs111245230 (NP_699197.3: pAsp2702Gly). The CHD risk allele C 

(highlighted in bold) is associated with increased serum SVEP1 levels. c. Serum levels of 

SVEP1 were associated with CHD (P = 8×10-9), T2D (P = 1×10-4) and systolic blood pressure 

(P = 4x10-12) in the AGES-RS, all in a directionally consistent manner. d. Consistent with the 

directionality of the effects described above, we find that elevated levels of SVEP1 were 

associated with higher rates of mortality post-incident CHD. e. Scatterplot for the SVEP1 

protein supported as having a causal effect on T2D in a two-sample MR analysis. The figure 

demonstrates the estimated effects (with 95% confidence intervals) of the SNP effect on 

serum SVEP1 levels and T2D from a GWAS in Europeans34 (y-axis), with 74,124 T2D 

patients and 824,006 controls. The line indicates the inverse variance weighted causal 

estimate (β = 0.105, SE = 0.024, P = 1.2×10-5). 
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Figure 5. Proteins associated with malignant melanoma and colorectal cancer. a. The 

melanoma risk allele A (highlighted in bold) for the variant rs910873 is associated with high 

serum levels of ASIP. b. Scatterplot for the ASIP protein supported as having a causal effect 

on malignant melanoma in a two sample MR analysis. The figure demonstrates the estimated 

effects (with 95% confidence intervals) of their respective genetic instruments on the serum 

ASIP levels in AGES (x-axis) and risk of melanoma in GWAS by UK biobank data (UKB-b-

12915) 65 (y-axis), that included 3598 melanoma cases and 459,335 controls. The line 

indicates the inverse variance weighted causal estimate (β = 0.0025, SE = 0.0002, P = 4.8×10-
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26).  c. The pQTL rs2241714 is a proxy for the colorectal cancer associated variant rs1800469 

(r2 = 0.978) (Supplementary Table 2), located within the gene B9D2 and proximal to 

TMEM91 which is the reported candidate gene at this locus (see Table 1). d. The variant 

rs2241714 (and rs1800469) regulate three serum proteins, B3GNT2 (in trans), B3GNT8 (in 

cis) and TGFB1 (in cis).  
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Supplementary Fig. S1. Empirical distribution of the test statistic as a histogram and the observed 

statistics calculated from our data as a vertical line. 10,000 permutations were performed to obtain 

the empirical distribution of the 2 test of equality of proportions of pQTLs among secreted versus 

non-secreted proteins. Here, the test statistics calculated from our data to the quantiles of this 

distribution to obtain P(Data|H0) were compared. Of 10,000 permutations none gave a value 

greater than the observed statistic leading us to P-value = P(Data|H0) < 0.0001. 
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Supplementary Fig. S2. A Spearman rank correlation between all proteins as well as some 

quantitative traits including body mass index (BMI, kg/m2), visceral adipose tissue (VAT, 

measured via computed tomography) and hematocrit (HCT), that were associated with rs2251219. 
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Supplementary Fig. S3. TREM2 regional plots (LocusZoom) based on exome array variants at 

chromosomes 6 and 11. 
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Supplementary Fig. S4. The graph shows the Spearman rank correlation between the four serum 

proteins affected by the two LOAD risk variants, rs75932628 and rs610932. The correlation 

matrix's upper triangle depicts the beta-values, while the lower triangle highlights the P-values.  
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Supplementary Fig. S5. SVEP1 regional plots (LocusZoom) based on exome array variants at 

chromosomes 1 and 9. 
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