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SUMMARY 29 

Glucose homeostasis is maintained by modulation of metabolic flux. Enzymes and 30 

metabolites regulate the involved metabolic pathways. Dysregulation of glucose 31 

homeostasis is a pathological event in obesity. Analyzing metabolic pathways and the 32 

mechanisms contributing to obesity-associated dysregulation in vivo is challenging. Here, 33 

we introduce OMELET: Omics-Based Metabolic Flux Estimation without Labeling for 34 

Extended Trans-omic Analysis. OMELET uses metabolomic, proteomic, and 35 

transcriptomic data to identify changes in metabolic flux, and to quantify contributions of 36 

metabolites, enzymes, and transcripts to the changes in metabolic flux. By evaluating the 37 

livers of fasting ob/ob mice, we found that increased metabolic flux through 38 

gluconeogenesis resulted primarily from increased transcripts, whereas that through the 39 

pyruvate cycle resulted from both increased transcripts and changes in substrates of 40 

metabolic enzymes. With OMELET, we identified mechanisms underlying the obesity-41 

associated dysregulation of metabolic flux in liver.42 
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Highlights 43 

⚫ We created OMELET to infer metabolic flux and its regulation from multi-omic data. 44 

⚫ Gluconeogenic and pyruvate cycle fluxes increased in fasting ob/ob mice. 45 

⚫ Transcripts increases mediated the increase in gluconeogenic fluxes in ob/ob mice. 46 

⚫ Increases in transcripts and substrates enhanced pyruvate cycle flux in ob/ob mice. 47 

 48 
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INTRODUCTION 52 

Glucose homeostasis is tightly regulated to meet the energy requirements of vital organs 53 

and maintain health. Dysregulation of glucose homeostasis leads to metabolic diseases 54 

such as obesity and type 2 diabetes (Hotamisligil and Erbay, 2008; Kahn et al., 2006; 55 

Petersen et al., 2017). The liver plays a central role in glucose homeostasis by regulating 56 

various pathways of glucose metabolism, including gluconeogenesis and glycolysis (Han 57 

et al., 2016; Nordlie et al., 1999; Petersen et al., 2017). The liver is a major player in the 58 

pathophysiology of obesity (Charlton, 2004; Polyzos et al., 2019; Roden and Shulman, 59 

2019). Fasting hyperglycemia in obesity is attributed to altered glucose metabolism in the 60 

liver due to insulin resistance. Because of the complex nature of the obesity-associated 61 

pathophysiology of glucose metabolism in liver, investigation of the dysregulation in this 62 

metabolic system requires data of multiple types that are obtained under the same 63 

condition. 64 

Metabolic flux, the rate of turnover of molecules through a metabolic pathway, 65 

is a direct measure of the activity of the metabolic pathway (Jang et al., 2018). Metabolic 66 

flux is controlled by multiple regulators: enzymes, substrates, products, and cofactors. 67 

Enzymes are regulated by allosteric effectors and other factors such as post-translational 68 

modifications of enzymes. The amounts of enzymes are determined by the amounts of 69 

transcripts encoding the corresponding enzymes and other factors such as translation and 70 

protein degradation. To investigate metabolic flux and its complex regulation, the 71 

amounts of all the regulators of metabolic flux should be simultaneously measured 72 

because molecular interactions between metabolome layer and other multiple omic layers 73 

are mutually connected (Wiley, 2011; Yugi et al., 2014). The amounts of enzymes can be 74 

measured by mass spectrometry-based proteomics, transcripts for enzymes by RNA 75 

sequencing, and the amounts of substrates, products, cofactors, and allosteric effectors by 76 

mass spectrometry-based metabolomics. We developed a method of trans-omic analysis 77 

based on direct molecular interactions to construct a multilayered biochemical network 78 
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using simultaneously obtained multi-omic data (Egami et al., 2021; Kawata et al., 2018; 79 

Kokaji et al., 2020; Yugi et al., 2014, 2016). This trans-omic approach was not used to 80 

infer metabolic fluxes. 81 

The standard method for measuring metabolic flux is isotopic labeling, in which 82 

isotopic tracers are introduced into cells or living animals (Hasenour et al., 2015, 2020; 83 

Hiller and Metallo, 2013; Quek et al., 2010). To analyze the regulation of metabolic flux 84 

in a non-steady state, we developed a kinetic trans-omic analysis that uses data from 85 

isotopic labeling experiments and inferred metabolic flux together with contributions of 86 

regulators to changes in metabolic flux across a multi-layered network (Ohno et al., 2020). 87 

A problem with the application of isotope labeling experiments in living animals 88 

is that the addition of isotopic tracers can perturb the relevant metabolic flux, resulting in 89 

different metabolic states (Previs and Kelley, 2015). For example, when 13C-propionate 90 

or 13C-lactate is used as an isotopic tracer for measurement of gluconeogenic flux, the 91 

measured metabolic fluxes differ between tracers because the administration of 13C-92 

propionate increases metabolic flux through the pyruvate cycle (Perry et al., 2016). 93 

Therefore, the addition of isotopic tracers inevitably results in experimentally induced 94 

changes in metabolic flux. To avoid the effects of the addition of isotopic tracers, a method 95 

to infer metabolic flux without using isotopic tracers is needed to be developed. 96 

Here, we present a method that we termed as Omics-Based Metabolic Flux 97 

Estimation without Labeling for Extended Trans-omic Analysis (OMELET). OMELET 98 

(i) infers metabolic fluxes in each condition from metabolomic, proteomic, and 99 

transcriptomic data, which are simultaneously obtained from the same individual samples, 100 

(ii) identifies changes in metabolic flux between the conditions, and (iii) quantifies 101 

contributions of regulators to the changes in metabolic flux. We obtained metabolomic, 102 

proteomic, and transcriptomic data from the livers of wild-type (WT) and leptin-deficient 103 

obese (ob/ob) mice in the fasting state and four hours after oral glucose administration. 104 

By applying OMELET to the experimental data, we inferred metabolic fluxes in each 105 
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condition, and quantified contributions of regulators to changes in metabolic flux between 106 

the conditions. In the fasting state, metabolic fluxes through reactions in gluconeogenesis 107 

and the pyruvate cycle increased in ob/ob mice compared to WT mice. The increased 108 

metabolic fluxes through reactions in gluconeogenesis were caused by increased 109 

transcripts. In contrast, in the pyruvate cycle, the increased metabolic fluxes through 110 

pyruvate kinase (PK) involved increased transcripts and that through 111 

phosphoenolpyruvate carboxykinase (PEPCK) was caused by increased substrates. We 112 

also quantified the contributions of regulators to changes in metabolic flux resulting from 113 

oral glucose administration. In response to oral glucose administration, although the 114 

metabolic flux through PK did not change in both WT and ob/ob mice, the regulation of 115 

metabolic flux changed: PK flux was regulated by increased ATP as an allosteric inhibitor 116 

in WT mice, and by decreased PK-encoding transcript in ob/ob mice. Thus, OMELET 117 

provided quantitative mechanistic insights into obesity-associated differences in 118 

metabolic regulation in liver without using isotopic tracers.  119 
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RESULTS 120 

Overview of the application of OMELET to study glucose metabolism 121 

In this study, we developed OMELET to infer metabolic flux using multi-omic data 122 

without using isotopic tracers, identify changes in metabolic flux between conditions, and 123 

quantify contributions of regulators to the changes in metabolic flux (Figure 1). We 124 

applied this method to evaluate the differences in metabolic flux in liver between WT and 125 

ob/ob mice, and the dysregulatory mechanisms associated with obesity. Additionally, we 126 

evaluated the differences in metabolic flux between the fasting state and 4-hours after oral 127 

glucose administration for both WT mice and ob/ob mice. We had four conditions: WT in 128 

the fasting state, WT after oral glucose administration, ob/ob in the fasting state, and 129 

ob/ob after oral glucose administration. In each condition, we measured the amounts of 130 

metabolites, enzymes, and transcripts in liver samples from each mouse. We orally 131 

administered glucose to mice that had fasted for 16 hours and collected livers before and 132 

four hours after oral glucose administration (Figure 1: Experimental data). 133 

By applying OMELET to the experimental data, we inferred metabolic fluxes in 134 

the glucose metabolism in each condition, and identified changes in metabolic flux 135 

between the conditions (Figure 1: Step 1). We focused on reactions in the glucose 136 

metabolism and inferred metabolic fluxes through the reactions in glycogenolysis, 137 

gluconeogenesis, lactate and alanine metabolism, the pyruvate cycle, and the TCA cycle 138 

(Figure 1; Table S1). 139 

The changes in metabolic fluxes between conditions are caused by the changes 140 

of regulators such as enzymes and metabolites. To investigate which regulators caused 141 

changes in metabolic flux between the conditions, we quantified the contributions of the 142 

regulators to changes in metabolic flux from experimental data and kinetic parameters 143 

obtained in Step 1 (Figure 1: Step 2). 144 

By integrating changes in the experimental data, changes in metabolic flux 145 

(Figure 1: Step 1), and contributions of the regulators to the changes in metabolic flux 146 
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between the conditions (Figure 1: Step 2), we constructed a quantitative trans-omic 147 

network of the glucose metabolism in liver, which represents changes in metabolic flux 148 

and the regulation across multi-omic layers associated with obesity (Figure 1: Step 3). 149 

 150 

Metabolomic, proteomic, and transcriptomic analysis of glucose metabolism in 151 

livers from WT and ob/ob mice in the fasting state and after oral glucose 152 

administration 153 

We obtained metabolomic, proteomic, and transcriptomic data from livers of WT and 154 

ob/ob mice in the fasting state and four hours after oral glucose administration (Figure 2). 155 

The dynamics of blood glucose and insulin concentrations differed between WT and 156 

ob/ob mice, consistent with obesity phenotype of the ob/ob mice (Figures S1A and S1B). 157 

However, both groups reached a steady state four hours after oral glucose administration. 158 

The transcriptomic data were reported in our previous studies (Egami et al., 2021; Kokaji 159 

et al., 2020), and the metabolomic and proteomic data were newly obtained in this study 160 

(Materials and Methods). We selected 28 metabolites, 15 enzymes, and 17 transcripts 161 

relevant to glucose metabolism from the metabolomic, proteomic, and transcriptomic data, 162 

respectively (Table S2). We defined transcript, enzyme, and reaction names as follows; 163 

transcript names are italicized with only the first letter in upper-case (e.g., Pklr), enzyme 164 

names are not italicized with only the first letter in upper-case (e.g., Pklr), and reaction 165 

names are not italicized with all letters in upper-case (e.g., PK). Principal component 166 

analysis of the metabolites, enzymes, and transcripts showed that the first principal 167 

components captured differences between WT and ob/ob mice, and the second principal 168 

components captured changes by oral glucose administration (Figure S1C). The principal 169 

component analysis indicated that the differences between the genotypes, represented by 170 

principal component 1, exceeded the differences within the genotypes related to oral 171 

glucose administration, represented by principal component 2. Indeed, the principal 172 

component 1 represented ≥50% of the variance (58% for metabolites, 81% for enzymes, 173 
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and 50% for transcripts) and principal component 2 represented ≤15% of the variance 174 

(11% for metabolites, 8% for enzymes, and 15% for transcripts). 175 

We compared amounts of molecules between the conditions and defined 176 

increased and decreased molecules between the conditions. Molecules that showed an 177 

FDR-adjusted p value (q value) less than 0.05 were defined as significantly changed 178 

molecules. Among them, molecules that showed a fold change larger than 1.5 and smaller 179 

than 0.67 between the conditions were defined as increased and decreased molecules, 180 

respectively (Tables S2 and S3). 181 

Consistent with the greatest separation between the genotypes by principal 182 

component analyses, we observed the greatest number of molecules in glucose 183 

metabolism differed between WT and ob/ob mice (Tables S2 and S3). Comparing WT 184 

and ob/ob mouse livers in the fasting state showed that increased metabolites and enzymes 185 

in ob/ob mice included those in glycogenolysis and gluconeogenesis. After oral glucose 186 

administration, differences in metabolites in ob/ob mouse livers compared to WT mouse 187 

livers partially overlapped with the differences between the genotypes in the fasting state, 188 

however, only three increased enzymes were observed. WT mouse livers showed 189 

increases in metabolites of glycogenolysis and gluconeogenesis following glucose 190 

administration. In ob/ob mouse livers, no metabolites in glucose metabolism were 191 

significantly changed by glucose administration. Neither WT or ob/ob mice had any 192 

changes in enzymes or transcripts when livers from fasting mice were compared to livers 193 

from mice of the same genotype after oral glucose administration. 194 

The amounts of metabolites, enzymes, and transcripts do not directly reflect 195 

metabolic flux and its regulation; however, these data contain sufficient information to 196 

infer metabolic flux and its regulation. Therefore, we developed a method to infer 197 

metabolic flux and its regulation using the metabolomic, proteomic, and transcriptomic 198 

data. 199 

 200 
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Inference of metabolic fluxes by OMELET 201 

OMELET is a probability-based model that incorporates metabolomic, proteomic, and 202 

transcriptomic data and uses kinetic equations to predict the parameters of metabolic flux, 203 

the elasticity coefficients, and the protein turnover coefficients for each reaction (Figure 204 

3). The advantages of OMELET are that metabolic flux can be inferred without using 205 

isotopic tracers, and that the regulation of metabolic flux can be determined from the 206 

kinetic parameters inferred by OMELET. The inputs of OMELET are the experimental 207 

data of the amounts of metabolites 𝒙 , enzymes 𝒆 , and transcripts 𝒕  from the same 208 

mouse in each condition as well as model definitions, which are a stoichiometric matrix 209 

of the target metabolic pathway and information on cofactors and allosteric effectors for 210 

each reaction. The outputs are metabolic fluxes 𝒗 in the target metabolic pathway in 211 

each condition, elasticity coefficients 𝝐 , and protein turnover coefficients 𝜷 . The 212 

elasticity coefficient is the change in metabolic flux in response to infinitesimal changes 213 

in metabolites normalized to a reference condition. OMELET is based on a Bayesian 214 

method that calculates posterior probability of the output parameters 𝑝(𝒗, 𝝐, 𝜷|𝒙, 𝒆, 𝒕) by 215 

updating prior probability of parameters [𝑝(𝒗|𝒖), 𝑝(𝝐), and 𝑝(𝜷)] and the hyperprior 216 

of independent flux 𝑝(𝒖|𝝁𝒖) . The posterior probability of the output parameters is 217 

achieved by evaluating likelihoods 𝑝(𝒆, 𝒕|𝒙, 𝒗, 𝜷, 𝝐) of the proteomic and transcriptomic 218 

data under a given metabolomic data and parameter set including metabolic flux 219 

(Materials and Methods). Metabolic flux 𝒗 in a given metabolic pathway under a steady-220 

state condition can be written as a linear combination of independent flux 𝒖, and the prior 221 

probability of metabolic flux 𝑝(𝒗|𝒖)  is assumed to follow a multivariate normal 222 

distribution 𝒩(𝒗𝑙|𝝁𝑙
𝒗, 𝚺𝑙

𝒗) . We used the elasticity coefficients 𝝐  and protein turnover 223 

coefficients 𝜷 to calculate the contributions of regulators to the changes in metabolic 224 

flux between the conditions. Thus, OMELET enabled identification of the specific 225 

reaction with changes in metabolic flux between the conditions and the extent to which 226 

specific regulators, such as changes in the amounts of enzymes and metabolites, 227 
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contributed the inferred differences in metabolic flux between the conditions. 228 

We validated the performance of OMELET by applying it to simulated datasets 229 

of the amounts of metabolites, enzymes, and metabolic fluxes in five conditions from a 230 

kinetic model representing yeast glycolysis (Messiha et al., 2014; Smallbone et al., 2013) 231 

(Figure S2; Table S4). The metabolic fluxes inferred by OMELET highly correlated with 232 

those generated by steady-state simulations of the kinetic model for different yeast 233 

mutants (Figure S2), indicating that OMELET accurately identified the difference in 234 

metabolic fluxes across the reactions in glycolysis in each condition and the changes in 235 

metabolic flux among the mutants. 236 

 237 

Inference of metabolic fluxes in the glucose metabolism in liver of WT and ob/ob 238 

mice in the fasting state and after oral glucose administration 239 

Because the blood glucose and insulin were constant both in WT and ob/ob mice in the 240 

fasting state and four hours after oral glucose administration (Figures S1A and S1B), we 241 

assumed steady-state conditions for glucose metabolism in livers of WT and ob/ob mice. 242 

By applying OMELET to the experimental data, we inferred metabolic fluxes in glucose 243 

metabolism in four conditions: WT and ob/ob mice in the fasting state and after oral 244 

glucose administration (Figures 4A and S3; Table S5). The posterior distributions of the 245 

metabolic fluxes were obtained by fitting the model to the experimental data for the 246 

amounts of enzymes and transcripts in each condition (Figure S4). We assumed that liver 247 

produces glucose through gluconeogenesis, but not consume glucose through glycolysis, 248 

in all the conditions analyzed according to the previous studies (Jin et al., 2013; Turner et 249 

al., 2005). We fixed the direction of the reaction from glucose 6-phosphate (G6P) to 250 

glucose, mediated by glucose-6-phosphatase and indicated in the model as G6PC for 251 

glucose production. A metabolic flux through each reaction was simultaneously inferred 252 

in all the conditions as the relative value to that through G6PC in WT mice in the fasting 253 

state (Materials and Methods). 254 
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The metabolic flux through G6PC as glucose production is the sum of that 255 

through phosphoglucomutase (PGM) in glycogenolysis and fructose-1,6-bisphosphatase 256 

(FBPase) in gluconeogenesis. In WT mice in the fasting state, the 95% credible interval 257 

of the posterior distribution of the metabolic flux through FBPase (0.67 to 1.3) was not 258 

overlapped with that through PGM (0.05 to 0.38) (Figures 4A and S3; Table S5), 259 

suggesting that glucose production depended on gluconeogenesis. The small metabolic 260 

flux through PGM was consistent with the depletion of glycogen in WT mice in the 261 

fasting state (Figure 2). The metabolic flux through FBPase was further divided into that 262 

through glycerol-3-phosphate dehydrogenase (GPD) and alpha-enolase (ENO), which 263 

represented the metabolic flux through gluconeogenesis from glycerol and 264 

phosphoenolpyruvate (PEP), respectively. The metabolic flux through ENO (median of 265 

the posterior distribution: 1.1) and GPD (median: 0.75) were not significantly different 266 

(Figures 4A and S3; Table S5), indicating that both PEP and glycerol are equally used for 267 

glucose production. In the pyruvate cycle, the metabolic flux through PEPCK (median: 268 

2.1) was larger than that through ENO (median: 1.1), and those through pyruvate 269 

carboxylase (PC) (median: 1.8) and PK (median: 0.98) were not significantly different 270 

from that through ENO (median: 1.1) (Figures 4A and S3; Table S5). This result suggested 271 

that PEP was equally used for glucose production and return to pyruvate. The metabolic 272 

flux through PK (median: 0.98) was not significantly different from those through alanine 273 

aminotransferase (GPT) (median: 0.41) and lactate dehydrogenase (LDH) (median: 0.35), 274 

suggesting that pyruvate synthesis is equally contributed by the influxes from PEP, 275 

alanine, and lactate through PK, GPT, and LDH, respectively. In the TCA cycle, 95% 276 

credible intervals of the metabolic fluxes were large (0.21 to 4.1 on average) compared 277 

to those through other reactions in glucose metabolism (0.54 to 0.15 on average), 278 

indicating that the metabolic fluxes through reactions in the TCA cycle were not reliably 279 

determined. The metabolic fluxes in glucose metabolism in the liver of fasting WT mice 280 

inferred by OMELET were consistent with those by the previous metabolic flux analyses 281 
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of fasting WT mice except for those in the TCA cycle (Burgess et al., 2015; Hasenour et 282 

al., 2015, 2020; Satapati et al., 2012; Wang et al., 2020) (Figures S5A and S5B). 283 

For ob/ob mice in the fasting state, we calculated fold changes of the metabolic 284 

flux of ob/ob mice over that of WT mice for each reaction (Figure 4B, black bars). 285 

Although the TCA cycle fluxes were not reliably determined in the individual conditions 286 

including fasting WT and ob/ob mice (Figure 4A), the fold changes of the metabolic flux 287 

of fasting ob/ob mice over that of fasting WT mice were inferred with relatively narrow 288 

95% credible intervals (0.89 to 1.3 average) (Figure 4B; Table S5). The fold changes of 289 

metabolic fluxes through reactions in gluconeogenesis (median: 2.0 on average) and the 290 

pyruvate cycle (median: 2.3 on average) were larger than those in glycogenolysis 291 

(median: 1.2 on average) and the TCA cycle (median: 1.1 on average) (Figure 4B; Table 292 

S5). The metabolic flux through G6PC, glucose production, is a sum of the metabolic flux 293 

through PGM, GPD, LDH, GPT, and glutamate dehydrogenase (GLUD) multiplied by 294 

the number of carbon atoms of the substrates. We quantified the fraction of sources of the 295 

glucose production by calculating the proportion of the metabolic flux through PGM, 296 

GPD, LDH, GPT, and GLUD to that through G6PC, which represent glycogen, glycerol, 297 

lactate, alanine, and glutamate as sources, respectively (Figure 4C; Table S5). The median 298 

of the fraction of glucose production from glycerol was 34% in fasting WT mice and 45% 299 

in fasting ob/ob mice (Figure 4C; Table S5), and the 95% credible interval of the 300 

distribution of the fraction of fasting ob/ob mice minus that of fasting WT mice (5.6% to 301 

17%) was greater than zero (Figure S6A; Table S5). This result suggested that fat 302 

accumulation in the liver of ob/ob mice increased the supply of glycerol as a precursor 303 

for glucose. The median of the fraction of glucose production from alanine was 19% in 304 

fasting WT mice and 24% in fasting ob/ob mice, whereas that from lactate was 16% in 305 

WT and 13% in ob/ob mice (Figures 4C and S6A; Table S5), implying that the 306 

contributions of alanine and lactate to glucose production did not change in ob/ob mice. 307 

The median of the fraction of glucose production from glycogen was 15% in WT and 308 
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10% in ob/ob mice, whereas that from glutamate was 12% in WT mice and 5.3% in ob/ob 309 

mice. Collectively, the fraction of glucose production from glycerol increased in ob/ob 310 

mice, whereas that from glycogen and glutamate decreased. To evaluate the efficiency of 311 

using carbons of PEP for glucose production through gluconeogenesis rather than for 312 

pyruvate through the pyruvate cycle, we calculated the flux split ratios between ENO and 313 

PK reactions (Figure 4D; Table S5) and compared them between fasting WT and ob/ob 314 

mice (Figure S6B; Table S5). Compared to WT mice, the ratio of the metabolic flux 315 

through PK in ob/ob mice was higher and was similar to that through ENO, indicating 316 

less efficient use of PEP as a source of glucose in ob/ob mice than in WT mice. Because 317 

the pyruvate cycle including PK is known as a futile cycle, in which no net PEP 318 

accumulation occurs but energy is used, the increased ratio of PK flux over ENO flux in 319 

ob/ob mice is likely to cause a futile ATP dissipation. We compared the fold changes of 320 

metabolic fluxes through reactions in the glucose metabolism of ob/ob mice over that of 321 

WT mice inferred by OMELET with those in the previous metabolic flux analyses in 322 

fasting ob/ob mice (Turner et al., 2005) and high-fat diet-induced obese mice (Patterson 323 

et al., 2016; Satapati et al., 2012) (Figures S5C and S5D). With OMELET, we found a 324 

larger increase in gluconeogenic flux than that in the previous studies (Satapati et al., 325 

2012; Turner et al., 2005), and smaller increase in glycogenolysis flux than those in the 326 

previous studies (Satapati et al., 2012; Turner et al., 2005). Other differences in glucose 327 

metabolism between WT and ob/ob mice were consistent among the four studies. 328 

To evaluate the effect of oral glucose administration on glucose metabolism, we 329 

calculated fold changes of the metabolic fluxes after oral glucose administration over 330 

those in the fasting state in WT mice (Figure 4B, blue bars) and ob/ob mice (Figures 4B, 331 

red bars). Orally administered glucose triggered a slight increase in the metabolic fluxes 332 

through most reactions in WT mice and a decrease in ob/ob mice. An exception was the 333 

metabolic flux through PK, which did not significantly change in WT mice and decreased 334 

slightly in ob/ob mice. Neither WT nor ob/ob mice exhibited much change from the 335 
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fasting state in the sources of glucose production or the flux split ratio between ENO and 336 

PK in response to oral glucose administration (Figures 4C, 4D, and S6). These results 337 

suggested the differences in the metabolic flux between WT and ob/ob mice in the fasting 338 

state were maintained after oral glucose administration. However, the effect of oral 339 

glucose on the metabolic flux was opposite within each genotype: The metabolic fluxes 340 

slightly increased in WT mice and decreased in ob/ob mice by oral glucose administration. 341 

 342 

Contributions of regulators to changes in metabolic flux between fasting WT and 343 

ob/ob mice 344 

Flux through reactions involved in metabolism is controlled by the enzymes, substrates, 345 

products, cofactors, and allosteric effectors. Each of these can be considered a “regulator” 346 

of the reaction. We quantified contributions of the regulators to changes in metabolic flux 347 

between the conditions (Figures 5 and S7; Table S6). The concept of the contribution is 348 

to partition the cause of changes in metabolic flux between conditions into underlying 349 

changes in the amounts of regulators. The contribution was calculated based on 350 

propagation of uncertainty of regulators’ amounts to metabolic flux, and a similar 351 

approach was described in a previous study (Hackett et al., 2016) (Materials and Methods). 352 

We defined contributions of regulators to changes in metabolic flux (Figure 5A). 353 

The regulators of metabolic flux were transcripts, unaccounted enzyme regulators, 354 

substrates, products, cofactors, allosteric effectors, and unaccounted flux regulators. 355 

Transcripts represent the mechanism by which changes in gene expression regulate 356 

enzyme abundance; the unaccounted ‘enzyme’ regulators represent other non-357 

transcriptional mechanisms that influence the amount of enzyme such as protein 358 

degradation and stability. The unaccounted ‘flux’ regulators include such mechanisms as 359 

phosphorylation of enzymes and unknown allosteric effectors that were not accounted or 360 

measured in OMELET. The contribution of regulator ℎ to a change in metabolic flux 361 

through each reaction 𝜓ℎ was calculated as 362 
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with a sensitivity of the metabolic flux to the regulator 𝑣 (𝜕𝑣/𝜕𝑦ℎ) and a change in the 363 

amount of the regulator between conditions Δ𝑦ℎ . The contribution is calculated for 364 

changes in metabolic flux through each reaction between each pair of condition. The sum 365 

of the contributions of all regulators to a change in metabolic flux equals one, and a larger 366 

contribution indicates a stronger regulatory effect on metabolic flux. The contribution is 367 

a normalized value for each metabolic flux, thus is independent of the magnitude of the 368 

changes in metabolic flux between the conditions. The contribution was independently 369 

calculated in all the Markov chain Monte Carlo samples and represented as a distribution 370 

(Figure S7). We focused on the regulators with a mean contribution larger than 0.25; all 371 

regulatory contributions are available in Table S6. 372 

We applied this analysis to evaluate the contribution of each type of regulator, 373 

including the unaccounted flux regulators, to difference in metabolic flux between WT 374 

and ob/ob mice in the fasting state (Figure 5B). We also examined the relationships 375 

between the contributions of enzymes or metabolites and the fold changes of the 376 

metabolic flux of ob/ob mice over that of WT mice in the fasting state (Figures 5C and 377 

5D). For these analyses, the contribution of enzyme is the sum of its transcript and 378 

unaccounted enzyme regulators, and the contribution of metabolites is the sum of that of 379 

substrates, products, cofactors, and allosteric effectors. We found that, except for PEPCK, 380 

enzymes in the reactions with a fold change in metabolic flux greater than 1.5 in the ob/ob 381 

mice exhibited a greater contribution (Figure 5C) than did metabolites (Figure 5D). For 382 

PEPCK, the contribution of the enzyme was smaller and that of metabolites was larger. 383 

In particular, the substrate contributed the greatest effect (median: 0.73) on the increased 384 

metabolic flux through PEPCK (Figures 5B and S7; Table S6). 385 

 386 
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Quantitative trans-omic networks for changes in metabolic flux between WT and 387 

ob/ob mice in the fasting state 388 

To reveal a global landscape of alteration and dysregulation of metabolic flux in fasting 389 

ob/ob mice, we constructed a quantitative trans-omic network by integrating the 390 

experimental data (Figure 2), the changes in metabolic flux (Figure 4), and the 391 

contributions of the regulators (Figure 5). The resulting network consisted of four layers 392 

(Transcript, Enzyme, Metabolic Flux, and Metabolite) (Figures 6A-D). Nodes in 393 

Transcript, Enzyme, Metabolic Flux, and Metabolite layer represented the transcripts, 394 

enzymes, reactions, and metabolites. Lines connecting nodes in the Transcript layer to 395 

those in the Enzyme layer represented regulation of enzyme by transcript, and those by 396 

unaccounted enzyme regulators were not displayed. Lines connecting nodes in the 397 

Enzyme layer to reactions in the Metabolic Flux layer represented the contributions of 398 

the enzyme to changes in the metabolic flux between the conditions. Lines connecting 399 

nodes in the Metabolite layer to the reactions in the Metabolic Flux layer represented 400 

regulation of changes in metabolic flux by metabolites and were color-coded according 401 

to substrate, product, cofactor, or allosteric effector. Unaccounted flux regulators were 402 

not displayed. The size of nodes represents fold changes of the corresponding molecules 403 

or reactions in ob/ob mice over those of WT mice, and the width of the lines between the 404 

layers represents the contributions of regulators to changes in metabolic flux. 405 

We extracted the subnetworks comprised of gluconeogenesis (Figure 6C) and of 406 

the pyruvate cycle (Figure 6D), which together represented the network with median of 407 

the fold changes of the metabolic flux of ob/ob mice over that of WT mice that were larger 408 

than 1.5 (Figure 5B, red text). In the subnetwork of gluconeogenesis (Figure 6C), many 409 

transcripts, enzymes, and metabolites also increased in ob/ob mice (2.2-fold increase in 410 

metabolites, 1.9-fold in enzymes, and 1.4-fold in transcripts on average within each layer) 411 

and size of nodes were qualitatively similar among Transcript, Enzyme, and Metabolite 412 

layers. By contrast, as for edges of contribution from one layer to another, the 413 
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contributions of enzymes to metabolic flux were larger than those of metabolites. On 414 

average within the subnetwork, contribution of enzyme was 0.67 whereas contribution of 415 

metabolites was 0.017. In addition, contributions of transcripts to enzymes were similar 416 

among many enzymes including glycerol-3-phosphate dehydrogenase 1 (Gpd1), 417 

phosphoglycerate mutase 1 (Pgam1), and enolase 1 (Eno1) except for glucose-6-418 

phosphate isomerase 1 (Gpi1) and fructose bisphosphatase 1 (Fbp1). These results 419 

indicate a hierarchical and quantitative regulation in gluconeogenesis and lactate and 420 

alanine metabolism, where 1.4-fold increase in transcripts contributed to 79% of 2.0-fold 421 

increase in metabolic fluxes while 2.2-fold increase in metabolites contributed to only 422 

1.7% of the increase in metabolic fluxes (Figure 6E). 423 

Pyruvate cycle consists of three reactions: PK reaction catalyzed by pyruvate 424 

kinase (Pklr) enzyme with the substrate PEP, PC reaction catalyzed by pyruvate 425 

carboxylase (Pcx) enzyme with the substrate pyruvate, and PEPCK reaction catalyzed by 426 

phosphoenolpyruvate carboxykinase 1 (Pck1) enzyme with the substrate oxaloacetate. 427 

Although fold changes in metabolic fluxes (2.5-fold for PK, 2.2-fold for PC, and 2.0-fold 428 

for PEPCK) and metabolites (1.5-fold for PEP, 1.9-fold for pyruvate, and 1.5-fold for 429 

oxaloacetate) in the subnetwork of pyruvate cycle were similar, changes in enzymes were 430 

different among reactions (Figure 6D): the enzyme Pklr increased, Pcx did not 431 

significantly changed, and Pck1 decreased in ob/ob mice. These differences in fold 432 

changes of molecules resulted in different contribution to metabolic flux among PK, PC, 433 

and PEPCK. Contribution of the enzyme Pklr to the PK flux (median: 0.87) was much 434 

larger than that of the substrate PEP (median: 0.0017) and Pklr enzyme mainly caused 435 

increase in PK flux in ob/ob mice. The medians of the contribution of Pcx enzyme and 436 

pyruvate to PC flux was 0.62 and 0.31, respectively, and both the enzyme and substrate 437 

contributed to increase in PC flux. Contribution of Pck1 enzyme to PEPCK flux (median: 438 

0.21) was smaller than that of the substrate oxaloacetate (median: 0.74) and the substrate, 439 

rather than the enzyme, contributed increase in PEPCK flux. In all metabolic fluxes 440 
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through PK, PC, and PEPCK in pyruvate cycle, contributions of Pklr, Pcx, and Pck1 441 

transcripts to Pklr, Pcx, and Pck1 enzymes (medians: 0.86, 0.59, and 0.18) were almost 442 

equal to those of Pklr, Pcx, and Pck1 enzymes to PK, PC, and PEPCK fluxes (medians: 443 

0.87, 0.62, and 0.21), respectively, indicating that the contributions of the enzymes to 444 

changes in the metabolic flux were explained by those of the transcripts. These results 445 

suggested that the increased Pklr expression triggered the increased metabolic flux 446 

through the pyruvate cycle, which caused the accumulations of substrates, including 447 

pyruvate and oxaloacetate, and the large contributions of substrates to increases in 448 

metabolic fluxes through the downstream reactions of PC and PEPCK. 449 

We also constructed a quantitative trans-omic network after oral glucose 450 

administration (Figure S9), which showed similar features with those in the fasting state. 451 

Thus, oral glucose administration had little effect on the differences in the steady-state 452 

metabolic flux between WT and ob/ob mice, and on the contributions of the regulators to 453 

the differences in the metabolic flux. 454 

 455 

Contributions of regulators to changes in metabolic flux induced by oral glucose 456 

administration within WT or ob/ob mice 457 

We quantified the contributions of the regulators to changes in the metabolic flux by oral 458 

glucose administration in WT and ob/ob mice separately (Figures 7 and S7; Table S6). 459 

We examined the relationships between contributions of enzyme or metabolite to changes 460 

in the metabolic flux and fold changes of metabolic fluxes after oral glucose 461 

administration over those in the fasting state within each genotype (Figure 7A). None of 462 

the reactions showed a fold change of metabolic flux more than 1.5 nor less than 0.67, 463 

and no apparent relationship was found between the contributions of enzyme or 464 

metabolite and fold changes of the metabolic flux by oral glucose administration. 465 

Among all the reactions, the largest difference in the contribution of the 466 

regulators by oral glucose administration between WT and ob/ob mice was found in PK 467 
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(Figure 7B, right), a reaction with unchanged metabolic flux in WT mice and slightly 468 

decreased metabolic flux in ob/ob mice (Figure 4B). Allosteric effectors had the largest 469 

contribution to the change in metabolic flux through PK in WT mice (median: 0.55, 470 

Figures 7B and S7), whereas the Pklr transcript had the largest contribution in ob/ob mice 471 

(median: 0.95). These results suggested that the change in metabolic flux through PK by 472 

oral glucose administration was caused by different mechanisms between WT and ob/ob 473 

mice: changes in allosteric effectors in WT mice and changes in Pklr gene expression in 474 

ob/ob mice. 475 

To explore the differences of the contributions of the regulators to the decreased 476 

metabolic flux through PK between WT and ob/ob mice, we constructed a quantitative 477 

trans-omic network for the change in metabolic flux through PK by oral glucose 478 

administration in WT mice (Figure 7C, left) and ob/ob mice (Figure 7C, middle). In WT 479 

mice, the substrate PEP and the allosteric inhibitor ATP in the Metabolite layer increased 480 

in response to oral glucose administration. The regulatory input from ATP in the 481 

Metabolite layer to PK in the Metabolic Flux layer (median: 0.50) was the largest among 482 

the regulatory inputs from the metabolites. In ob/ob mice, no metabolites in the 483 

Metabolite layer increased nor decreased following oral glucose administration. The 484 

regulatory input from Pklr in the Enzyme layer to PK in the Metabolic Flux layer (median: 485 

0.95) was larger than regulatory inputs from metabolites, including PEP, ADP, fructose 486 

1,6-bisphosphate (F1,6P), ATP, alanine, and phenylalanine, each of which had a 487 

regulatory input less than 0.10. The regulatory input from Pklr in the Transcript layer to 488 

Pklr in the Enzyme layer (median: 0.93) was almost equal to that from Pklr in the Enzyme 489 

layer to PK in the Metabolic Flux layer (median: 0.95), indicating that the contribution of 490 

enzyme was explained by that of transcript. These results suggested that the change in 491 

metabolic flux through PK was caused by increased ATP as an allosteric inhibitor in WT 492 

mice and by slightly decreased Pklr transcript in ob/ob mice. Given that the glucose-493 

induced changes in metabolic flux through PK were not large (Figure 4B), we interpreted 494 
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these findings to indicate that WT and ob/ob mice used different regulatory mechanisms, 495 

allosteric regulation and transcripts, respectively, to maintain the metabolic flux through 496 

PK rather than to change metabolic flux.  497 
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DISCUSSION 498 

In this study, we developed a method OMELET to investigate alterations and 499 

dysregulation of metabolic flux in liver that are associated with obesity. Using OMELET, 500 

we inferred the metabolic fluxes in glucose metabolism in livers of WT and ob/ob mice 501 

in the fasting state and after oral glucose administration to identify changes in metabolic 502 

flux between the conditions. The metabolic flux through reactions in gluconeogenesis and 503 

the pyruvate cycle increased in ob/ob mice compared to WT mice in the fasting state. The 504 

increased metabolic fluxes through reactions in gluconeogenesis were mainly caused by 505 

increased transcripts. In the pyruvate cycle, increases in transcripts mediated the 506 

increased metabolic flux through PK and increases in substrates the increase through 507 

PEPCK. In response to oral glucose administration, differences in the metabolic fluxes 508 

within mice of the same genotype were small compared to those between WT and ob/ob 509 

mice. Oral glucose administration did not change metabolic flux through PK in either WT 510 

or ob/ob mice, but the metabolic flux was regulated by increased ATP in WT mice and by 511 

decreased Pklr transcript in ob/ob mice. Thus, WT and ob/ob mice used different 512 

regulatory mechanisms, allosteric regulation and transcripts, respectively, to maintain the 513 

metabolic flux through PK rather than to change metabolic flux. 514 

Although isotopic labeling is a powerful technique to measure metabolic flux, 515 

the introduction of isotopic tracers into living animals may perturb the activity of the 516 

metabolic pathway of interest. OMELET does not require isotopic labeling data to infer 517 

metabolic flux, thus avoiding these potential perturbations caused by the addition of 518 

isotopic tracers. However, the accuracy of inference of metabolic flux without isotopic 519 

labeling data needs to be validated. We validated the performance of OMELET by 520 

applying it to the simulated datasets from a kinetic model of the yeast glycolysis (Messiha 521 

et al., 2014; Smallbone et al., 2013) (Figure S2). We also applied OMELET to the data in 522 

fasting mouse liver and found that the inferred metabolic fluxes in WT mice were 523 

consistent with those in the previous studies (Figures S5A and S5B). The fold changes of 524 
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the metabolic fluxes through most reactions in the glucose metabolism of ob/ob mice over 525 

that of WT mice inferred by OMELET were consistent with those in the previous studies, 526 

except for that through glycogenolysis (Figures S5C and S5D). These results suggested 527 

that the experimental data of the amounts of enzymes and metabolites contain sufficient 528 

information on metabolic fluxes as latent parameters, which can be inferred by OMELET. 529 

We used the simultaneously obtained experimental dataset of the amounts of 530 

metabolites, enzymes, and transcripts from the same samples for OMELET. Using 531 

simultaneously obtained multi-omic data, a Bayesian method has the potential to analyze 532 

metabolic flux (Heinonen et al., 2019) and its regulation (Hackett et al., 2016; John et al., 533 

2019; Saa and Nielsen, 2016). Such datasets enabled us to apply a Bayesian method rather 534 

than analyzing the population mean. A Bayesian method can incorporate uncertainties 535 

inherent in the experimental data, such as measurement noise and population 536 

heterogeneity. Based on a Bayesian method, we assumed the experimental data resulted 537 

from a generative model that described the underlying processes given latent parameters, 538 

and evaluated the probability that the model yields the data by likelihood. In OMELET, 539 

the enzymes were derived from a generative model based on metabolic flux, and the 540 

transcripts from a generative model based on protein turnover (Figure 3). Using these two 541 

generative models in OMELET, we evaluated the likelihood of the enzymes and 542 

transcripts from each mouse to infer unknown parameters including metabolic fluxes, 543 

elasticity coefficients and protein turnover coefficients. 544 

There are several limitations to this study. The 95% credible intervals of the 545 

metabolic fluxes in the TCA cycle were large compared to those through other reactions 546 

in glucose metabolism (Figures 4A and S3), indicating that the metabolic fluxes in the 547 

TCA cycle were not reliably determined. The inaccuracy of the inferred metabolic fluxes 548 

in the TCA cycle may be due to small changes in the amounts of enzymes and metabolites 549 

in the TCA cycle between the conditions. We did not consider the compartmentation of 550 

reactions into cytoplasm and mitochondria, and inferred metabolic fluxes averaged in a 551 
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whole cell, which may result in the inaccuracy of the inferred metabolic fluxes. In 552 

addition, OMELET is based on a steady-state assumption and cannot infer dynamic 553 

changes in metabolic flux under non-steady-state conditions. 554 

Using OMELET, we found altered and dysregulated metabolic flux associated 555 

with obesity. We found that the large increase in metabolic flux through reactions in 556 

gluconeogenesis in ob/ob mice compared to WT mice in the fasting state was mainly 557 

caused by increased gene expression of the enzymes (Figure 6). There are several 558 

transcription factors involved in controlling the expression of genes encoding enzymes 559 

involved in gluconeogenesis. For example, cAMP response element-binding protein 560 

(CREB) activates transcription of G6pc and Fbp1 (Hanson and Reshef, 1997; Herzig et 561 

al., 2001), as well as Gpi1 and Pgam1 (Everett et al., 2013). Liver-specific knockdown of 562 

CREB reduced fasting plasma glucose concentrations in ob/ob mice through 563 

downregulation of G6pc and Fbp1 (Erion et al., 2009). In addition to these key 564 

transcription factors identified by individual experiments, high-throughput measurements 565 

and multi-omic analyses have revealed many more transcription factors involved in 566 

metabolic alteration associated with obesity (Egami et al., 2021; Kokaji et al., 2020; Soltis 567 

et al., 2017). Although transcription factors contribute changes in metabolic flux in 568 

glucose metabolism associated with obesity, metabolic flux is also regulated by 569 

metabolites that include substrates, products, cofactors, and allosteric effectors. In this 570 

study, we found that transcripts, rather than metabolites, mainly contributed to the 571 

differences in the metabolic flux between WT and ob/ob mice (Figure 4). Our results 572 

suggested that transcription factors would trigger increased gluconeogenic flux associated 573 

with obesity by promoting the expression of the genes encoding the relevant metabolic 574 

enzymes. 575 

In the pyruvate cycle, increased oxaloacetate (a substrate), rather than Pck1, 576 

contributed to the increased metabolic flux through PEPCK in fasting ob/ob mice (Figure 577 

6D). Several metabolic flux analyses showed that the metabolic flux through PEPCK 578 
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increased associated with obesity (Patterson et al., 2016; Satapati et al., 2012; Sunny et 579 

al., 2011), which was consistent with our data. Given that PEPCK is an irreversible 580 

reaction and there are no known allosteric effectors, possible regulators of the metabolic 581 

flux through PEPCK include Pck1 amounts, the substrate oxaloacetate, and the cofactor 582 

GTP. However, it has been unclear which regulator mainly contributed the increased 583 

metabolic flux through PEPCK associated with obesity. Among the possible regulators, 584 

Pck1 amounts decreased associated with obesity in the fasting state (Samuel et al., 2009; 585 

Satapati et al., 2012; Sunny et al., 2011), which was observed in our proteomic data 586 

(Figure 2). These studies suggest that the increased metabolic flux is not consistent with 587 

the decreased Pck1 amount. Here, we found that increased oxaloacetate was responsible 588 

for the increased metabolic flux through PEPCK (Figure 6D), which provides a 589 

mechanistic explanation for the increased metabolic flux through PEPCK that is 590 

associated with obesity. 591 

The only difference in the contributions of regulators to the changes following 592 

oral glucose administration between WT and ob/ob mice was in metabolic flux through 593 

PK (Figure 7). In WT mice, the allosteric effector ATP was the largest contributor to the 594 

slightly decreased PK flux. In ob/ob mice, a reduction in Pklr transcript was the largest 595 

regulatory contributor. A reason why allosteric regulation was not the main regulator in 596 

ob/ob mice may be because amounts of allosteric effectors, such as ATP, were high even 597 

in the fasting state and did not increase following oral glucose administration (Figure 2). 598 

In calculating the contributions of regulators to changes in metabolic flux 599 

between the conditions, we considered unaccounted flux regulators as one of the 600 

regulators of metabolic flux and unaccounted enzyme regulators as one of the regulators 601 

of enzymes. The contributions of unaccounted flux regulators to changes in metabolic 602 

flux between fasting WT and ob/ob mice were smaller than those of other regulators in 603 

all the reactions in gluconeogenesis and the pyruvate cycle, indicating that changes in 604 

metabolic fluxes through these reactions can be explained by known regulators that we 605 
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considered (Figures 5B and S7). In contrast, the contributions of unaccounted enzyme 606 

regulators to changes in enzyme in reactions through GPI and FBPase were relatively 607 

larger than those through other reactions, indicating that the increase in enzyme in ob/ob 608 

mice cannot be explained by the transcripts. Although we used a simple linear relationship 609 

between the amount of an enzyme and a transcript in OMELET, an increase in enzyme 610 

that is not accompanied by the changes in transcripts should be explained by other 611 

regulatory mechanisms, such as changes in protein stability. Furthermore, the 612 

contributions of unaccounted flux regulators to changes in metabolic flux between fasting 613 

and after oral glucose administration were larger in many reactions than those between 614 

fasting WT and ob/ob mice (Figures 7B and S7). To explain the contributions of 615 

unaccounted flux regulators, we need to consider posttranslational modifications, such as 616 

phosphorylation, of enzymes. Such data can be incorporated by including 617 

phosphoproteomic data. 618 

In conclusion, we developed OMELET, which uses the simultaneously obtained 619 

multi-omic data to infer metabolic fluxes in the glucose metabolism in multiple conditions 620 

and to identify changes in metabolic flux between the conditions. Furthermore, we 621 

quantified the contributions of the regulators to the changes in metabolic flux between 622 

the conditions. OMELET is designed to infer metabolic flux without using isotopic 623 

labeling data and to simultaneously infer changes in metabolic flux and the contributions 624 

of regulators. The quantitative trans-omic network provided insights into the obesity-625 

associated changes in the glucose metabolism in liver and revealed comprehensive 626 

molecular mechanisms for understanding the pathology of alteration and dysregulation 627 

of metabolic flux associated with obesity.  628 
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MATERIALS AND METHODS 661 

RESOURCE AVAILABILITY 662 

Lead Contact 663 

Further information and requests for resources and reagents should be directed to and will 664 

be fulfilled by the Lead Contact, Shinya Kuroda (skuroda@bs.s.u-tokyo.ac.jp). 665 

 666 

Materials Availability 667 

This study did not generate new unique reagents. 668 

 669 

Data and Code Availability 670 

The datasets generated during this study are in the published article. The MATLAB and 671 

R code for OMELET is available at GitHub (https://github.com/usa0ri/OMELET). An 672 

image for Docker container that include RStan and R software to perform OMELET is 673 

available at DockerHub Registry (https://hub.docker.com/repository/docker/saori/rstan). 674 

The accession number for the data of proteome analysis reported in this paper is the 675 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the 676 

JPOST partner repository: JPST000147, JPST000148, and JPST001222. Sequence data 677 

used in this study have been deposited in the DNA Data Bank of Japan Sequence Read 678 

Archive (DRA) (www.ddbj.nig.ac.jp/) under the accession no. DRA008416 and no. 679 

DRA012292. 680 

 681 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 682 

Animals 683 

We used the mouse liver samples obtained simultaneously with those previously 684 

published (Egami et al., 2021; Kokaji et al., 2020). Briefly, 10-week-old male C57BL/6J 685 

wild-type and ob/ob mice (Japan SLC, Inc., Shizuoka, Japan) were overnight (16 hours) 686 

fasted or administrated 2 g/kg body weight of glucose orally after overnight fasting. The 687 
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mice before or four-hour after glucose loading were sacrificed by cervical dislocation and 688 

the whole or left lobe of the liver was dissected and immediately frozen in liquid nitrogen. 689 

The frozen liver was pulverized with dry ice to a fine powder with a blender and separated 690 

into tubes for transcriptomic, proteomic, and metabolomic measurements. Note that all 691 

the omics data was simultaneously measured from the same individual mice. All the 692 

mouse experiments were performed according to protocols approved by the animal ethics 693 

committee of The University of Tokyo. 694 

We had mice under four conditions: WT mice in the fasting state (n=11), ob/ob 695 

mice in the fasting state (n=12), WT mice after oral glucose administration (n=12), and 696 

ob/ob mice after oral glucose administration (n=12). The metabolomic data of five 697 

samples in each condition were reported in our previous studies (Egami et al., 2021; 698 

Kokaji et al., 2020). We newly obtained the metabolomic data from all the samples in this 699 

study. The transcriptomic data from all the samples in the fasting state and five after oral 700 

glucose administration were reported in our previous studies. We newly obtained the 701 

transcriptomic data from seven samples after oral glucose administration in this study. 702 

 703 

METHOD DETAILS 704 

Metabolic network for glucose metabolism in mice 705 

A metabolic network for glucose metabolism in mice was constructed to infer metabolic 706 

fluxes and quantify the contributions of regulators to changes in metabolic flux between 707 

conditions. The network consists of 27 metabolites and 22 reactions (Table S1) in 708 

gluconeogenesis, glycogenolysis, lactate and alanine metabolism, and the TCA cycle 709 

(Figure 1). 710 

The liver produces glucose through the gluconeogenesis and consumes glucose 711 

through glycolysis. The gluconeogenesis in liver includes reactions catalyzed by glucose-712 

6-phosphate (G6PC) and fructose-bisphosphatase 1 (FBPase), while the glycolysis 713 

includes reactions by glucokinase (GK) and phosphofructokinase (liver type) (PFKL). 714 
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Assuming that the metabolic flux through GK and PFKL were negligible in livers of WT 715 

and ob/ob mice in all the conditions, we included G6PC and FBPase in the metabolic 716 

network but not included GK and PFKL. This is supported by several studies showing 717 

that the glucose production was more dominant than the glucose consumption in livers of 718 

overnight fasting WT mice (Burgess et al., 2005; Hasenour et al., 2015, 2020; Satapati et 719 

al., 2012; Wang et al., 2020) and ob/ob mice (Turner et al., 2005). In addition, the glucose 720 

production from glycogenolysis and gluconeogenesis occurred 150 min after oral glucose 721 

administration in rat (Jin et al., 2003). Although we did not find any studies to support the 722 

glucose production in ob/ob mice four hours after oral glucose administration, ob/ob mice 723 

after oral glucose administration in this study showed similar temporal changes in blood 724 

glucose and insulin (Figures S1A and B) to WT mice. Therefore, we included G6PC and 725 

FBPase in the metabolic network but not included GK and PFKL reactions. This also 726 

reduces the complexity of the metabolic model and computational cost for the metabolic 727 

flux estimation. 728 

Pyruvate dehydrogenase (PDH), converting pyruvate to acetyl-CoA, was not 729 

included in the metabolic network because several studies showed that the metabolic flux 730 

through PDH was small (~5%) relative to those through the TCA cycle in WT mice in the 731 

fasting state (Perry et al., 2016). Malic enzyme (ME), converting malate to pyruvate, was 732 

not considered because ME inhibitor did not affect the metabolic flux producing pyruvate 733 

in fasting rodent models (Hasenour et al., 2020; Perry et al., 2016; Petersen et al., 1995), 734 

suggesting the small contribution of ME to the metabolic flux. 735 

Cytoplasmic and mitochondrial compartments were not considered for 736 

simplification and averaged metabolic fluxes as a single compartment were inferred in 737 

this study. Malate dehydrogenase (Mdh) has cytoplasmic (Mdh1) and mitochondrial 738 

(Mdh2) isoforms, but we only considered Mdh2 as a part of reactions in the TCA cycle 739 

for simplification. 740 

 741 
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Algorithm of omics-based metabolic flux estimation without labeling for extended 742 

trans-omic analysis (OMELET) 743 

We first review a framework of Bayesian inference. Statistical model consists of a 744 

likelihood, representing a probability of the observed data 𝒛 at a given parameter values 745 

𝜽, and a prior distribution for 𝜽, denoting a probability distribution of each parameter 746 

reflecting the feasible assumptions and prior knowledges. Bayes’ theorem calculates the 747 

renormalized product of the likelihood 𝑝(𝒛|𝜽) and the prior distribution 𝑝(𝜽), 748 

𝑝(𝜽|𝒛) ∝ 𝑝(𝒛|𝜽)𝑝(𝜽)  

to produce the posterior parameter distribution 𝑝(𝜽|𝒛), a probability of the parameters 749 

taking the values given the observed data. The posterior distribution is obtained by 750 

updating the parameter values following the prior distributions toward better fittings to 751 

the observed data evaluated in likelihood. The definition of the prior distribution is critical 752 

especially when the sample size is small whereas sufficient samples make its effects on 753 

posterior parameter distribution decreases to get closer to maximal likelihood estimation. 754 

One may assume additional parameters for prior distributions, which can be achieved by 755 

defining hyperparameters 𝜼, 756 

𝑝(𝜽, 𝜼|𝒛) ∝ 𝑝(𝒛|𝜽)𝑝(𝜽|𝜼)𝑝(𝜼)  

to introduce a hierarchical structure in prior distributions. Furthermore, Bayesian 757 

regression uses the additional observed data 𝒘  as explanatory variables to calculate 758 

posterior distributions defined as 759 

𝑝(𝜽, 𝜼|𝒛,𝒘) ∝ 𝑝(𝒛|𝜽,𝒘)𝑝(𝜽|𝜼)𝑝(𝜼).  

In Omics-based Metabolic flux Estimation without Labeling for Extended Trans-760 

omic analysis (OMELET), observed data 𝒛 is the experimental data of the amounts of 761 

enzymes and transcripts from the same samples obtained from multiple conditions. The 762 

observed data 𝒘  as explanatory variables is the experimental data of the amounts of 763 

metabolites. Parameters 𝜽  include metabolic fluxes in each condition, elasticity 764 

coefficients in linlog kinetics and protein turnover coefficients. The prior 𝑝(𝜽)  is 765 
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defined for all the parameters, and the hyperprior 𝑝(𝜼) is defined only for metabolic 766 

fluxes, which has hyperparameters 𝜼 to obtain a steady-state metabolic flux distribution 767 

based on the reactions of the metabolic network of interest. The likelihood 𝑝(𝒛|𝜽), which 768 

describes the relationship between the experimental data and the parameters, is the 769 

product of the probability of the measured amounts of enzymes given the parameters and 770 

the probability of the measured amounts of transcripts given the parameters. 771 

 772 

We start from defining the prior and hyperprior for metabolic fluxes as 773 

multivariable normal distribution in each condition 𝑙 = 1,2, … , 𝑔 . The metabolite 774 

concentration 𝒙𝑙 and metabolic fluxes 𝒗𝑙 describes a system of mass balances around 775 

each metabolite in the form 776 

𝒙𝑙̇ = 𝑺𝒗𝑙 (1) 

for 𝑟′  reactions and 𝑚  metabolites, where 𝑺  denotes the stoichiometric matrix that 777 

links metabolites to their reactions via stoichiometry. Note that this stoichiometric matrix 778 

is based on the open-formed metabolic network that is transformed by removing rows for 779 

the metabolites that participated in transporting reaction across the system boundary, 780 

resulting in 𝑚 < 𝑟′. The vector of the time derivative for metabolites �̇�𝑙 around steady 781 

state is assumed to follow 𝑚-dimensional multivariate normal distribution 782 

𝒙𝑙̇ ∼ 𝒩(𝟎, 𝚺𝑙
�̇�) (2) 

with diagonal covariance matrix 𝚺𝑙
�̇� = diag ((𝝈𝑙

�̇�)
⊤
𝝈𝑙
�̇�) . 𝝈𝑙

�̇�  represents the extent of 783 

relaxation from the steady state and is defined later based on the influx and efflux around 784 

each metabolite. The number of variables that need to be specified to calculate a steady-785 

state fluxes in equation (1) is 𝑓 = 𝑟′ − rank(𝑺). Let us denote the vectors of independent 786 

and dependent flux variables 𝒖𝑙 and 𝒗𝑗
𝑑 of length 𝑓 and rank(𝑺), respectively. Since 787 

dependent flux variables can be directly computed as linear combination of independent 788 

flux variables, we have only to estimate independent flux as hyperparameter to obtain the 789 

full metabolic fluxes. Here the vector of independent flux was assumed to follow the 790 
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multi-dimensional normal distribution 791 

𝑝(𝒖𝑙|𝝁𝑙
𝒖) = 𝒩(𝒖𝑙|𝝁𝑙

𝒖, 𝚺𝑙
𝒖) (3) 

with mean 𝝁𝑙
𝒖 and diagonal covariance matrix 𝚺𝑙

𝒖 = diag((𝝈𝑙
𝒖)⊤𝝈𝑙

𝒖). The deviations of 792 

independent fluxes were determined as 𝝈𝑙
𝒖 = 𝑐𝑢𝝁𝑙

𝒖 with a fixed coefficient of variance 793 

𝑐𝑢. The relation between independent and dependent flux variables can be obtained via 794 

decomposition of the full flux vector into the vectors of independent and dependent flux, 795 

and the equation (1) can be expressed as 796 

𝒙𝑙̇ = [𝑺𝒅 𝑺𝒖] [
𝒗𝒍
𝒅

𝒖𝒍
] = 𝑺𝒅𝒗𝑙

𝒅 + 𝑺𝒖𝒖𝑙 (4) 

where 𝑚 × rank(𝑺)  matrix 𝑺𝑑  and 𝑚 × 𝑓  matrix 𝑺𝑢  contain columns 797 

corresponding to dependent and independent flux variables, respectively. When 𝑺𝑑 is 798 

regular with 𝑚 = rank(𝑺) and det(𝑺𝑑) ≠ 0, the full flux vector is directly computed 799 

as 800 

𝒗𝑙 = [
𝒗𝑙
𝑑

𝒖𝑙
] = [

(𝑺𝑑)−1(𝒙𝑙̇ − 𝑺
𝑢𝒖𝑙)

𝒖𝑙
] = [

−(𝑺𝑑)−1𝑺𝑢

𝑰𝑟−𝑚
] 𝒖𝑙 + [

(𝑺𝑑)−1

𝟎
] 𝒙𝑙̇

= 𝑾𝒖𝒖𝑙 +𝑾
�̇�𝒙𝑙̇  

(5) 

with transformation matrices 𝑾𝒖 and 𝑾�̇� defined based on the inverse of 𝑺𝑑. Here we 801 

just considered the metabolic pathways in which the stoichiometric matrix 𝑺𝑑  was 802 

regular, and in other words the following situation was not considered because the full 803 

metabolic fluxes could not be computed from independent flux variables: 𝑟′ < 𝑚  or 804 

linearly dependent rows in 𝑺 resulting in rank(𝑺) < 𝑚. We avoided these conditions 805 

by appropriate definition of the target metabolic pathway and stoichiometric matrix. 806 

Now we obtain the prior distribution of the full metabolic fluxes from equation 807 

(5). Since linear combination of normal random variables is also normal random variables, 808 

the vector of full metabolic flux follows the 𝑟′-dimensional normal distribution 809 

𝑝(𝒗𝑙|𝒖𝑙) = 𝒩(𝒗𝑙|𝝁𝑙
𝒗, 𝚺𝑙

𝒗) (6) 

with mean 𝝁𝑙
𝒗 = 𝑾𝒖𝝁𝑙

𝒖  and covariance matrix 𝚺𝑙
𝒗 = 𝑾𝒖𝚺𝑙

𝒖(𝑾𝒖)⊤ +𝑾�̇�𝚺𝑙
�̇�(𝑾�̇�)⊤ . 810 

The diagonal covariance matrix 𝚺𝑙
�̇�  represents the variances around prior metabolite 811 
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changes. In strict steady state, the prior for metabolite change becomes Dirac’s delta 812 

function at zero by increasing the variances, we can relax the steady-state assumption on 813 

individual metabolites and encode allowance for accumulations or depletions of them. 814 

The squared diagonal element 𝝈𝑙
�̇� was obtained from the mean of the prior distribution 815 

of metabolic flux as 816 

𝝈𝑙
�̇� =

𝑐 �̇�

2
(𝑺+𝝁𝑙

𝒗 + 𝑺−𝝁𝑙
𝒗), (7) 

with a fixed coefficient of variance 𝑐 �̇�  by defining production and consumption 817 

stoichiometric matrices as, 818 

𝑆+ =
1

2
(abs(𝑺) + 𝑺), 𝑆− =

1

2
(abs(𝑺) − 𝑺), (8) 

where abs(𝑺) is the matrix of absolute values of the corresponding entries of 𝑺. Note 819 

that the entries of the matrix 𝑺+ corresponds to the number of molecules of metabolite 820 

produced by the reaction. Conversely, each entry of the matrix 𝑺− give the number of 821 

molecules of metabolite consumed by the reaction. 822 

 823 

Next, we define the likelihood of the measured amounts of enzymes given 824 

parameters and prior for elasticity coefficients based on linlog kinetics. Since the 825 

experimental data of the amounts of metabolites and enzymes is usually not available for 826 

all reactions in the metabolic network, the likelihood was calculated for a subset of the 827 

reactions. We consider the metabolic flux through the subset of the reactions 𝑅 ⊆ 𝑅′ =828 

{1,2, … , 𝑟′} , where 𝑅  consists of 𝑟  reactions. For each sample 𝑘 = 1,2, … , 𝑛𝑗  under 829 

condition 𝑙 (𝑙 = 1,2, … , 𝑔), the amounts of metabolites 𝒙𝑘𝑙 (a 𝑚 × 1 vector) and the 830 

amounts of enzymes 𝒆𝑘𝑙 (a 𝑟 × 1 vector) are obtained after normalizing by the average 831 

amounts across all the conditions. In the linlog kinetics framework, the metabolic flux 832 

through reaction 𝑗 ∈ 𝑅 (𝑣𝑗𝑘𝑙) is expressed as 833 

𝑣𝑗𝑘𝑙 = 𝑣𝑗
0𝑒𝑗𝑘𝑙(1 + 𝝐𝑗

⊤ ln 𝒙𝑘𝑙), (9) 

where 𝑣𝑗
0 is the metabolic flux in the reference state, and 𝝐𝑗 is the 𝑚 × 1 vector of 834 
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elasticity coefficients. 𝑣𝑗
0 is defined as the mean of the prior metabolic flux values across 835 

conditions as 𝑣𝑗
0 = 1/𝑔∑ 𝜇𝑗𝑙

𝒗𝑔
𝑙=1  where 𝜇𝑗𝑙

𝒗  is a prior mean of the metabolic flux 𝑣𝑗𝑙 . 836 

𝜖𝑗𝑖 describes the effect of changes of the amounts of metabolites 𝑥𝑖 on the metabolic 837 

flux 𝑣𝑗 , and is positive if metabolite 𝑖 is a substrate or an allosteric activator for reaction 838 

𝑗, while negative if the metabolite is a product or an allosteric inhibitor. If metabolite 𝑖 839 

does not directly participate in reaction 𝑗, the value of 𝜖𝑗𝑖 equals to zero. According to 840 

equation (9) the amount of the enzyme is calculated using the inferred metabolic flux 𝑣𝑗𝑙 . 841 

Here, the amount of the enzyme in each sample 𝑒𝑗𝑘𝑙 is assumed to follow the normal 842 

distribution around the estimated value �̂�𝑗𝑘𝑙, and we obtain the likelihood of the measured 843 

amount of the enzyme given parameters as 844 

𝑝(𝑒𝑗𝑘𝑙|𝒙𝑘𝑙, 𝑣𝑗𝑙 , 𝝐𝑗 , 𝜎
�̂�) = 𝒩 (𝑒𝑗𝑘𝑙|�̂�𝑗𝑘𝑙, (𝜎

�̂�)
2
), 

�̂�𝑗𝑘𝑙 =
𝑣𝑗𝑙

𝑣𝑗
0

1

1 + 𝝐𝑗
⊤ ln 𝒙𝑘𝑙

, 

(10) 

where 𝑣𝑗𝑙  is the inferred metabolic flux of reaction 𝑗. For simplicity, the variance of the 845 

error term 𝜎�̂� is set to the same values in all the reactions, samples, and conditions. We 846 

placed half-Cauchy priors with scale 0.5 on 𝜎�̂� , set as a weakly informative prior 847 

distribution given that 𝜎 �̂� was expected to be less than one. 848 

Elasticity coefficients are likely not to significantly deviate from the range 849 

between -1 and 1 theoretically (Kacser and Burns, 1995), and are likely to be positive for 850 

substrates and allosteric activators whereas negative for products and allosteric inhibitors. 851 

This property generates prior distributions for elasticity coefficients as 852 

𝑝(𝜖𝑗𝑖) =

{
 
 

 
 

ℋ(𝜖𝑗𝑖|1)  if metabolite 𝑖 is substrate 

or allosteric activator in reaction 𝑗

−ℋ(𝜖𝑗𝑖|1)  if metabolite 𝑖 is product 

or allosteric inhibitor in reaction 𝑗

𝛿(𝜖𝑗𝑖|0)  others

 (11) 

ℋ(𝑥|𝜎) =
√2

𝜎√𝜋
exp(−

𝑥2

2𝜎2
) , 𝑥 ∈ [0, +∞) 853 
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𝛿(𝑥|𝜇) = lim
𝜎→0

1

√2𝜋𝜎2
exp(−

(𝑥 − 𝜇)2

2𝜎2
) , 𝑥 ∈ (−∞,+∞) 854 

where ℋ(𝑥|𝜎)  indicates half-normal distribution with variance 𝜎 , and 𝛿(𝑥|𝜇) 855 

indicates Dirac’s delta function equal to zero everywhere except for 𝜇. 856 

The amounts of enzymes are explained in the context of not only metabolic flux 857 

but also of protein turnover. Here we define the likelihood of the measured amounts of 858 

transcripts given parameters and priors for protein turnover coefficient 𝛽𝑖𝑗 . For each 859 

sample 𝑘 = 1,2, … , 𝑛𝑗  under condition 𝑙 (𝑙 = 1,2, … , 𝑔) , the estimated amounts of 860 

enzymes �̂�𝑘𝑙 and the corresponding amounts of transcripts �̂�𝑘𝑙 represents the enzyme 861 

change rate �̇�𝑘𝑙 as 862 

�̇�𝑘𝑙 = (𝒌𝑙
+)⊤�̂�𝑘𝑙 − (𝒌𝑙

−)⊤�̂�𝑘𝑙, (12) 

where 𝒌𝑙
+  and 𝒌𝑙

−  are 𝑟 × 1  vectors of kinetic parameters for protein synthesis and 863 

degradation, respectively. Assuming the amounts of enzymes as stable within the 864 

observed time intervals, the amounts of enzymes and transcripts have a linear relationship 865 

and we obtain the likelihood of the measured amount of the transcript given parameters 866 

as, 867 

𝑝(𝑡𝑗𝑘𝑙|�̂�𝑗𝑘𝑙, 𝛽𝑗𝑙 , 𝜎
�̂�) = 𝒩 (𝑡𝑗𝑘𝑙|�̂�𝑗𝑘𝑙, (𝜎

�̂�)
2
), 

�̂�𝑗𝑘𝑙 =
1

𝛽𝑗𝑙
�̂�𝑗𝑘𝑙, 

(13) 

using turnover coefficient 𝛽𝑗𝑙 = 𝑘𝑗𝑙
+/𝑘𝑗𝑙

−  and the estimated amount of enzyme �̂�𝑗𝑘𝑙  in 868 

each sample defined in equation (10). The parameter to determine the variance of the 869 

error term 𝜎 �̂�  is simplified as the common values in all the reactions, samples, and 870 

conditions. We placed half-Cauchy priors with scale 0.5 on 𝜎 �̂�. Given that there is a high 871 

correlation between copy numbers of RNA and protein especially in the glucose 872 

metabolism (Matsumoto et al., 2017), the turnover coefficient 𝛽𝑗𝑙 is expected to be close 873 

to one when the amounts of enzymes and transcripts are normalized to their averages. 874 

Therefore, the prior distribution for 𝛽𝑗𝑙 can be described by 875 
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𝑝(𝛽𝑗𝑙|𝜎𝑙
𝛽
) = 𝒩 (𝛽𝑗𝑙|1, (𝜎𝑙

𝛽
)
2
) (14) 

with error term defined by 𝜎𝑙
𝛽

 in each condition. We placed half-Cauchy priors with 876 

scale 0.5 on 𝜎𝑙
𝛽

. 877 

 878 

Combining the likelihood with the priors based on linlog kinetics (equations 6, 879 

10, 11, and Table S7) and protein turnover (equations 13, 14, and Table S7), the joint 880 

posterior distribution is given by 881 

𝑝(𝒗, 𝝐, 𝜷, 𝜎�̂� , 𝜎 �̂�|𝒆, 𝒙, 𝒕, 𝑐𝑢, 𝑐 �̇�, 𝑆)

∝ 𝑝(𝒆, 𝒕|𝒙, 𝒗, 𝝐, 𝜎 �̂� , 𝜷, 𝜎 �̂�)𝑝(𝒗|𝒖, 𝑐 �̇�, 𝑆)𝑝(𝒖|𝝁𝒖, 𝑐𝑢)𝑝(𝝐)𝑝(𝜷)𝑝(𝜎�̂�)𝑝(𝜎 �̂�), 

𝑝(𝒆, 𝒕|𝒙, 𝒗, 𝝐, 𝜎�̂� , 𝜷, 𝜎 �̂�) = 𝑝(𝒆|𝒙, 𝒗, 𝝐, 𝜎�̂�)𝑝(𝒕|𝒙, 𝒗, 𝝐, 𝜷, 𝜎 �̂�). 

(15) 

where 𝑝(𝒆, 𝒕|𝒙, 𝒗, 𝝐, 𝜎�̂� , 𝜷, 𝜎 �̂�)  is the likelihood of the measured amounts of enzymes 882 

based on linlog kinetics combined with the likelihood of the measured amounts of 883 

transcripts based on protein turnover, 𝑝(𝒗|𝒖, 𝑐 �̇�, 𝑆)  is the prior distribution for 884 

metabolic flux 𝒗 , 𝑝(𝒖|𝝁𝒖, 𝑐𝑢)  is the hyperprior distribution for independent flux 𝒖 , 885 

𝑝(𝝐) is the prior distribution for elasticity coefficients 𝝐, 𝑝(𝜷) is the prior distribution 886 

for protein turnover coefficients 𝜷, 𝑝(𝜎�̂�) is the prior distribution for parameter of error 887 

term 𝜎 �̂�, and 𝑝(𝜎 �̂�) is the prior distribution for parameter of error term 𝜎 �̂�. 888 

 889 

Application of OMELET to mouse data 890 

We applied OMELET to the experimental data from mice in four conditions: WT in the 891 

fasting state, WT after oral glucose administration, ob/ob in the fasting state, and ob/ob 892 

after oral glucose administration. The independent fluxes were constrained so that the 893 

flux through G6PC in WT mice in the fasting state was fixed at one. A metabolic flux 894 

through each reaction was inferred simultaneously in all the conditions and as inferred as 895 

the relative value to that through G6PC in WT mice in the fasting state. The amounts of 896 

pyruvate and oxaloacetate were not available in our measurements because of their 897 

chemical instability and low concentrations. For such metabolite species, the relative 898 
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amounts normalized to the mean across the conditions were inferred as parameters. The 899 

amounts of enzymes of glutamic pyruvic transaminase (Gpt) and glutamate 900 

dehydrogenase 1 (Glud1) were not measured and only the likelihood of the measured 901 

amounts of transcripts was evaluated. Several enzymes function as complex including 902 

succinate dehydrogenase, which is also known as respiratory complex II. Two subunits 903 

of succinate dehydrogenase, subunit A (Sdha) and subunit B (Sdhb), were available both 904 

in the amounts of enzymes and transcripts. The amounts of Sdha and Sdhb were 905 

independently normalized to the mean values across the conditions, and then the product 906 

was introduced as 𝒆 for the reaction through succinate dehydrogenase (SDH) in equation 907 

(10). Other reactions were catalyzed by a single enzyme or by complex with only one 908 

subunit measured and a single enzyme data was used. The parameters for coefficient of 909 

variances 𝑐𝑢 and 𝑐 �̇� were fixed at 0.1 and 0.01, respectively. 910 

We performed posterior predictive checks to evaluate the fitting of the model to 911 

the measured data of the amounts of enzymes and transcripts from mice. Posterior 912 

predictive distributions of enzymes can be simulated by sampling parameters from the 913 

posterior and using them to generate replicate data sets based on equation (10). Posterior 914 

predictive distributions of transcripts can be simulated in the same way based on equation 915 

(13). We compared the posterior predictive distributions with the measured data and 916 

confirmed the good fits to the experimental data of the amounts of enzymes and 917 

transcripts (Figure S4). 918 

 919 

Parameter estimation 920 

Based on the specified prior distribution and likelihood, the posterior distributions of 921 

parameters were numerically estimated by Markov Chain Monte Carlo (MCMC) 922 

sampling. The algorithm was a No-U-turn sampler (NUTS), a variant of Hamiltonian 923 

Monte Carlo (HMC), constructing an iterative process that eventually converges to the 924 

true posterior distribution (Hoffman and Gelman, 2014). For application to the data from 925 
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mice, we ran four chains of 20,000 iterations with 10,000 burnings with thinning of 2, 926 

resulting in 20,000 samples in total. Convergence of Markov Chains was evaluated by R-927 

hat diagnostic, which compares the between- and within-chain estimated for model 928 

parameters. All our runs satisfied R-hat less than 1.05, indicating that chains were mixed 929 

well. All the parameter estimation was performed using RStan library (version 2.19.2) in 930 

R software (3.6.1) within a Docker container (Merkel, 2014). 931 

 932 

Simulation using kinetic model of yeast glycolysis 933 

The model of yeast glycolysis was downloaded from the public model repository 934 

BioModels Database (Le Novère et al., 2006) as SBML (Systems Biology Markup 935 

Language) format (Hucka et al., 2003), with the identifier BIOMD0000000503 (Messiha 936 

et al., 2014; Smallbone et al., 2013). The kinetic model represented the glycolytic 937 

pathway from glucose down to ethanol as well as the pentose phosphate pathway, and 938 

only the glycolytic part was used in our simulation. Briefly, we first perturbed the original 939 

model (WT) to generate models of four mutant strains (mutant 01 to 04), and then 50 940 

datasets including the amounts of metabolites, enzymes, and metabolic fluxes were 941 

generated for each of the models. The parameters of the WT model in enzyme 𝑖 (𝑧𝑖
0) to 942 

be perturbed included kcat, Vmax, or an enzyme concentration. The magnitude of 943 

perturbation 𝜁𝑙  (𝑙 = 1,… ,5) , strain-specific noise, was set so that mutant strains with 944 

perturbed parameter sets 𝒛𝑙 were gradually deviated from the WT model (Table S8). 945 

Based on the perturbed model, sample datasets were generated by introducing 946 

sample-specific noises 𝜁𝑖
sample

∼ 𝒩 (0, (0.1𝑧𝑖
𝑙)
2
) for each parameter value 𝑧𝑖

𝑙, which 947 

represented variety between samples in the same strain and were assumed to be common 948 

in all the strains. Steady-state simulation using the parameter set with the strain-specific 949 

and sample-specific noises produced a dataset containing 50 samples with the amounts 950 

of metabolites, enzymes, and metabolic fluxes under each of the five conditions. All the 951 

steady-state simulation were executed using the Simbiology toolbox in MATLAB (The 952 
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MathWorks, Inc., Natick, Massachusetts, United States of America). 953 

To evaluate the performance of OMELET, only the dataset of the amounts of 954 

enzymes and metabolites, not including metabolic fluxes, were used as input. Since the 955 

amounts of transcripts were not available, we obtained the joint posterior distribution 956 

𝑝(𝒗, 𝝐, 𝜷, 𝜎�̂�|𝒆, 𝒙, 𝑐𝑢, 𝑐 �̇�, 𝑆)

∝ 𝑝(𝒆|𝒙, 𝒗, 𝝐, 𝜎 �̂�)𝑝(𝒗|𝒖, 𝑐 �̇�, 𝑆)𝑝(𝒖|𝝁𝒖, 𝑐𝑢)𝑝(𝝐)𝑝(𝜷)𝑝(𝜎�̂�) 
(16) 

where the likelihood of transcripts (Table S6) was removed from equation (15). The 957 

independent fluxes were constrained so that the metabolic flux through glucose uptake 958 

(hexose transporter; HXT) in WT strain was fixed at one. A metabolic flux through each 959 

reaction was inferred as the relative value to that through HXT in WT. The parameters for 960 

coefficient of variances 𝑐𝑢 and 𝑐 �̇� were fixed at 0.1 and 0.01, respectively. For MCMC 961 

sampling, we ran four chains of 20,000 iterations with 17,500 burnings with thinning 2, 962 

resulting in 5,000 samples in total. The metabolic fluxes inferred by OMELET were then 963 

compared with those obtained from the perturbation and steady-state simulation of the 964 

kinetic model. 965 

 966 

Contributions of regulators to changes in metabolic flux 967 

We define a contribution 𝜓𝑗ℎ  of regulator ℎ  to changes in metabolic flux through 968 

reaction 𝑗 between conditions. The regulators include transcripts, unaccounted enzyme 969 

regulators, substrates, products, cofactors, allosteric effectors, and unaccounted flux 970 

regulators. The unaccounted enzyme regulators can include other regulatory mechanisms 971 

of the protein amount of enzyme such as protein degradation and stability. The 972 

unaccounted flux regulators can include other regulators such as phosphorylation of 973 

enzymes and unknown allosteric effectors not included in OMELET. The concept of the 974 

contribution is to partition the cause of changes in metabolic flux between conditions into 975 

underlying changes in the amounts of regulators including enzymes and metabolites. The 976 

contribution was calculated based on propagation of uncertainty of regulators’ amounts 977 
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to metabolic flux, and a similar approach was described in a previous study (Hackett et 978 

al., 2016). Note that we analyzed only the local effects of regulators on changes in 979 

metabolic flux and do not evaluate the effects on changes in metabolic flux in which the 980 

regulator was not directly participated. 981 

Before we calculated the contribution, we define the amounts of unaccounted 982 

flux regulators and unaccounted enzyme regulators. Based on equation (9), the inferred 983 

metabolic flux through reaction 𝑗 in condition 𝑙 can be described as 984 

𝑣𝑗𝑙 = 𝑣𝑗𝑘𝑙 + 𝜙𝑗𝑘𝑙
𝑣 = 𝑣𝑗

0𝑒𝑗𝑘𝑙(1 + 𝝐𝑗
⊤ ln 𝒙𝑘𝑙) + 𝜙𝑗𝑘𝑙

𝑣 . (17) 

𝜙𝑗𝑘𝑙
𝑣  is the amount of an unaccounted flux regulator in sample 𝑘 in condition 𝑙 and 985 

represents the deviation of the inferred metabolic flux from that calculated using linlog 986 

kinetics. Similarly, based on equation (13), the measured amount of enzyme in reaction 987 

𝑗 can be described as 988 

𝑒𝑗𝑘𝑙 = 𝛽𝑗𝑙𝑡𝑗𝑘𝑙 + 𝜙𝑗𝑘𝑙
𝑒 . (18) 

𝜙𝑗𝑘𝑙
𝑒  is the amount of an unaccounted enzyme regulator and represents the deviation of 989 

the measured amount of the enzyme from that calculated using the amount of transcript 990 

and the protein turnover coefficient. Combining equations (17) and (18), we obtain 991 

𝑣𝑗𝑙 = 𝑣𝑗
0(𝛽𝑗𝑙𝑡𝑗𝑘𝑙 + 𝜙𝑗𝑘𝑙

𝑒 )(1 + 𝝐𝑗
⊤ ln 𝒙𝑘𝑙) + 𝜙𝑗𝑘𝑙

𝑣  (19) 

which represents metabolic flux 𝑣𝑗𝑙  as a function of the transcript 𝑡𝑗𝑘𝑙, the unaccounted 992 

enzyme regulator 𝜙𝑗𝑘𝑙
𝑒 , the metabolites 𝒙𝑘𝑙 including substrates, products, cofactors and 993 

allosteric effectors, as well as the unaccounted flux regulator 𝜙𝑗𝑘𝑙
𝑣 . 994 

 995 

We defined the contribution to changes in metabolic flux from transcripts, 996 

unaccounted enzyme regulators, and metabolites of substrates, products, cofactors, and 997 

allosteric effectors, as well as unaccounted flux regulators. Based on propagation of 998 

uncertainty, assuming that interactions between regulators is ignored, the variance 999 

Var(𝑣𝑗) of inferred metabolic flux 𝑣𝑗  through reaction 𝑗 can be approximated as 1000 
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Var(𝑣𝑗) ≈∑(
𝜕𝑣𝑗

𝜕𝑦𝑗ℎ
)

2

Var(𝑦𝑗ℎ)

ℎ

 (20) 

with the amount of regulator ℎ (𝑦𝑗ℎ), the sensitivity of the metabolic flux to the regulator 1001 

𝜕𝑣𝑗/𝜕𝑦𝑗ℎ, and the variance of the amount of the regulator Var(𝑦𝑗ℎ). Regulator ℎ is the 1002 

transcript, the unaccounted enzyme regulator, substrate, product, cofactor, allosteric 1003 

effector, or unaccounted flux regulator. The variance of the amount of the regulator 1004 

between two conditions Var(𝑦𝑗ℎ)  is expressed as the change in the amount of the 1005 

regulator between the two conditions Δ𝑦𝑗ℎ as 1006 

Var(𝑦𝑗ℎ) = (
Δ𝑦𝑗ℎ

2
)
2

. (21) 

The sensitivity of the metabolic flux to each regulator 𝜕𝑣𝑗/𝜕𝑦𝑗ℎ  is defined based on 1007 

equations (17) and (19) as 1008 

𝜕𝑣𝑗

𝜕𝑦𝑗ℎ

=

{
 
 

 
 
𝛽�̅�𝑣𝑗

0(1 + 𝝐𝑗
⊤ ln 𝒙)  if regulator ℎ is the transcript

𝑣𝑗
0(1 + 𝝐𝑗

⊤ ln �̅�) if regulator ℎ is the unaccounted enzyme regulator 

𝑣𝑗
0𝑒�̅�𝜖𝑗𝑖

𝑦𝑗ℎ̅̅ ̅̅
if regulator ℎ is a metabolite

1 if regulator ℎ is the unaccounted flux regulator

, 

(22) 

where �̅� and 𝑒�̅� indicate the means of the metabolites and enzyme in reaction 𝑗 across 1009 

two conditions, respectively. Using the variance and the sensitivity of the metabolic flux 1010 

to the amount of each regulator, we defined a contribution of the change in regulator ℎ 1011 

to the change in metabolic flux through reaction 𝑗 as 1012 

𝜓𝑗ℎ =

(
𝜕𝑣𝑗
𝜕𝑦𝑗ℎ

)
2

(Δ𝑦𝑗ℎ)
2

∑ (
𝜕𝑣𝑗
𝜕𝑦𝑗ℎ

)
2

(Δ𝑦𝑗ℎ)
2

ℎ

. (23) 

The contribution was a compositional data whose sum of the contributions of all the 1013 

regulators to a change in metabolic flux equals one. The contribution ranged from zero to 1014 

one, and the larger value meant the stronger effect of the regulator to the change in 1015 
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metabolic flux. 1016 

The contribution was calculated for changes in metabolic flux through each 1017 

reaction between each pair of condition (Figure S7); WT and ob/ob mice in the fasting 1018 

state, WT and ob/ob mice after oral glucose administration, fasting and after oral glucose 1019 

administration in WT mice, and fasting and after oral glucose administration in ob/ob 1020 

mice. Therefore, the calculated contributions represent the extent to which a change in 1021 

each regulator contributed to the change in metabolic flux between the conditions. 1022 

 1023 

Metabolomic analysis 1024 

Metabolomic measurements were performed as previously described (Egami et al., 2021; 1025 

Kokaji et al., 2020). Total metabolites and proteins were extracted from the liver with 1026 

methanol:chloroform:water (2.5:2.5:1) extraction. Approximately 40 mg of the liver was 1027 

suspended with 500 μL of ice-cold methanol containing internal standards [20 μM L-1028 

methionine sulfone (Wako), 2-morpholinoethanesulfonic acid (Dojindo), and D-1029 

Camphor-10-sulfonic acid (Wako)] for quantification of metabolites, then with 500 μL of 1030 

chloroform, and finally with 200 μL of water. After centrifugation at 4,600 × g for 15 min 1031 

at 4℃, the separated aqueous layer was filtered through a 5 kDa cutoff filter (Human 1032 

Metabolome Technologies) to remove protein contamination. The filtrate (320 μL) was 1033 

lyophilized and, prior to MS analysis, dissolved in 50 μL water containing reference 1034 

compounds [200 μM each of trimesic acid (Wako) and 3-aminopyrrolidine (Sigma-1035 

Aldrich)]. Proteins were precipitated by addition of 800 μL of ice-cold methanol to the 1036 

interphase and organic layers and centrifuged at 12,000 × g for 15 min at 4℃. The pellet 1037 

was washed with 1 mL of ice-cold 80% (v/v) methanol and resuspended in 1 mL of sample 1038 

buffer containing 1% SDS and 50 mM Tris-Cl pH8.8, followed by sonication. The total 1039 

protein concentration was determined by bicinchoninic acid (BCA) assay and was used 1040 

for normalization of metabolite concentration among samples. 1041 

All CE-MS experiments were performed using an Agilent 1600 Capillary 1042 
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Electrophoresis system (Agilent technologies), an Agilent 6230 TOF LC/MS system, an 1043 

Agilent 1200 series isocratic pump, a G1603A Agilent CE-MS adapter kit, and a G1607A 1044 

Agilent CE electrospray ionization (ESI)-MS sprayer kit. Briefly, to analyze cationic 1045 

compounds, a fused silica capillary [50 μm internal diameter (i.d.) × 100 cm] was used 1046 

with 1 M formic acid as the electrolyte (Soga and Heiger, 2000). Methanol/water (50% 1047 

v/v) containing 0.01 μM hexakis(2,2-difluoroethoxy)phosphazene was delivered as the 1048 

sheath liquid at 10 μL/min. ESI-TOFMS was performed in positive ion mode, and the 1049 

capillary voltage was set to 4 kV. Automatic recalibration of each acquired spectrum was 1050 

achieved using the masses of the reference standards ([13C isotopic ion of a protonated 1051 

methanol dimer (2CH3OH+H)]+, m/z 66.0631) and ([hexakis(2,2-1052 

difluoroethoxy)phosphazene +H]+, m/z 622.0290). The metabolites were identified by 1053 

comparing their m/z values and relative migration times to the metabolite standards. 1054 

Quantification was performed by comparing peak areas to calibration curves generated 1055 

using internal standardization techniques with methionine sulfone. The other conditions 1056 

were identical to those described previously (Soga et al., 2006). To analyze anionic 1057 

metabolites, a commercially available COSMO(+) (chemically coated with cationic 1058 

polymer) capillary (50 μm i.d. × 105 cm) (Nacalai Tesque, Kyoto, Japan) was used with 1059 

a 50 mM ammonium acetate solution (pH 8.5) as the electrolyte. Methanol/5 mM 1060 

ammonium acetate (50% v/v) containing 0.01 μM hexakis(2,2-1061 

difluoroethoxy)phosphazene was delivered as the sheath liquid at 10 μL/min. ESI-1062 

TOFMS was performed in negative ion mode, and the capillary voltage was set to 3.5 kV. 1063 

Automatic recalibration of each acquired spectrum was achieved using the masses of the 1064 

reference standards ([13C isotopic ion of a deprotonated acetate dimer (2CH3COOH-H)]-, 1065 

m/z 120.0384) and ([hexakis(2,2-difluoroethoxy)phosphazene +deprotonated acetate 1066 

(CH3COOH-H)]-, m/z 680.0355). For anion analysis, D-camphor-10-sulfonic acid were 1067 

used as the internal standards. The other conditions were identical to those described 1068 

previously (Soga et al., 2009). The acquired raw data were analyzed using our proprietary 1069 
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software (Sugimoto et al., 2010). 1070 

 1071 

Proteomic analysis 1072 

Sample preparation of proteomic analysis 1073 

Sample preparation of proteome analysis were performed as described, previously 1074 

(Matsumoto et al., 2017). Frozen powder of liver and muscle were lysed with a solution 1075 

containing 2% SDS, 7 M urea, and 100 mM Tris-HCl, pH 8.8, and then subjected to 1076 

ultrasonic treatment (five times for 30 s with intervals of 30 s) with a Bioruptor 1077 

(Diagenode). The samples were diluted with an equal volume of water. The protein 1078 

concentrations of the samples were determined with BCA assays (Bio-Rad), after which 1079 

portions (200 μg of protein) were subjected to methanol–chloroform precipitation. The 1080 

resulting pellet was dissolved in digestion buffer (0.5 M triethylammonium bicarbo 1081 

nate containing 7 M guanidine hydroxide) and heated at 56 °C for 30 min. Each sample 1082 

was diluted with an equal volume of water, after which portions were subjected to BCA 1083 

assays. The remaining solution (50 μl) was diluted with 50 μl of water and subjected to 1084 

digestion with lysyl-endopeptidase (2 μg, Wako) for 4 h at 37 °C. After the addition of 1085 

100 μl of water, the samples were further digested with trypsin (2 μg, Thermo Fisher) for 1086 

14 h at 37 °C. To block cysteine/cystine residues, we treated the digest with 0.625 mM 1087 

Tris(2-carboxyethyl)phosphine hydrochloride (Thermo Fisher) for 30 min at 37 °C, then 1088 

performed alkylation with 3.125 mM 2-iodoacetoamide (Sigma) for 30 min at room tem 1089 

perature and quenching with 2.5 mM N-acetyl-l-cysteine (Sigma). The resulting digests 1090 

were freeze-dried and then labeled with the mTRAQΔ0 reagent (SCIEX). For a deep 1091 

proteomics, tryptic digests were separated into 6 fractions with off-Line high-pH reverse 1092 

phase chromatography (Matsumoto et al., 2017). 1093 

 1094 

DDA of peptides for multiple reaction monitoring (MRM) method development 1095 

Target proteins were selected from the proteins listed in three Kyoto 1096 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.06.21.449220doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449220


48 

 

Encyclopedia of Genes and Genomes (KEGG) pathways; Glycolysis / Gluconeogenesis 1097 

(mmu00010), Citrate cycle (mmu 00020), and Starch and sucrose metabolism (mmu 1098 

00500), and proteins related to insulin signaling. A key step for the establishment of a 1099 

successful targeted proteomic analysis is the accurate selection of proteotypic peptides 1100 

(PTPs) for the targets of interest. Therefore, we first performed a discovery phase aimed 1101 

at the selection of PTPs, which was based on a deep proteomic characterization of total 1102 

protein extract of the murine liver and muscle. mTRAQ-labeled peptides as mentioned 1103 

above were fractionated by reversed-phase chromatography on a 16-cm column (inner 1104 

diameter, 100 μm) packed in house with 2-μm L-column C18 material (CERI). Peptides 1105 

were eluted with a linear gradient (typically 5–45% B for 40 min, 45–95% B for 1 min, 1106 

and 95% B for 10 min, where A was 0.1% formic acid and 2% acetonitrile, and B was 1107 

0.1% formic acid and 90% acetonitrile), at a flow rate of 200 nl/min. The high-1108 

performance LC system (Eksigent nano-LC) was coupled to a TripleTOF5600 hybrid 1109 

mass spectrometer (SCIEX). Data acquisition was performed in IDA mode with the 1110 

iTRAQ option. Survey MS spectra were acquired for 100 ms, and the 10 most intense 1111 

ions were isolated and then fragmented with an automatically optimized collision energy 1112 

for an MS/MS acquisition time of 100 ms. Peak lists (mgf) generated by the AB SCIEX 1113 

MS Data Converter were used to search a database containing IPI mouse version 3.44 (55 1114 

078 protein entries; IPI, European Bioinformatics Institute) protein sequences 1115 

concatenated with decoy sequences, with the use of the MASCOT algorithm (Matrix 1116 

Science). The search was conducted with the following parameter settings: trypsin was 1117 

selected as the enzyme used, the allowed number of missed cleavages was set to two, and 1118 

the mTRAQΔ0 label on the NH2-terminal or lysine residues and carbamidomethylation 1119 

of cysteine were selected as fixed modifications. Oxidized methionine and the 1120 

mTRAQΔ0 label on tyrosine were searched as variable modifications. The precursor mass 1121 

tolerance was 50 p.p.m., and the tolerance of MS/MS ions was 0.02 mass/charge (m/z) 1122 

units. We imported all significant peptide-spectrum matches (PSMs) (MASCOT score 1123 
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>20) into a relational database written in MySQL. From this dataset, we preferentially 1124 

selected PTP candidates which met the following criteria: 1. more than six amino acids; 1125 

2. absence of tryptic missed-cleavage sites; 3. The C-terminus of PTPs is Lys or Arg; 4. 1126 

absence of methionine residues. To verify whether these PTP candidates were actually 1127 

identified and quantified in our MRM systems, trypsin digests used in “DDA of peptides 1128 

for MRM method development” were labeled with either mTRAQΔ0 or mTRAQΔ4 and 1129 

subjected to MRM assays. All MRM traces were analyzed by iMPAQT-quant (Matsumoto 1130 

et al., 2017). Peak groups were scored on the basis of cosine similarity with MS/MS 1131 

spectra obtained in DDA, peak coelution of at least three fragment ions for each peptide, 1132 

the presence or absence of interfering ions, and intensity. Finally, we selected 2-3 PTPs 1133 

per target protein and purchased from Funakoshi Co. All PTPs were resuspended with 1134 

20%-50% ethanol, pooled and labeled with mTRAQΔ4 using standard procedures.  1135 

 1136 

MRM analysis 1137 

MRM analysis was performed with a QTRAP5500 instrument (SCIEX) equipped with 1138 

nano-Advance UHPLC (MICHROM) and HTS-PAL/xt autosampler (CTC Analytics AG). 1139 

Peptides were eluted with a linear gradient of 5%–30% B for 45 min, 30%–95% B for 46 1140 

min (where A is 0.1% formic acid and B is acetonitrile) at a flow rate of 200 nL/min. 1141 

Parameters were set as follows: spray voltage, 2,000 V; curtain gas setting, 10; collision 1142 

gas setting, high; ion-source gas-1 setting, 30 and interface-heater temperature, 150 °C. 1143 

Collision energy (CE) was calculated with the following formulae: CE = (0.044 × m/z1) 1144 

+ 5.5 and CE = (0.051 × m/z1) + 0.5 (where m/z1 is the m/z of the precursor ion) for 1145 

doubly and triply charged precursor ions, respectively. Collision-cell exit potential (CXP) 1146 

was calculated according to the formula: CXP = (0.0391 × m/z2) − 2.2334 (where m/z2 1147 

is the m/z of the fragment ion). The declustering potential (DP) was set to 50, and the 1148 

entrance potential (EP) was set to 10. Resolution for Q1 and Q3 was set to ‘unit’ (half-1149 

maximal peak width of 0.7 m/z). The scheduled MRM option was used for all data 1150 
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acquisition, with a target scan time of 2.0 s and MRM detection windows of 300s. More 1151 

than three technical repeats were performed per sample. Raw data were analyzed by 1152 

iMPAQT-Quant (Matsumoto et al., 2017) with the corresponding spectra library. Peak 1153 

groups were scored on the basis of cosine similarity with the MS/MS spectra obtained in 1154 

DDA, a peak co-elution of at least three fragment ions for each peptide, the presence or 1155 

absence of interfering ions, and the intensity. Finally, all traces were manually checked to 1156 

eliminate inadequate transitions. All quantified transitions were normalized across 1157 

samples and converted into protein abundance by SRMstats software on R (Surinova et 1158 

al., 2013). 1159 

 1160 

Transcriptomic analysis 1161 

Transcriptomic measurements were performed as previously described (Egami et al., 1162 

2021; Kokaji et al., 2020). Briefly, total RNA was extracted from the liver using RNeasy 1163 

Mini Kit (QIAGEN) and QIAshredder (QIAGEN) and assessed for quantity using 1164 

Nanodrop (Thermo Fisher Scientific) and for quality using the 2100 Bioanalyzer (Agilent 1165 

Technologies). cDNA libraries were prepared using SureSelect strand-specific RNA 1166 

library preparation kit (Agilent Technologies). The resulting cDNAs were subjected to 1167 

100-bp paired-end sequencing on an Illumina HiSeq2500 Platform (Illumina) 1168 

(Matsumoto et al., 2007). Sequences were aligned to the mouse reference genome 1169 

obtained from Ensembl database (Cunningham et al., 2015; Flicek et al., 2014) 1170 

(GRCm38/mm10, Ensembl release 70) using the software package TopHat (Trapnell et 1171 

al., 2009, 2012) (v.2.0.9), software in the Tuxedo tool. Cufflinks (v.2.2.1), software in the 1172 

Tuxedo tool, was used to assemble transcript models from aligned sequences and to 1173 

estimate the number of transcripts as an indicator of gene expression. The number of 1174 

transcripts was shown as fragments per kilo base of exon per million mapped fragments. 1175 

 1176 
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Blood glucose and insulin 1177 

The blood and insulin data at 0, 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240 minutes 1178 

after oral glucose administration were previously reported (Kokaji et al., 2020). 1179 

 1180 

QUANTIFICATION AND STATISTICAL ANALYSIS 1181 

For the metabolites, enzymes, and transcripts, we defined increased and decreased 1182 

molecules between the conditions using the following procedure (Figure 2; Table S2). For 1183 

each molecule, we calculated the fold change of the mean amount of WT mice in the 1184 

fasting state, WT mice after oral glucose administration, ob/ob mice in the fasting state, 1185 

and ob/ob mice after oral glucose administration over the mean amount of WT mice in 1186 

the fasting state. The significance of changes was tested by two-tailed Welch’s t-test for 1187 

each molecule. The q values were calculated by Benjamini-Hochberg procedure. 1188 

Molecules that showed an q value less than 0.05 are defined as significantly changed 1189 

molecules. Among them, molecules with a fold change larger than 1.5 were defined as 1190 

increased molecules between the conditions, whereas molecules with a fold change 1191 

smaller than 0.67 were defined as decreased molecules. The Pearson correlation 1192 

coefficient was calculated between the medians of metabolic fluxes inferred by OMELET 1193 

and the means of metabolic fluxes simulated by the kinetic model (Figure S2C) or in the 1194 

previous studies (Figures S5B and S5D) across all the reactions in all the conditions. The 1195 

p-value was computed by transforming the correlation to create a t statistic having N-2 1196 

degree of freedom, where N is the number of samples.  1197 
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Figure 1. Overview of the application of OMELET to study glucose metabolism. 

(Top right) Overview of glucose metabolism (see Table S1 for definitions of metabolites). (Top left) 

Experimental data are acquired from livers of WT and ob/ob mice under fasting conditions and after oral 

glucose administration. These data serve as the input for Step 1. 
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Figure 3. Inference of metabolic fluxes by OMELET. 

Overview of the workflow for the inference of metabolic flux. Shaded rectangles represent the inputs 

(light blue), OMELET (light green), the outputs (orange), and contributions (yellow). The inputs of 

OMELET were the experimental data of the amounts of metabolites 𝒙, enzymes 𝒆, and transcripts 𝒕 

from the same individual mice in each condition as well as model definitions including stoichiometric 

matrix and information on cofactors and allosteric effectors. The outputs were metabolic fluxes in the 

glucose metabolism 𝒗 in each condition, elasticity coefficients 𝝐, and protein turnover coefficients 𝜷. 

The output parameters are colored in red. In the graphical model, the plate indicates that the group-level 

structure holds for all the analyzed reactions 𝑗 ∈ 𝑅, samples 𝑘 = 1,… , 𝑛𝑙, and conditions 𝑙 = 1.… , 𝑔. 

The arrows denote conditional dependences between two nodes representing the generating processes 

(Materials and Methods). Shaded circles, unshaded squares, single-bordered circles, and double-bordered 

circles represent observed data, fixed parameters, parameters, and deterministic quantities, respectively. 

Using the kinetic parameters including elasticity coefficients and turnover coefficients, we can calculate 

contributions of regulators to changes in metabolic flux between conditions. See also Materials and 

Methods. 
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Figure 2. Metabolomic, proteomic, and transcriptomic analysis of glucose metabolism in livers from 

WT and ob/ob mice in the fasting state and after oral glucose administration. 

Measured molecules (metabolites, enzymes, and transcripts) mapped onto the glucose metabolism in liver. 

Irreversible reactions are shown with one-headed arrows; reversible reactions are shown with double-

headed arrows. Allosteric activation and inhibition are shown with dotted one-headed and dotted bar-

headed arrows, respectively. The bars and error bars in each molecule represent the mean ± SD normalized 

to the mean of the data from WT in the fasting state. Enzymes and transcript results are shaded in gray. 

G6pc was not measured at the protein or transcript level; Gpt and Glud1 were not measured at the protein 

level. Definitions of the metabolites, enzymes, and transcripts are described in Table S2. 
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Figure 4. Inference of metabolic fluxes in the glucose metabolism in liver of WT and ob/ob mice in 

the fasting state and after oral glucose administration. 

(A) Posterior distributions of the metabolic fluxes in the glucose metabolism. Each box contains four 

density plots corresponding to four different conditions. Metabolic flux through each reaction is inferred 

relative to the mean of the prior for the metabolic flux through G6PC in WT mice in the fasting state. Only 

representative reactions (shaded gray circles in the map) in each pathway are presented See Figure S3 and 

Table S5 for complete reaction data. 

(B) Fold changes of the metabolic flux of ob/ob mice over that of WT mice in the fasting state (black bars) 

and after oral glucose administration (gray bars) in each reaction, and fold changes of the metabolic flux 

after oral glucose administration over that in the fasting state in WT mice (blue bars) and ob/ob mice (red 

bars) in each reaction. The median of the posterior distribution from OMELET is represented by a black 

line within the box for each reaction, the box extends from the lower to the 25th and 75th percentiles, and 

the whiskers extend to 2.5th and 97.5th percentiles to cover 95% of the data. The vertical orange line 

indicates the boundary where a fold change equals one. 

(C) Sources of glucose production. The stacked bars and error bars represent the mean ± SD of the 

proportions of glycogen, glycerol, lactate, alanine, and glutamate to the glucose production. The 

proportions of the sources are calculated from the proportion of metabolic fluxes through PGM, GPD, 

LDH, GPT, and GLUD, respectively (black circle) to that through G6PC (yellow circle). 

(D) Flux split ratios between ENO and PK reactions. The stacked bars and error bars represent the mean 

± SD of the proportions of the metabolic fluxes through ENO and PK to that through PEPCK. 
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Figure 5. Contributions of regulators to changes in metabolic flux between fasting WT and ob/ob 

mice. 

(A) Schematic representation of contributions of regulators to changes in metabolic flux between 

conditions. The contribution was defined based on the sensitivity of the metabolic flux to the regulator, 

which is calculated using the kinetic parameters including elasticity coefficients (Figure S8; Table S5) and 

turnover coefficients (Table S5), and changes in the amounts of regulators between the conditions. See 

also Materials and Methods. 

(B) Contribution of regulators to changes in metabolic flux between WT and ob/ob mice in the fasting 

state. The reactions with the fold changes of the metabolic flux of ob/ob mice over that of WT mice in the 

fasting state larger than 1.5 are in red text. The stacked bars indicate the mean of the contributions 

independently calculated in all the Markov chain Monte Carlo samples in Figure S7. See also Table S6. 

(C, D) Scatter plots illustrating the relationships between the contributions of enzyme (C) or metabolite 

(D) to changes in metabolic flux and the fold changes of the metabolic flux of ob/ob mice over that of WT 

mice in the fasting state. For each reaction, the mean ± SD of the distribution of the contributions of 

enzyme or metabolite to changes in metabolic flux (x-axis) is plotted against the mean ± SD of the 

distribution of the fold changes of the metabolic flux of ob/ob mice over that of WT mice in the fasting 

state (y-axis). The vertical gray dotted line indicates the boundary where a fold change equals 1.5. The 

reactions with the fold changes of the metabolic flux of ob/ob mice over that of WT mice in the fasting 

state larger than 1.5 are in red text. See also Tables S5 and S6. 
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Figure 6. Quantitative trans-omic networks for changes in metabolic flux between WT and ob/ob 

mice in the fasting state. 

(A) Key to the quantitative trans-omic network for the difference between WT and ob/ob mice in the 

fasting state. See also Tables S2, S5, and S6. 

(B) The full quantitative trans-omic network. 

(C) The subnetwork of gluconeogenesis. 

(D) The subnetwork of pyruvate cycle. 

(E) A simplified metabolic pathway with metabolic fluxes and the contributions of main regulators. The 

color of the arrow in each reaction indicates the main regulators, which we defined as those with a mean 

contribution larger than 0.25. The size of the arrow in each reaction indicates fold changes of the metabolic 

flux in ob/ob mice over those in WT mice. 
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Figure 7. Contributions of regulators to changes in metabolic flux through PK by oral glucose 

administration. 

(A) Scatter plots illustrating the relationships between the contributions of enzymes and metabolites to 

changes in metabolic flux and the fold changes of the metabolic flux after oral glucose administration over 

that in the fasting state in WT mice (upper graphs) and ob/ob mice (lower graphs). For each reaction, the 

mean ± SD of the distribution of the contributions of enzyme or metabolite to changes in metabolic flux 

(x-axis) is plotted against the mean ± SD of the distribution of the fold changes of the metabolic flux of 

ob/ob mice over that of WT mice in the fasting state (y-axis). The vertical gray dotted line indicates the 

boundary where a fold change equals one. PK is highlighted in red. 

(B) Contribution of regulators to changes in metabolic flux between fasting and after oral glucose 

administration in WT mice (left) and ob/ob mice (middle). The stacked bars indicate the mean of the 

contributions independently calculated in all the Markov chain Monte Carlo samples in Figures S7. The 

violin plot in each reaction represents the distribution of the distance quantified as L2 norm between the 

contribution in WT and ob/ob mice independently calculated in all the Markov chain Monte Carlo samples. 

The vertical red line in each violin plot means the median of the distribution. See also Table S6. 

(C) Quantitative trans-omic networks for changes in metabolic flux through PK by oral glucose 

administration in WT mice and ob/ob mice. The networks had the same structures as those in Figure 6. 

Schematic representation of the main regulators to changes in metabolic flux between fasting and after 

oral glucose administration is displayed to the right of each network. We considered F1,6P as an allosteric 

activator, and ATP, alanine, and phenylalanine as allosteric inhibitors for PK in the Metabolite layer. 
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