
1 
 

Dynamics of SARS-CoV-2 host cell interactions inferred from 

transcriptome analyses 

Lukas Adam1*, Megan Stanifer2*, Fabian Springer1, Jan Mathony3,4,5, Chiara Di Ponzio1,6, 

Roland Eils1,6, Steeve Boulant2,7, Dominik Niopek3,4#, Stefan M. Kallenberger1,8,9# 

1 Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative 

Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, 

Heidelberg, Germany. 
2 Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, 

Germany. 
3 Department of Biology, Technical University of Darmstadt, Darmstadt, Germany. 
4 Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany. 
5 BZH Graduate School, Heidelberg University, Heidelberg, Germany. 
6 Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany. 
7 Research Group "Cellular polarity and viral infection" (F140), German Cancer Research 

Center (DKFZ), Heidelberg, Germany. 
8 Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), 

Heidelberg, Germany. 
9 National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg 

University Hospital, Heidelberg, Germany 

 

* these authors contributed equally to this work 

# Co-corresponding authors: stefan.kallenberger@bioquant.uni-heidelberg.de,  

dominik.niopek@tu-darmstadt.de 

 

Keywords: SARS-CoV-2, COVID-19, virus-host interaction, transcriptional regulation, anti-

viral response, systems biology 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.450986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.450986
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 

The worldwide spread of severe acute respiratory syndrome-related coronavirus-2 (SARS-

CoV-2) caused an urgent need for an in-depth understanding of interactions between the virus 

and its host. Here, we dissected the dynamics of virus replication and the host cell 

transcriptional response to SARS-CoV-2 infection at a systems level by combining time-

resolved RNA sequencing with mathematical modeling. We observed an immediate 

transcriptional activation of inflammatory pathways linked to the anti-viral response followed 

by increased expression of genes involved in ribosome and mitochondria function, thus hinting 

at rapid alterations in protein production and cellular energy supply. At later stages, metabolic 

processes, in particular those depending on cytochrome P450 enzymes, were downregulated. 

To gain a deeper understanding of the underlying transcriptional dynamics, we developed an 

ODE model of SARS-CoV-2 infection and replication. Iterative model reduction and 

refinement revealed that a negative feedback from virus proteins on the expression of anti-viral 

response genes was essential to explain our experimental dataset. Our study provides insights 

into SARS-CoV-2 virus-host interaction dynamics and facilitates the identification of 

druggable host pathways supporting virus replication.  

 

Introduction 

The novel coronavirus SARS-CoV-2 is responsible for the worldwide coronavirus disease 2019 

(COVID-19) pandemic. Besides the respiratory epithelium of the nasopharynx and the lung, 

SARS-CoV-2 can infect different tissues of the human body including the mucosa of the 

intestine, the renal epithelium as well as lymphoid tissues (Gupta et al, 2020; Stanifer et al, 

2020). Recent studies based on transcriptomics and proteomics techniques revealed host cell 

pathways affected by SARS-CoV-2, characterized molecular interactions between virus-host 

protein interactions, identified host factors potentially serving as therapeutic targets and 

developed strategies for drug repurposing (Gordon et al, 2020a, 2020b; Hadjadj et al, 2020; 

Bojkova et al, 2020; Klann et al, 2020; Blanco-Melo et al, 2020; Bouhaddou et al, 2020; 

Samavarchi-Tehrani et al, 2020; Schmidt et al, 2021; Selkrig et al, 2021; Stukalov et al, 2021; 

Triana et al, 2021; Wyler et al, 2021). Analyses of the translatome and proteome in human 

colorectal adenocarcinoma cells (Caco-2) showed that SARS-CoV-2 strongly affects 

translation, splicing, carbon metabolism and nucleic acid metabolism (Bojkova et al, 2020; 

Klann et al, 2020). A multi-omics study in a lung-derived cell line investigated virus-host 

protein interactomes and revealed that SARS-CoV-2 caused dysregulation of the TGF-β and 

EGFR pathways as well as autophagy (Stukalov et al, 2021). Investigations of molecular 
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interactions between virus and host proteins suggested immediate interactions with cellular 

pathways involved in inflammation such as NF-κB, interferon or mTOR signaling (Gordon et 

al, 2020b; Triana et al, 2021). It was observed, for instance, that virus protein interactions with 

IL17RA immediately influence IL17 signaling. Virus proteins also directly interact with the 

mitochondrial outer membrane protein Tom70 that is involved in mitochondrial anti-viral 

signaling, through interaction with Hsp90, thereby affecting interferon signaling and apoptosis 

induction (Gordon et al, 2020a; Jiang et al, 2020; Stukalov et al, 2021; Samavarchi-Tehrani et 

al, 2020). SARS-CoV-2 inhibits the type I interferon response to evade the cellular anti-viral 

defense (Blanco-Melo et al, 2020; Chu et al, 2020; Triana et al, 2021; Stukalov et al, 2021).  

Analyses of phospho-proteomes further revealed that kinases involved in growth factor receptor 

signaling become activated upon SARS-CoV-2 infection (Bouhaddou et al, 2020; Klann et al, 

2020; Stukalov et al, 2021). While kinases of the p38 pathway associated with inflammatory 

signaling were also triggered by SARS-CoV-2, Rho-associated protein kinases affecting 

organization of the interface between cytoskeleton and the plasma membrane were, in turn, 

inhibited. Moreover, phosphorylation of RNA-processing proteins was observed, which could 

indicate a strategy of the virus to prioritize translation of virus proteins over host cell proteins 

(Bouhaddou et al, 2020). Apart from affecting host proteins via specific interactions, SARS-

CoV and SARS-CoV-2 both perturb the integrity of host cells through fragmentation of the 

Golgi apparatus and formation of viral replication organelles consisting of double-membrane 

vesicles tethered to the endoplasmic reticulum (Knoops et al, 2008; Snijder et al, 2020; Cortese 

et al, 2020). 

Previous studies revealed several aspects of the host cell response on a qualitative level. 

However, a fine-grained temporal and quantitative analysis of the host cell response, in 

particular, in the early phase of SARS-CoV-2 infection, would be important and necessary for 

understanding SARS-CoV-2 infection at a systems level. Here, we developed a systems biology 

approach for studying transcriptional dynamics based on time-resolved RNA sequencing 

(RNA-seq) experiments analyzed using a set of expression profile functions fitted to all 

expressed genes. This enabled us to dissect the timing and interdepence of cellular processes 

that oppose or support virus replication. Using highly infectable Caco-2 (human colon cancer) 

cells as a model system, we observed a characteristic time-pattern of transcriptional 

upregulation associated with pathways involved in inflammation, kinase signaling, and 

processes related to cellular energy production, followed by transcriptional downregulation of 

various metabolic processes. We then developed a mathematical model of SARS-CoV-2 

replication calibrated with experimental measurements and applied model reduction strategies 
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to identify pathophysiologically required interactions between the virus and its host. Finally, 

we explored different strategies for direct and indirect interference with virus replication. Our 

study provides novel insights into the temporal pattern of host-virus interactions and can serve 

as a resource to develop strategies for combined targeting of cellular processes that support 

virus replication. 

 

Results 

SARS-CoV-2 rapidly reprograms its host 

The dynamics of SARS-CoV-2 infection at the cellular level were studied using the model 

system of Caco-2 (human colorectal adenocarcinoma) cells. First, we compared two 

independent Caco-2 cell lineages. We observed striking differences in their infectivity which 

corresponded to the detected differences in ACE2 and cathepsin B expression (see 

Supplementary note S1, Supplementary Fig. S1). Using the high ACE2/cathepsin B Caco-2 

lineage, we then infected cells at a multiplicity of infection (MOI) of 5 and collected RNA 

samples at eight time points between 0 and 48 hours post infection (hpi) followed by RNA-seq 

(Fig. 1A). In parallel, we detected cells expressing SARS-CoV-2 N protein by immunostaining 

(Fig. 1B). We observed that virus transcripts rapidly increased and peaked already at 12 hpi, 

amounting to about one third of all detected transcripts (Fig. 1C). Thereafter, virus transcripts 

decreased to about 17% of detected transcripts at 48 hpi. Read counts normalized to lengths of 

coding sequences (CDS) reflected the nested RNA architecture of nidovirales (Fig. 1D and 

Supplementary Fig. S2). Virus N proteins were detected in about one third of cells by 

immunostaining already at 4 hpi and the number of N protein positive cells increased to 100% 

within only 24 hours (Fig. 1E). Concurrently, the N protein expression levels per cells also 

increased (Fig. 1B). Cell counts remained constant until 24 hpi and decayed thereafter due to 

host cell death (Fig. 1F). The timing of virus release was aligned to the timing of host cell death, 

suggesting that virus particles were mostly released through cell lysis rather than budding from 

the plasma membrane of living cells (Fig. 1G). Taken together, SARS-CoV-2 replication was 

remarkably fast, resulted in high virus transcript loads already at 12 hpi and cell death, hence 

reflecting the typical characteristics of lytic viruses. 

 

SARS-CoV-2 infection triggers a distinct sequence of transcriptional responses                     

in host cells 

To characterize the transcriptional response in host cells upon SARS-CoV-2 infection, we 

analyzed changes in transcriptomes over time, first at the macroscopic level. Distributions of 
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log2 fold changes of gene expression (L) indicated a fraction of strongly upregulated genes 

(defined by L ≥ 1) that was highest between 4 and 12 hpi (Fig. 2A, at maximum 6.54%). In 

contrast, the fraction of genes for which expression was strongly downregulated (defined by 

L  − 1) steadily increased between 4 hpi and 48 hpi (Fig 2A, at maximum 4.15%). We 

conclude that the host response shows a characteristic, rapid upregulation in a fraction of genes 

within the first few hpi, followed by a phase of downregulation towards later time points. 

Next, to identify cellular processes underlying these dynamics, the time series of log2 fold 

changes in transcript counts were subjected to gene ontology (GO) term enrichment analysis in 

interpolated hourly time intervals. We then clustered time courses of p-values indicating GO 

term enrichment. Three qualitatively different patterns of early, late or continuously regulated 

cellular processes were observed (Fig. 2B). Cluster I, the cluster overrepresented within the first 

12 hpi, contained several GO terms associated with mRNA biogenesis such as ‘nuclear-

transcribed mRNA catabolic process’, ‘RNA processing’, ‘RNA metabolic process’ or ‘RNA 

splicing’ (Fig. 2B, cluster I). Cluster II, the cluster overrepresented in late time points of 

infection, contained various GO terms involved in cellular metabolism including the terms 

‘steroid metabolic process’, ‘organic acid metabolic process’, ‘hormone metabolic process’ as 

well as processes involved in the cellular response to drugs and chemical agents such as 

‘antibiotic metabolic process’, ‘xenobiotic metabolic process’, ‘drug metabolic process’ or 

‘cellular response to chemical stimulus’. Cluster III, the cluster which represents continuously 

regulated processes, contained GO terms involved in cytokine signaling and the cellular stress 

response. These results suggest that upon SARS-CoV-2 infection, a rapid transcriptional 

response takes place well before high virus transcript levels are detectable (Fig. 1C). The 

observed transcriptional regulation can be separated into cellular processes already influenced 

in the first hours after infection, delayed effects appearing after 12 hpi, i.e. when the amount of 

virus transcripts already starts to decrease, and gradually affected cellular processes.  

 

Dissecting the dynamics of virus-host interactions using an expression profile           

function approach 

Next, we analyzed temporal sequences and amplitudes of transcriptional changes associated 

with cellular processes and signal transduction pathways. Taking into account that cellular 

processes were continuously or transiently affected, we fitted four profile functions to log2 fold 

changes in all 𝑁 = 13,322 expressed genes. The functions described a continuous or transient 

increase or decrease in gene expression (Fig. 3A). Profile function fits were then used to extract 

time points of expression changes, defined by the times at half-maximal increase or decrease, 
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as well as amplitudes. To focus on curated graphs of signaling pathways, we analyzed 

transcriptional effects mapped to the KEGG database (Kanehisa & Goto, 2000; Kanehisa et al, 

2019). To visualize temporally ordered expression changes in cellular processes, we then 

created time-resolved pathway charts of strongly affected genes defined by absolute values of 

log2 fold changes |𝐿| ≥ 1. Fig. 3B–E visualizes the time points of maximal expression changes 

for genes of the pathway ‘Transcription factors’, as extracted from profile function fits (Fig. 

3A). In this visualization, borders of colored stripes indicate turning points of expression profile 

functions (see Supplementary Fig. S3 for further pathway charts). 

To identify strongly affected cellular processes and study the temporal order of transcriptional 

responses connected to these processes, we determined absolute numbers and fractions of 

strongly up- or downregulated genes, defined by |𝐿| ≥ 1, in all KEGG pathways (Fig. 4). 

Pathways with largest absolute numbers were ‘Transcription factors’, ‘Membrane trafficking’, 

‘Chromosome and associated proteins’, ‘Exosome’ as well as ‘Peptidases and inhibitors’ (Fig. 

4A). Consistent with our analysis based on GO terms, the pathways ‘Cytochrome P450’ and 

‘Cytokines and growth factors’ were among those with largest fractions of strongly affected 

genes (Fig. 4B). To analyze the timing of effects in pathways, we extracted time points, at which 

50% of the affected genes were regulated. To this end, cumulative sums of time intervals with 

increased expression of strongly regulated genes were determined. The top 25 up- and down-

regulated pathways, with the largest fractions of strongly regulated genes were then sorted 

according to times when 50% of genes were affected (Fig. 4C, D). We observed an early 

response in several pathways associated with inflammation and cytokine signaling (e.g., ‘Viral 

protein interaction with cytokine and cytokine receptors’, ‘IL-17 signaling pathway’, ‘TNF 

signaling pathway’, ‘Cytokine-cytokine receptor interaction’) already around 1 hpi (Fig. 4C). 

Sets of genes upregulated in ‘IL-17 signaling pathway’, ‘TNF signaling pathway’ or ‘Cytokine-

cytokine receptor interaction’ showed large intersections with other pathways involving kinase 

signaling as ‘MAPK signaling pathway’ or ‘PI3K-Akt signaling pathway’ (Supplementary Fig. 

S3A–E). Thereafter, around 2 hpi, several processes related to translation and production of 

chemical energy in mitochondria became upregulated, such as ‘Ribosome’, ‘Thermogenesis’ 

or ‘Oxidative phosphorylation’ (Fig. 4C). Several pathways ranked among those with largest 

fractions of strongly upregulated genes because they contain many genes involved in 

mitochondria or ribosomes (green and blue font in Fig. 4C; pathway charts for ‘Ribosome’ and 

‘Thermogenesis’ in Supplementary Fig. S3G, H). Among these was the pathway ‘Coronavirus 

disease – COVID-19’ (Supplementary Fig. S3Q) that contains various genes involved in 

ribosome function. Interestingly, all of these pathways were upregulated before virus transcript 
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levels strongly increased (Fig. 4C, top panel). In most cases, upregulation was reverted between 

24 and 48 hpi, i.e. when cells died and virus particles were released (Fig. 1F, G). 

The top 25 pathways with largest fractions of strongly downregulated genes showed that the 

gene expression mostly declined at later time points (Fig. 4D). Specifically, two phases of 

downregulation could be observed, a first phase between 4 and 12 hpi, i.e. when virus transcript 

levels peaked, and a second phase between 12 and 48 hpi, i.e. when virus transcript levels 

decreased (Fig. 4D). Around 4 hpi, the pathway ‘Cytokine receptors’ was downregulated 

subsequent to the early upregulation of several pathways depending on cytokines (compare Fig 

4C and D). The initially upregulated pathways ‘Cytokine-cytokine receptor interaction’, ‘Viral 

protein interaction with cytokine and cytokine receptors’ and ‘Fat digestion and absorption’, 

were downregulated at times when large virus transcript levels were present between 4 and 24 

hpi (Fig 4C and D). Strongly downregulated pathways included several cellular processes 

involved in metabolism such as ‘Protein digestion and absorption’, ‘Steroid hormone 

biogenesis’, ‘Cholesterol metabolism’ or ‘PPAR signaling pathway’. Strikingly, multiple 

pathways related to xenobiotic metabolism depending on cytochrome P450 enzymes were 

affected as part of the second phase of downregulation between 24 and 48 hpi (Fig. 4D). The 

observation that several unexpected pathways as ‘Bile secretion’ emerged from our analysis 

can be explained by intersections of genes involved in common metabolic processes. Large 

intersections of genes, for instance, were present between the pathways ‘Bile secretion’ and 

‘Ovarian steroidogenesis’ with pathways related to xenobiotic metabolism, as well as between 

‘Central carbon metabolism in cancer’ and ‘Cytokine receptors’. Several enzymes involved in 

the metabolism of specific drugs, including CYP2B6, CYP2C19 or CYP3A5 were 

downregulated (‘Drug Metabolism – cytochrome P450’ pathway, Supplementary Fig. 3K). The 

pathway ‘Complement and coagulation cascades’, that was downregulated mostly between 12 

and 48 hpi, contains several protease inhibitors from the serpin superfamily, such as SERPINA1 

(1-antitrypsin), SERPINA5 (protein C inhibitor), SERPINC1 (antithrombin III), SERPIND1 

(heparin cofactor II) or SERPINF2 (2-plasmin; Supplementary Fig. S3J). Of these, 

SERPINA1 and SERPINA5 serve as inhibitors of the host-factor proteases for SARS-CoV-2, 

TMPRSS2 and cathepsin L (Fortenberry et al, 2006; Wettstein et al, 2021). Further serpins, 

such as SERPINB8, an inhibitor of the host-factor protease furin (Dahlen et al, 1998), were 

downregulated as part of the pathway ‘Peptidases and inhibitors’ (Supplementary Fig. 3R). 

Moreover, we observed downregulation of ACE2 as part of the ‘Peptidases and inhibitors’ 

pathway, mirroring previous findings in SARS-CoV-infected Vero cells and human intestinal 

organoids (Glowacka et al, 2010; Stanifer et al, 2020).  
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In summary, we observed a sequence of early upregulation of transcription in pathways related 

to inflammation and cytokine signaling followed by upregulation in pathways associated with 

translation and chemical energy production between 1 and 4 hpi. Eventually, several pathways 

involved in cellular metabolism, particularly in xenobiotic metabolism, were strongly 

downregulated. 

 

Dynamic model of SARS-CoV-2 replication and the anti-viral response 

To obtain mechanistic insights to the dynamics of SARS-CoV-2 replication in conjunction with 

the anti-viral response in host cells, we developed mathematical models consisting of coupled 

ordinary differential equations. We aimed at finding a parsimonious model, with minimal 

complexity, to identify interactions required for explaining our experimental dataset. In the 

optimal model version, virus transcripts 𝑉 evoke transcription of mRNAs of anti-viral response 

genes 𝑚𝐴 (Fig. 5A). These are translated to anti-viral proteins 𝐴 that inhibit virus replication. 

This assumption of a direct interference with virus replication was motivated by the evidence 

that host-cell proteins that are part of the anti-viral response cause nonsense-mediated mRNA 

decay (NMD) in SARS-CoV-2 and other coronaviruses (Wada et al, 2018; Schmidt et al, 2021). 

Virus transcripts are then translated to virus proteins 𝑃 that inhibit transcription of anti-viral 

response genes. The model was calibrated with SARS-CoV-2 transcript counts, SARS-CoV-2 

N protein measurements, and a cumulative function describing the expression of genes 

associated with the anti-viral response (Fig. 5B). This cumulative function was derived from 

time points at which expression of anti-viral response genes increased or decreased 

(Supplementary Fig. S4, see Methods for details). Virus transcripts were scaled to the total 

amount of cellular transcripts.  

To identify processes required for explaining the experimental dataset and find an optimal 

model version, we iteratively extended an initial model and refitted model variants. Model 

extensions were pertained in case modified versions resulted in an improved model fit, assessed 

by values of the Bayesian information criterion (BIC; see Methods and Supplementary Figs. 

S5–7 for details, Supplementary Tables S1 and S2 for equations and parameter estimates). 

Several strategies used by SARS-CoV and SARS-CoV-2 to evade the host cell anti-viral 

response and perturb translation in host cells were previously described and translated to 

possible model extensions as described below. It was shown that SARS-CoV-2 inhibits the anti-

viral interferon response at the transcriptional and proteome levels (Hadjadj et al, 2020; 

Stukalov et al, 2021). Previous studies also found that SARS-CoV actively inhibits host cell 

translation (Narayanan et al, 2008; Nakagawa et al, 2016) through the interaction of nsp1 and 
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the 40S ribosomal subunit and inducing cleavage of host cell mRNAs (Kamitani et al, 2006, 

2009; Huang et al, 2011). Furthermore, the nsp1 protein of SARS-CoV counteracts host cell 

translation by inhibiting the 48S initiation complex formation (Lokugamage et al, 2012).  

Therefore, we tested whether including the following components improved the model, based 

on reductions in BIC: (1) negative feedback of 𝑃 on the transcription of 𝑚𝐴, (2) negative 

feedback of 𝑃 by cleavage of 𝑚𝐴, (3) negative feedback of 𝑃 on the synthesis of 𝐴. Further, we 

tested, whether including (4) positive feedback of 𝑃 on replication of 𝑉, or (5) positive feedback 

of 𝑃 on virus replication by virus release and influx could improve the model. Based on iterative 

refinement and model selection from a total of 18 model variants, we found that it was indeed 

necessary to include the negative feedback of 𝑃 on the transcription of 𝑚𝐴 to explain the 

experimental dataset (Supplementary Figs. S5–7). On the contrary, including the previously 

described cleavage of host-cell mRNAs by virus proteins, the inhibition of the translation of 

anti-viral proteins by virus proteins, or reactions describing positive feedback of 𝑃 on virus 

replication did not result in further model improvement. Parameter estimates indicated that the 

production of virus proteins was already saturated at small total virus transcript levels, which 

suggests that the major part of virus transcripts was not required for producing actual virus 

particles. Further, the anti-viral response was already saturated at a small amount of virus 

transcripts. Interestingly, model simulations predicted that transcription of anti-viral genes as 

well as translation to anti-viral proteins was induced within 6 hpi before the peak level of virus 

transcripts at 12 hpi (Fig. 5C).  

In conclusion, a mathematical model was developed that is capable of describing the dynamics 

of SARS-CoV-2 replication and the anti-viral response. Model discrimination suggested a 

strong inhibitory effect of SARS-CoV-2 proteins on the anti-viral response, and strong over-

saturation of the translation of virus transcripts as well as the induction of anti-viral genes. 

 

Strategies for direct and indirect interference with SARS-CoV-2 replication  

Subsequent to characterizing the cellular processes affected by SARS-CoV-2, we investigated 

two complementary strategies for interfering with virus replication. First, we developed an 

approach for experimentally characterizing direct inhibitors of SARS-CoV-2 protein 

maturation. Then, indirect inhibitors of host cell pathways presumably supporting virus 

replication were tested. 

SARS-CoV-2 replication requires auto-catalytic cleavage of the precursor proteins pp1a and 

pp1ab by the 3C-like protease (3CLpro; also referred to as Mpro), which represents a potential 

drug target for direct interference with virus replication. To monitor the activity of 3CLpro and 
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effects of possible protease inhibitors, we developed a live-cell assay based on fluorescent 

cleavage probes. These probes comprised a fusion of a nuclear export sequence (NES), a 

peptide sequence specifically cleaved by 3CLpro and GFP (Fig. 6A). Before cleavage, probes 

are restricted to the cytoplasm. Following cleavage-mediated removal of the NES, GFP can 

enter the nucleus and equilibrates between nucleus and cytoplasm. Probe cleavage in single 

cells can hence be followed in real time by confocal live-cell imaging and quantified using the 

GFP fluorescence intensity in the nucleus 𝐼𝑛𝑐𝑙 and cytoplasm 𝐼𝑐𝑝𝑙. We assumed that the 

concentration of intact probes in the cytoplasm [𝑃𝑟𝐹] is proportional to the difference of 

fluorescence intensities [𝑃𝑟𝐹]~(𝐼𝑐𝑝𝑙 − 𝐼𝑛𝑐𝑙).  

Peptide sequences of all 11 cleavage sites processed by 3CLpro were integrated in cleavage 

probes (Supplementary Table S1), which were co-expressed with 3CLpro
 in HEK293T cells. 

Using GFP-immunoblotting, we found that all probes were cleaved albeit with varying 

efficiency (Supplementary Fig. S8). In line with recent studies, we observed that the broad-

spectrum coronavirus protease inhibitor GC376 could prevent probe cleavage (Fig. 6B) (Vuong 

et al, 2020; Fu et al, 2020), as indicated by a predominant cytoplasmic fluorescence. After 

washing cells with medium lacking the inhibitor, the nuclear fluorescence increased indicating 

probe cleavage (Fig. 6B, C). Re-adding GC367 resulted in inhibition of 3CLpro as indicated by 

a decrease of the nuclear and an increase of the cytoplasmic fluorescence intensity due to re-

synthesis of intact probes and degradation of cleavage products. Collectively, the developed 

live-cell assay can be used for testing potential inhibitors of 3CLpro and studying the kinetics of 

protease inhibition in single cells. Subsequently, we tested whether GC367 could inhibit SARS-

CoV-2 replication in our experimental system (see below). 

In addition to blocking SARS-CoV-2 polyprotein cleavage, we tested complementary strategies 

for indirect interference with virus replication. As shown by our transcriptomic analyses, 

SARS-CoV-2 infection results in rapid transcriptional upregulation in pathways involved in 

kinase signaling as the IL17, TNF, MAPK or PI3K/Akt pathways as well as processes involved 

in translation and production of chemical energy that likely support SARS-CoV-2 replication 

(Fig. 4C). The PI3K/Akt/mTOR and MAPK pathways control translation based on 

phosphorylation of eukaryotic translation initiation factors (eIFs) and associated regulators 

(Roux & Topisirovic, 2012). It was previously shown that activation of mTOR signaling 

regulates energy metabolism and stimulates mitochondrial activity as well as biogenesis thereby 

increasing the capacity for ATP production (Cunningham et al, 2007; Düvel et al, 2010; Morita 

et al, 2013). Based on this hypothesis, it is reasonable to assume that inhibiting these pathways 

might counteract virus replication. Therefore, we tested the effect of metformin, an inhibitor of 
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the NF-κB and the PI3K/Akt/mTOR pathways (Dowling et al, 2007; Hattori et al, 2006; 

Kalender et al, 2010; Moiseeva et al, 2013; Green et al, 2010), and an inhibitor of mRNA 

translation in cancer cells (Zakikhani et al, 2006), on virus replication. Moreover, we analyzed 

whether dexamethasone might have an immediate effect on virus replication, due to its catabolic 

function, its inhibitory effect on pro-inflammatory pathways at the transcriptional level and 

inhibition of mTOR (Shah et al, 2000; Wang et al, 2006; Quatrini & Ugolini, 2021). 

Furthermore, we tested sorafenib, a broad-spectrum kinase inhibitor. Virus replication in 

presence or absence of the respective drugs was assessed by immunofluorescence staining of 

SARS-CoV-2 N protein at 24 hpi. While neither metformin nor dexamethasone had an 

inhibitory effect on virus replication, we found that sorafenib could inhibit SARS-CoV-2 

replication with and IC50 concentration of 765 nM (Fig. 6D). This observation is in line with 

previous studies (Klann et al, 2020). Furthermore, GC376 also potently inhibited SARS-CoV-

2 replication with an IC50 concentration of 244 nM (Fig. 6D), which is in line with recent 

findings by others (Vuong et al, 2020; Fu et al, 2020).  

In conclusion, our 3CLpro probe cleavage assay can be applied to screen for direct inhibitors of 

SARS-CoV-2 replication and characterize the dynamics of inhibitor binding and release. We 

found that direct as well as indirect interference with SARS-CoV-2 replication was effective in 

our experimental system. Interestingly, we observed a striking difference between indirect 

inhibitors of the mTOR pathway and the multi-kinase inhibitor sorafenib, suggesting that a 

specific subset of kinases could serve as optimal target(s) to counteract SARS-CoV-2 

replication.  

 

Discussion  

Our analysis of SARS-CoV-2 and host cell transcriptomes showed an initial upregulation of 

transcription in a fraction of genes starting between 0 and 2 hpi, rapid replication of virus 

transcripts up to levels comparable to the whole host cell transcriptome at 12 hpi, followed by 

transcriptional downregulation in a broad range of genes between 24 and 48 hpi, which 

coincided with cell death and virus release. To focus on the timing and sequence of the 

transcriptional response, we developed an approach based on fitting profile functions to 

transcriptomic measurements thereby extracting time points of maximal transcriptional 

regulation. Measurements of virus transcripts, virus proteins and information about affected 

cellular pathways were combined to investigate the sequence of interactions between SARS-

CoV-2 and host cells. 
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To identify cellular processes that are essential for explaining SARS-CoV-2 replication in our 

experimental system, we developed a model that was devoid of mechanistic details in contrast 

to previous ODE-models of RNA virus replication that included aspects as positive and 

negative RNA strands, virus particle formation or shuttling between cellular compartments 

(Binder et al, 2013; Aunins et al, 2018; Zitzmann et al, 2020; Lopacinski et al, 2021). Modeling 

showed that taking into account the inhibition of the transcription of anti-viral response genes 

by virus proteins was required to explain our experimental dataset. Modeling further suggested 

that the cellular anti-viral response resulted in a decrease of virus transcripts, but was 

nevertheless insufficient in preventing virus production and cell death. Our analysis and 

modeling inferred a sequence of events comprising (1) rapid upregulation of anti-viral response 

genes, (2) accumulation of virus proteins, and (3) the expression of anti-viral response genes 

depending on virus proteins. This indicates that delaying the replication of virus transcripts or 

synthesis of virus proteins by interfering with virus replication could serve as a strategy to 

sustain the anti-viral response and increase its efficiency. Additionally, modeling suggested that 

the largest part of virus transcripts is not required for synthesis of virus proteins. This leads to 

the naïve hypothesis that the largest part of virus RNA might have the simple physiological 

purpose as danger-associated molecular pattern (DAMP) species triggering an inflammatory 

response after cell lysis, thereby supporting viral spread through tissue damage. 

Focusing on the dynamics of the transcriptional response in cells infected with SARS-CoV-2 

and the temporal order of affected cellular processes, we could observe a rapid sequence of 

upregulation in pathways related to cellular inflammation shortly after virus entry. This was 

followed by upregulation in processes associated with protein synthesis and production of 

chemical energy, all of which occurred before virus transcript levels strongly increased. 

Upregulation in the latter processes likely results from a particularly high energy demand during 

virus replication. Hijacking of the cellular metabolism related to processes such as glycolysis, 

nucleotide or lipid synthesis was observed before in several viruses and can be compared to 

metabolic reprogramming in cancer cells (Thaker et al, 2019). Host pathway upregulation 

mostly occurred prior to the time when large virus transcript levels were present and decreased 

after 24 hpi when cells died and virus particles were released. Besides an early transcriptional 

upregulation in pathways related to inflammation, such as the IL-17 or TNF signaling pathways, 

we observed an early transcriptional upregulation in pathways depending on kinase signaling 

such as the PI3K/Akt/mTOR or MAPK pathways. A causal link between the early 

transcriptional upregulation in the PI3K/Akt/mTOR pathway and later upregulation of 

mitochondrial and ribosomal genes can be hypothesized because it is known that this pathway 
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is involved in the control of the biogenesis of mitochondria and ribosomes (Iadevaia et al, 

2012). Previously, it was shown that NF-κB signaling is linked to upregulation of mitochondrial 

respiration (Mauro et al, 2011). It was further observed that PI3K/mTOR inhibition decreased 

c-Myc induction and inhibited influenza virus replication (Smallwood et al, 2017), which 

indicates that transcriptional upregulation of this pathway is part of the host cell responses that 

support virus replication. A recent study showed that SARS-CoV-2 limits AMPK/mTORC1 

activation and autophagy, and that virus propagation is inhibited by the Akt inhibitor MK-2206 

(Gassen et al, 2020). Taken together, the host cell response dynamics is characterized by early 

activation of pathways involved in inflammation and kinase signaling followed by 

transcriptional upregulation of processes apparently supporting virus replication. 

Interestingly, we observed downregulation of xenobiotic metabolism involving cytochrome 

P450 enzymes in response to SARS-CoV-2 infection. It was previously observed that exposure 

of cells to inflammatory cytokines such as IL-6 decreases the expression of cytochrome P450 

enzymes in several tissues (Bertilsson et al, 2001; Aitken & Morgan, 2007; Li et al, 2014; 

Mimura et al, 2015). So far, it was hypothesized but not experimentally shown that COVID-19 

affects cytochrome P450 enzyme expression and drug metabolism (El-Ghiaty et al, 2020; Deb 

& Arrighi, 2021). In line with this hypothesis, we here provide experimental evidence that 

SARS-CoV-2 infection indeed directly affects pathways related to the bioavailability and 

metabolism of drugs.  

To expedite the identification and characterization of direct inhibitors of virus protein 

maturation, we developed a cleavage probe assay that can indicate the activity of the SARS-

CoV-2 3CLpro and evaluated the assay using the protease inhibitor GC376. In the future, this 

assay could be used to screen for further 3CLpro inhibiting drugs. Moreover, in our experimental 

setup of highly infectable Caco-2 cells, we could indeed confirm the effect of GC376 and 

sorafenib as direct and indirect inhibitors of SARS-CoV-2 replication, respectively (Vuong et 

al, 2020; Fu et al, 2020; Klann et al, 2020). On the other hand, metformin and dexamethasone, 

which are indirect inhibitors of mTOR signaling, did not prevent virus replication. This suggests 

that the therapeutic effect of dexamethasone is restricted to its established function in limiting 

the inflammatory response in COVID-19 (Tomazini et al, 2020; RECOVERY Collaborative 

Group et al, 2021). 

Collectively, by integrating information on the dynamics of SARS-CoV-2 replication and 

transcription in host cells, our study sheds light on the dynamics of cellular regulatory processes 

involved in SARS-CoV-2 infection at a systems level. In particular, the sequential 

transcriptional activation of inflammatory pathways linked to the anti-viral response followed 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.450986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.450986
http://creativecommons.org/licenses/by/4.0/


14 
 

by upregulation of processes supporting virus replication and late downregulation of metabolic 

processes before cell death and virus release could be characterized. Our study provides 

additional insights into the orchestrated SARS-CoV-2 host interactions and could facilitate the 

development of strategies for combined drug interference with virus replication and cellular 

processes supporting virus biogenesis. 

 

Methods 

Cell culture 

Caco-2 (human colorectal adenocarcinoma) cells and Vero E6 (African green monkey kidney 

epithelial) cells were obtained from ATCC. Cells have been tested negative for mycoplasma 

infection (MycoAlert Plus; Lonza, Basel, Switzerland). Caco-2, Vero E6 and HEK293T cells 

were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA) 

containing 10% fetal calf serum (Biochrom, Berlin, Germany), penicillin and streptomycin 

(100µg/ml; Invitrogen). HEK293T cells were transfected with X-tremeGENE HP (Roche 

Diagnostics, Rotkreuz, Switzerland) following the manufacturer’s instructions.  

 

Reagents 

We used antibodies to detect the SARS-CoV-2 nucleoprotein (mouse monoclonal; Sino 

Biologicals, Hong Kong, China) and GFP (mouse monoclonal; Roche Diagnostics). For 

microscopy, the secondary antibody Alexa Fluor goat anti-mouse 568 (Thermo Fisher 

Scientific, Waltham, MA, USA) was applied. A Horseradish peroxidase-conjugated anti-mouse 

antibody (Southern Biotech, Birmingham, AL, USA) was used for immunoblotting. 

 

Virus preparation 

SARS-CoV-2 (strain BavPat1) was obtained from the European Virology Archive. The virus 

was amplified in Vero E6 cells and collected at passage 3. Virus titers were determined by 

TCID50 assay. Caco-2 cells were infected using an MOI of 5 virus particles per cell. Medium 

was removed from Caco-2 cells and virus was added to cells for 1 hour at 37°C. Virus was 

removed, cells were washed once with PBS, and medium containing a tested inhibitor or empty 

medium was added to the cells. 

 

Determining TCID50 in Vero cells 

Vero E6 cells were seeded into a 96-well plate 24 h prior to infection using 20,000 cells per 

well. A volume of 100 µl of viral supernatant was added to the first well, followed by seven 
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1:10 dilutions that were added to subsequent wells. All experiments were performed in 

triplicates. Infections were allowed to proceed for 24 h. At 24 hpi, cells were fixed in 2% 

paraformaldehyde (PFA) for 20 minutes at room temperature (RT). PFA was removed and cells 

were washed twice in 1×PBS and then permeabilized for 10 min at RT in 0.5% Triton X-100. 

Cells were blocked in a 1:2 dilution of LI-COR blocking buffer (LI-COR, Lincoln, NE, USA) 

for 30 min at RT. Cells were stained with 1/1,000 dilution anti-dsRNA (J2) for 1 h at RT. Cells 

were washed three times with 0.1% Tween in PBS. Secondary antibody (anti-mouse CW800) 

and DNA dye Draq5 (Abcam, Cambridge, UK) were diluted 1/10,000 in blocking buffer and 

incubated for 1 h at RT. Cells were washed three times with 0.1% Tween/PBS. Washing buffer 

was replaced by 1×PBS (without Tween), and samples were imaged using a LI-COR imager. 

 

RNA extraction, viral RNA quantification and sequencing  

RNA was extracted from infected or mock-treated Caco-2 cells at 0, 1, 2, 4, 7, 12, 24 and 48 

hpi using the Qiagen RNAeasy plus extraction kit (Qiagen, Hilden, Germany). For quantifying 

SARS-CoV-2 genome abundance in mock samples, cDNA was made using iSCRIPT reverse 

transcriptase (BioRad, Hercules, CA, USA). q-RT-PCR was performed using iTaq SYBR green 

(BioRad) as per manufacturer’s instructions, TBP was used as housekeeping gene and for 

normalization (COV1 primers: for 5’-GCCTCTTCTGTTCCTCATCAC-3’, rev 5’-

AGACAGCATCACCGCCATTG-3’; TBP primers: for 5’-

CCACTCACAGACTCTCACAAC-3’, rev 5’-CCACTCACAGACTCTCACAAC-3’; 

Eurofins, Luxemburg). RNA samples were stored at -80°C. DNA libraries were prepared at 

GeneWiz Inc. (Leipzig, Germany) using the NEBnext Ultra II RNA directional Kit (New 

England Biolabs GmbH, Frankfurt, Germany). Paired-end sequencing of 2×150bp was 

performed at GeneWiz Inc. using an Illumina NovaSeq 6000 instrument (Illumina, San Diego 

CA, USA).  

 

Microscopy 

To analyze SARS-CoV-2 N protein expression in Caco-2 cells by immunofluorescence, 

microscopic images were taken at 0, 4, 24 and 48 hpi using a Nikon Eclipse Ti-S fluorescence 

microscope (Nikon, Tokio, Japan). Viable and dead cells were distinguished and quantified 

based on DAPI staining. Live-cell experiments were performed on a Nikon Ti inverted 

microscope, equipped with a CSU-22 Yokogawa confocal spinning disc slider (Yokogawa 

Electric Corporation, Tokyo, Japan), a 60× Plan Apo NA 1.4 objective lens (Nikon), a 

Hamamatsu C9100-02 EMCCD camera (Hamamatsu Photonics, Hamamatsu, Japan), and the 
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Volocity software (PerkinElmer; Waltham, MA, USA). Fluorescence of mGFP was excited at 

488 nm and emission was collected through a 527/55 emission filter (Chroma Technology Corp, 

Bellows Falls, VT, USA), and mCherry fluorescence was excited at 561 nm and emission was 

collected with a 615/70 filter (Chroma Technology Corp, Bellow Falls, VT, USA). For time-

resolved experiments, images were recorded at a time interval of 5 minutes. Microscopic 

images were evaluated with ImageJ software (NIH, Bethesda, MA, USA). 

 

Cloning of 3CLpro expression vectors and cleavage probes 

Cleavage probes for monitoring the SARS-CoV-2 main protease activity were created by 

inserting 3CLpro targeted sequences in between an NES sequence 

(MNLVDLQKKLEELELDEQQ) and mGFP. To this end, the NES-mGFP encoding vector 

previously reported by us (Beaudouin et al, 2013) was linearized via unique AgeI/NotI 

restriction sites, and cleavage probes were inserted by oligo cloning. To generate a construct 

for co-expressing mCherry and SARS-CoV-2 main protease (3CLpro), a fragment encoding 

3CLpro was first obtained as a double-stranded DNA fragment (gBlock; IDT, San José, CA, 

USA) and cloned into pcDNA3.1(-) via unique NheI/NotI restriction sites. A fragment encoding 

mCherry followed by a P2A peptide sequence was also obtained as gBlock. The 3CLpro 

encoding vector was then linearized 5’ of the 3CLpro start codon via NheI and the mCherry-P2A 

fragment was inserted via Gibson Assembly, hence yielding a vector encoding mCherry-P2A-

3CLpro.  

 

Co-expression of 3CLpro with cleavage probes and immunoblotting  

One day before transfection, 105 cells per well were seeded in 6-well plates. Cells were co-

transfected with constructs encoding a cleavage probe and either (1) 3CLpro-2A-mCherry (2) a 

control vector lacking 3CLpro (Kallenberger et al, 2014). For harvesting lysates, two days after 

transfection, plates were transferred on an ice-cold metal block, washed in ice-cold 1× PBS 

before treatment with ice-cold lysis buffer [20 mM tris-HCl (pH 7.5),150 mM NaCl, 1 mM 

phenylmethylsulfonyl fluoride (Millipore Sigma, St. Louis, MO, USA), protease inhibitor 

cocktail (Roche Diagnostics), 1% Triton X-100, and 10% glycerol], and harvested with cell 

scrapers (BD Biosciences, Franklin Lakes, NJ, USA). Lysates were analyzed with SDS – 

polyacrylamide gel electrophoresis gels (Invitrogen). Proteins were transferred onto 

polyvinylidene difluoride (PVDF) membranes (Millipore Sigma) by wet blotting. A primary 

antibody recognizing GFP (Roche Diagnostics) and a horseradish peroxidase-conjugated 

secondary antibody (Southern Biotech) were used to probe membranes. Detection was 
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performed using the Pico Chemiluminescent Substrate from Thermo Scientific and a charge-

coupled device camera (Intas, Göttingen, Germany). 

 

Bioinformatics and statistical analysis 

Read pairs from triplicate samples of infected cells at 0, 1, 2, 4, 7, 12, 24 and 48 hpi and 

additional mock samples at 4, 12 and 48 hpi were mapped to a merged reference comprising 

the human reference genome (GRCh38.p13, NCBI build 38 path release 13 obtained from 

Genome Reference Consortium) and SARS-CoV-2 reference (NC_045512.2, NCBI reference 

sequence for SARS-CoV-2 isolate Wuhan-Hu-1). For read alignment, the STAR software was 

used with default settings (Dobin et al, 2013). Subsequently, BAM files were split by their 

reference using the SAMtools software suite (Li et al, 2009) and counted separately using the 

featureCounts function from the Subread package (Liao et al, 2019). Host reads were counted 

by the ‘Exon’ feature, whereas SARS-CoV-2 mapping reads were counted by the ‘CDS’ 

feature. Transcript read counts were processed using ‘DESeq2’ (Love et al, 2014). At first, log2 

fold changes were calculated relative to a reference comprising measurements of samples at 0 

and 1 hours. Then, for background correction of time series, log2 fold changes of measurements 

from uninfected samples were subtracted from log2 fold changes of measurements from 

infected samples (Supplementary Fig. S9). To this end, mock values were linearly interpolated 

at 1, 2, and 7 hpi. To estimate errors of background-corrected values 𝑥 at all time points, 

standard errors of gene expression data from mock samples were fitted by a linear error model 

𝜀(𝑥) = 𝑚1𝑥 + 𝑚2𝑚𝑎𝑥(𝑥). The parameters 𝑚1 and 𝑚2 were estimated for each gene by 

performing 100 multi-start local optimizations. Calibrated error models were used to estimate 

errors of interpolated mock values at 1, 2 and 7 hpi. Finally, errors of background-corrected 

values were obtained from error propagation using standard errors of measurements from 

infected samples and mock samples. Background-corrected and interpolated log2 fold changes 

were then used for GO term enrichment analysis (Ashburner et al, 2000; Gene Ontology 

Consortium, 2021). For cluster analysis, and for visualizing transitions between GO-terms, log2 

fold changes were interpolated in hourly time intervals between 0 and 48 hpi. Overrepresented 

GO terms were inferred using the ‘goana’ and ‘topGO’ function from the limma package 

(Ritchie et al, 2015). As input, we used all genes with an absolute log2 fold change larger than 

one. Besides the gene label, we explicitly used the trend or abundance parameter in the ‘goana’ 

function (mean expression of gene 𝑖 at timepoint 𝑗). We subsequently selected the top GO terms 

for each discrete time point and visualized negative log-scaled p-values in a clustered heatmap. 
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We applied hierarchical clustering using the Euclidean distance norm and complete linkage as 

implemented in the ‘hclust’ function of the ‘stats’ package. 

 

Analyzing the dynamics of transcription changes 

To extract time points when gene expression was strongly affected and determine amplitudes 

of expression changes in all expressed host cell genes, profile functions were defined. Log2 

fold changes were fitted by four profile functions 

𝑦𝐼  =  
𝑏1

1 + 𝑒𝑥𝑝(−𝑏2(𝑡−𝑏3))
      (1) 

𝑦𝐼𝐼  =  
𝑏1

1 + 𝑒𝑥𝑝(−𝑏2(𝑡−𝑏3))
−

𝑏4

1 + 𝑒𝑥𝑝(−𝑏2(𝑡−(𝑏3+𝑏5)))
   (2) 

𝑦𝐼𝐼𝐼  =  −
𝑏1

1 + 𝑒𝑥𝑝(−𝑏2(𝑡−𝑏3))
      (3) 

𝑦𝐼𝑉  =  −
𝑏1

1 + 𝑒𝑥𝑝(−𝑏2(𝑡−𝑏3))
+

𝑏4

1 + 𝑒𝑥𝑝(−𝑏2(𝑡−(𝑏3+𝑏5)))
   (4) 

to describe continuously increasing (𝑦𝐼) transiently increasing (𝑦𝐼𝐼), continuously decreasing 

(𝑦𝐼𝐼𝐼)  or transiently decreasing expression (𝑦𝐼𝑉) of genes. Eqs. (1–4) were fitted to log2 fold 

changes of all 𝑁 = 13,322 expressed genes. In each case, all four profile functions were fitted. 

The optimal function was selected using the Bayesian information criterion  

𝐵𝐼𝐶  =  𝑘 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑛)  −  2𝑙𝑜𝑔�̂�      (5) 

that depends on the logarithm of the likelihood function maximum �̂�, the number of parameters 

𝑘 and the number of datapoints 𝑛. Parameters 𝑏𝑖 were log-scaled to facilitate convergence of 

fits. For each profile function, 100 multi-start local optimizations were performed.  

 

Mathematical modeling 

Model simulations were performed with custom scripts in MATLAB (The Mathworks, Natick, 

MA, USA). The MATLAB toolbox PottersWheel was used for model fitting (Maiwald & 

Timmer, 2008). Models described four species, virus transcripts 𝑉, virus proteins 𝑃, mRNAs 

of anti-viral genes 𝑚𝐴 and anti-viral proteins 𝐴 (Fig. 5A). Model versions comprised between 

12 and 14 estimated parameters. The model variable 𝑉 was associated with measured virus 

transcript counts. The GO term ‘Defense response to virus’ (GO:0051607) was used to derive 

an observable for the model species 𝑚𝐴. After fitting profile functions, as described above, to 

all expressed genes associated with this GO term, strongly regulated genes were selected based 

on log2 fold change amplitudes of 𝑙𝑜𝑔2 𝑓. 𝑐. ≥ 𝑙𝑜𝑔2(3 2⁄ ) (Supplementary Fig. S4).  

No additional scaling factors were used to relate experimental measurements in arbitrary units 

to concentrations or molecule numbers of model species. Therefore, scaling constants implicitly 
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entered the kinetic parameters for describing species turnover. The only non-zero valued model 

species was [𝑉0], the initial level of 𝑉 after infection of cells. In total, 18 model variants were 

iteratively developed (Supplementary Figs. S5–7). Each variant was calibrated by performing 

5000 multi-start local optimizations. Model selection was performed based on the BIC.  

The initial model version (Variant 1, Supplementary Fig. S5) described replication of 𝑉, 

translation of 𝑉 to 𝑃, induction of 𝑚𝐴 translated to 𝐴, and inhibition of 𝑉 synthesis by 𝐴. It was 

extended by six additional parts: (1) positive feedback of 𝑃 on replication of 𝑉 (Variant 2), (2) 

positive feedback of 𝑃 on virus replication by virus release and influx (Variant 3), (3) negative 

feedback of 𝑃 on the transcription of 𝑚𝐴 (Variant 4), (4) negative feedback of 𝑃 by cleavage of 

𝑚𝐴 (Variant 5), (5) negative feedback of 𝑃 on the synthesis of 𝐴 (Variant 6), or (6) dependency 

of the expression of 𝑚𝐴 on a threshold level of 𝑉 (Variant 7). Model selection showed that 

‘Variant 4’ was superior compared to the other variants (Supplementary Fig. S5B, C). 

In a second model extension step, the remaining additional parts were added to Variant 4 

(Variants 4.1–5; Supplementary Fig. S6). Additional inclusion of the negative feedback of 𝑃 

by cleavage of 𝑚𝐴 resulted in an improved fit indicated by a slightly decreased chi-square 

measure (Supplementary Fig. S6B). None of the additional model extensions, however, resulted 

in a decrease in BIC (Supplementary Fig. S6C).  

In a third step, it was tested whether model Variant 4 could be simplified by more parsimonious 

model variants containing less parameters without decreasing fit quality. To this end, the 

following six model simplifications were tested: (1) description of 𝐴 turnover by one turnover 

parameter instead of separate parameters for synthesis and degradation of 𝐴 (Variant 4.0.1), (2) 

description of the synthesis of 𝐴 by mass-action instead of Michaelis-Menten (MM) kinetics 

(Variant 4.0.2), (3) mass-action instead of MM-kinetics for describing synthesis of 𝑃 (Variant 

4.0.3), (4) mass-action kinetics for describing synthesis and degradation of 𝐴 by single  turnover 

parameter (Variant 4.0.4), (5) single parameter for describing turnover of 𝐴 and mass-action 

instead of MM-kinetics for synthesis of 𝑃 (Variant 4.0.5), (6) mass-action kinetics for synthesis 

of 𝐴 as well as 𝑃. Model selection showed that ‘Variant 4.0.1’ was superior compared to the 

other variants and subsequently regarded as optimal model variant (Supplementary Fig. S7B, 

C).  

Model equations of all variants are listed in Supplementary Table S1; parameter estimates of 

the optimal model variant ‘4.0.1’ including allowed parameter intervals and 1σ-confidence 

intervals estimated based on the inverse of the Hessian matrix are given in Supplementary Table 

S2.  
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Figures  

 

 

Figure 1. Dynamics of SARS-CoV-2 genome expression and virus replication. (A) 

Experimental setup. Caco-2 cells were infected with SARS-CoV-2 at an MOI of 5. Cells were 

lysed and RNA-seq was performed at the indicated time-points post infection. (B) Microscopy 

analysis of SARS-CoV-2 replication in Caco-2 cells infected with SARS-CoV-2 (top) or non-

infected control cells (bottom). Representative images of three biological replicates are shown 

(blue, DAPI staining of nuclei; red, immunostaining of SARS-CoV-2 N protein; scale bar, 50 

µm). (C) Analysis of absolute (top) and relative (bottom) host cell and virus transcript counts. 

At 12 hpi, virus transcripts peaked, constituting 41% of all transcripts (means of n=3 replicates; 

error bars, SEM). (D) Virus transcript read counts increased from ORF1 to ORF10, reflecting 

the nested RNA architecture of SARS-CoV-2 (bars: average read counts of n=3 replicates 

normalized by CDS length at 24 hpi; error bars, SEM; CDS, coding sequence). (E, F) 

Microscopy analysis of the fraction of cells with detectable expression of SARS-CoV-2 N 

protein (E) and the normalized total cell count (F) at the indicated time points. (G) 

Quantification of the released virus particles by endpoint dilution assay (TCID50, 50% tissue 

culture infective dose). (E-G) n=3, error bars indicate standard deviation.  
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Figure 2. Dynamic alteration of the host cell transcriptome upon SARS-CoV-2 infection. 

(A) Distributions of log2 fold changes of normalized and background-corrected gene transcript 

reads relative to initial transcript counts, and percentages of genes with log2 fold changes 𝐿 ≥

1 or 𝐿 ≤ −1 (dashed lines, log2 fold changes of ±1; vertical lines, 2.5 and 97.5 percentiles). 

(B) Clusters of p-values from GO term enrichment at interpolated time intervals indicate the 

dynamics of cellular processes in response to SARS-CoV-2 infection. The following qualitative 

patterns can be distinguished: early, transient response defined by transient expression changes 

within 12 hpi (cluster I), late, sustained response characterized by expression changes that take 

place after 12 hpi and are maintained (cluster II), and an early, sustained response indicated by 

maintained expression changes that already start at few hours post infection (cluster III).  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.450986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.450986
http://creativecommons.org/licenses/by/4.0/


29 
 

 

Figure 3. Transcriptionally altered host genes show distinct dynamic patterns. (A) 

According to the observed transcription dynamics, four functions describing either continuous 

or transient increase (red, yellow) or decrease (dark or light blue) were fitted to transcription 

fold changes of all detected genes. Optimal function types were selected based on smallest BIC 

values (solid lines, function types with smallest BIC values; dashed lines, fits of other function 

types). Points of expression changes, indicated by vertical lines, represent the time points at 

half maximal increase or decrease according to the extracted functions. (B–E) To analyze the 

transcriptional dynamics of the host cell response, time points of expression changes (up- or 

downregulation) of genes associated with KEGG pathways as ‘Transcription factors’ were 

displayed as lines indicating the time interval of increased transcription. (B) Continuous 

increase, (C) transient increase, (D) continuous decrease, (E) transient decrease. Genes shown 

in A were highlighted in respective profile function colors.   
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Figure 4. Transcriptional dynamics is associated with selected cellular pathways. (A) 

Scatter plot showing the number of regulated genes in KEGG pathways affected by SARS-

CoV-2 infection. Pathways comprising strongly up- or downregulated genes, defined by log2 

fold changes of at least 1, were selected. (B) Scatter plot of KEGG pathways affected by SARS-

CoV-2 infection. Dots indicate the percentage of strongly regulated genes relative to the total 

number of expressed genes within a pathway. (C) 25 cellular pathways with the largest fractions 

of upregulated genes, selected from pathways with at least 10 strongly regulated genes. 

Pathways were sorted according to times at which 50% of all strongly regulated genes were up- 

or downregulated (top to bottom). (D) Top 25 cellular processes with largest fractions of 

downregulated processes as in C. Transcription was downregulated, delayed relative to the 

observed upregulation, in various processes involved in metabolism (Nup/down,
 number of up- or 

downregulated genes; Nexp, number of expressed genes detected by RNA sequencing; Ntot, total 

number of genes within KEGG pathways). 
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Figure 5. Dynamic model of SARS-CoV-2 replication and the anti-viral response. (A) 

Overview of the model describing virus replication, synthesis of virus proteins and expression 

of transcripts and proteins associated with the anti-viral response exhibited by the host cell. In 

the model, viral RNA (𝑉) stimulate the expression of anti-viral response gene transcripts (𝑚𝐴) 

that are translated to proteins (𝐴) that inhibit virus replication. Viral transcripts are translated to 

virus proteins (𝑃) that inhibit translation of 𝑚𝐴. (B) Best model fits to measurements of virus 

transcripts (top), virus N protein (center), and average expression levels of anti-viral response 

genes (bottom). (C) Model predictions of virus transcripts and proteins as well as mRNAs and 

proteins associated with the anti-viral response (lines, predictions using means of parameters 

from best 10 of 5000 fits; shaded areas, 1σ-confidence intervals; a. u., arbitrary units). 
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Figure 6. Direct and indirect inhibition of SARS CoV-2 replication. (A) Experimental setup. 

Cleavage probes consisting of a nuclear export sequence (NES), a 3CLpro cleavage site (NS4-

NS5) and GFP were expressed in HEK293T cells. Uncleaved probes are continuously exported 

from the nucleus and hence located in the cytoplasm. Following 3CLpro-mediated cleavage, 

GFP enters the nucleus by diffusion. The cytoplasmic and nuclear fluorescence intensities (Icpl, 

Incl) were used to calculate the concentration of the uncleaved probe. (B, C) HEK293T cells co-

expressing a cleavage probe containing the cleavage site between NSP4 and NSP5 and 3CLpro 

were incubated in presence of 20 mM GC376, the drug was removed at time point 0 and re-

added at 250 minutes (scale bar, 10 µm). Representative microscopy images (B) and 

corresponding quantification of the concentration of the uncleaved probe over time (C). Nuclear 

signal increase following GC376 removal indicates probe cleavage (data in C, means of n=10 

cells, error bars: SEM). (D) Caco-2 cells were infected in the presence or absence of inhibitors. 

Virus replication was assessed at 24 hpi via immunofluorescence of SARS-CoV-2 N protein 

(means of n=3 replicates, error bars: SEM). 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.450986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.450986
http://creativecommons.org/licenses/by/4.0/

