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Supplementary Note 1: Comparison of selecting filters causally versus based on 
response selectivity 

Methods. In our main analysis, we used a “causal” test to identify filters more important 
for face than object recognition and vice versa. But fMRI studies in humans identify “face 
areas” simply as the regions that show a higher response to faces than objects in localizer 
scans1,2. Would this latter selectivity method, applied to networks, reveal the same kind 
of filters we discovered using our lesioning method? Specifically, do filters with the highest 
impact on face performance (i.e., hence lower rank order number for the face loss) also 
show higher mean activation to face than object images and vice versa for object filters? 
To find out, we measured the activation of each filter in the last convolutional layer to an 
independent set of 100 face images (one image of each of 100 novel identities) and 100 
object images (one image of each of 100 novel object categories), not included during 
training of the dual-task network. We extracted the activation to each of the 100 face and 
object images, respectively, by taking the l2 norm across the unit responses in each filter. 
We computed a standard selectivity index, measured as the difference in mean activation 
for images belonging to one category (e.g., face images) versus the other category (e.g., 
object images), divided by the sum of both. We then correlated the category-selectivity 
index of the 50% highest-contributing filters in the last convolutional layer (i.e., 256 filters) 
of the corresponding task (e.g., face task) with their rank order. 

To further test whether the top-20% category-selective filters (e.g., face-selective) would 
selectively impair the corresponding task (e.g., face task) but not the other task (e.g., 
object task), we lesioned the top-20% category-selective filters simultaneously and 
measured the proportional drop in performance on each task. 

Results. We found a significant negative correlation (Spearman’s r: -.40; p<1e-10; Suppl. 
Fig. 1A) between the rank of the top-50% highest contributing face filters (selected via 
lesioning) and their face selectivity based on activation, indicating that filters that have a 
large impact on face performance, also respond more to face than object images. We 
found a similar correlation between the rank of the top-50% highest contributing object 
filters and their object selectivity index (Spearman’s r: -.47; p<1e-14; Suppl. Fig. 1A). 
However, when we ranked filters by their selectivity based on activation and lesioned the 
20% most category-selective filters, these filters impacted performance on the 
corresponding task less than “causally” selected filters (Suppl. Fig. 1B). We thus conclude 
that in the case of CNNs trained on face and object recognition, lesioning is a superior 
method for selecting task-specific filters compared to measuring differences in response 
activation.  



 
Supplementary Figure 1 | Comparing category-selectivity based on activation to causally 
ranking filters. (A) The rank of the top-50% highest contributing face filters (i.e., 256 filters) was 
significantly correlated with their face-selectivity index based on activation (r = -.40; top panel), 
suggesting that filters causally involved in the face task also responded more to face than to object 
images. Similar results were found for the top 50% object ranked filters (r = -0.47; bottom panel). 
(B) Lesioning the top-20% face-selective filters affected performance on the face task more than 
on the object task, but the drop in performance was lower than when selecting units based on 
lesioning (cf. Fig. 2). Similar results were obtained when lesioning object-selective filters. Error 
bars denote 95% CIs bootstrapped across classes and stimuli.  
  



Supplementary Note 2: Analysis of shared high-ranked units between tasks 

Methods. To further test whether functional segregation for faces and objects is driven 
by mid- to high-level features, we performed an analysis of how many of the top-20% 
ranked filters are shared between tasks (i.e., filters that ranked high on both tasks) in 
each layer. If the low degree of segregation found in early layers of the network is indeed 
due to shared representations, the proportion of shared filters should be larger in early 
than in late layers. 

Results. We found that the proportion of shared top-ranked filters across tasks was 
initially high, but decreased sharply with progressive layers (Supplementary Figure 2), 
suggesting that the same filters contribute to both tasks in earlier layers, but each task 
relies on a distinct set of features in late layers. This finding further supports the 
conclusion that functional segregation starts to emerge in mid-level layers of the 
networks, and thus is not likely being driven by low-level differences between tasks.  

 

Supplementary Figure 2 | Proportion of shared filters between face and object task 
decreased with progressive layers. Analysis of the proportion of shared filters between the top-
20% filters ranked by the face and the object task reveal a decreasing overlap with later layers of 
the dual-task network.  

  



Supplementary Note 3: Functional segregation for the same task based on different 
datasets 

Methods. To further test whether biases in datasets can drive segregation, we asked 
whether segregation can arise for the same task performed on two different sets of 
images. Specifically, we trained a dual-task network on the face dataset used for the dual-
task network trained on faces and objects (Face task 1, Suppl. Fig. 3 in red; 1,714 identity 
categories from the VGGFace2 dataset) together with 1,714 identities obtained from the 
CASIA-WebFace3 (Face task 2, Suppl. Fig. 3 in purple) that were sampled on different 
selection criteria, cropping techniques, etc. We selected identities from the CASIA-
WebFace dataset as follows. First, we ranked the identities by the number of images per 
identity (many of the identities contain only a few images per identity) and chose the 2000 
identities with the largest number of images. Of these 2000 identities, we excluded all 
identities that overlapped with the VGGFace2 training set. From the remaining identities, 
we randomly chose 1714 identities with at least 63 images per class. Of these 63 images 
we used 58 for training and 5 for validation. To match the number of images between 
datasets, we also randomly selected 58 images per identity from the 1,714 identities of 
the VGGFace2 dataset. We trained the network with a 3428-way classification layer (1714 
categories per dataset). We used the same training parameters and the same analysis to 
measure segregation in this dual-task network as we did for the dual-task network trained 
on faces and objects.  

Results. We found that lesioning top-20% units in the last convolutional layer of the 
network impaired performance on both tasks much more similarly than what we found for 
faces and objects (Suppl. Fig. 3). The functional segregation was small in the last 
convolutional layer of the network (combined segregation index: 0.21) and significantly 
less than for faces and objects in the dual-trained network trained on faces and objects 
(combined segregation index: 0.75; p=0, bootstrap test). This finding further supports the 
conclusion that high degree of functional segregation we found for faces and objects is 
not due to simple dataset biases or low-level differences, but is instead driven by the 
distinct mid- to high-level visual features required for each task. 

 



 

Supplementary Figure 3 | Only small functional segregation for different datasets of the 
same task. Normalized performance of face task 1 (red) and face task 2 (purple) after lesioning 
the 20% highest-contributing units for face task 1 (left) and face task 2 (right) in the last 
convolutional layer. Performance decrement through lesioning affected both tasks and to a similar 
degree. Error bars denote 95% CIs bootstrapped across classes and stimuli.  
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