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1 Literature review

190 records identified
through database searching

< 23 additional records identified through other sources

A 4

3 duplicated records excluded

\ 4
210 records screened

54 records excluded
- Not addressing environmental stability (n = 52)
- Not focused on coronaviruses (n = 2)

A 4

v
156 full-text articles assessed
for eligibility

115 full-text articles excluded
- Full text not available (n = 1)
- Not focused on coronaviruses (n = 2)
- Not addressing environmental stability of infectious viruses (n = 16)
- Meta-analyses, reviews, opinions or modelling studies not presenting
original data (n = 73)
- Subject to inactivation treatments other than heat (n = 15)
- Data collected in non-laboratory conditions (n = 2)
- Data collected from aerosols (n = 3)
- Not focused on the effect of temperature or heat treatment (n = 3)

A 4

v
41 studies included in
qualitative synthesis

Figure S1. Selection process for literature review. Review assessed heat-treatment procedure description
quality for coronavirus inactivation studies. This figure was made following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses [1].
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2 Bayesian estimation models

2.1 Model notation

In the model notation that follows, the symbol ~ denotes that a random variable is distributed according to
a given distribution. Normal distributions are parametrized as:

Normal(mean, standard deviation)

Positive-constrained normal distributions (“Half-Normal”) are parametrized as:

Half-Normal(mode, standard deviation)

2.2 Titer inference

We inferred individual titers directly from titration well data using a Poisson single-hit model. We as-
signed a weakly informative Normal prior to the log, titers v; (v; is the titer for sample ¢ measured in
log,oTCID50/0.1mL, since wells were inoculated with 0.1mL):

v; ~ Normal(2.5, 3) (1)

We then modeled individual positive and negative wells for sample ¢ according to a Poisson single-hit model
[44]. That is, for an undiluted inoculum, the number of virions that successfully infect cells within a given
well is Poisson distributed with mean:

In(2)10% (2)
The value of the mean derives from the fact that our units are TCIDgq; the probability of a positive well at
v; =0, i.e. 1 TCIDs5o, is equal to 1 — e~ ()1 =5,

Let Yiqx be a binary variable indicating whether the k*® well at dilution factor d (where d expressed as log;,
dilution factor) for sample i was positive (so Y;gr, = 1 if that well was positive and 0 if it was negative).
Under a single-hit process, a well will be positive as long as at least one virion successfully infects a cell.

It follows from equation 2 that the conditional probability of observing Y;sx = 1 given a true underlying
log,, titer v; and a dilution factor d is given by:

—1In (vi—d)
E(Yidk:1|vi):1_e In(2)x10 (3)

This is simply the probability that a Poisson random variable with mean In(2) x 10:=9) is greater than 0.
That mean is the expected number virions inoculated into the well; it derives from the fact that there are
v; — d log,TCIDsg in the dilute sample. Similarly, the conditional probability of observing Y4, = 0 given
a true underlying log; titer v; is:

‘C(Yidk =0 | Ui) — e~ In(2)x10(vi =4 (4)

which is the probability that the Poisson random with variable is equal to 0.

This gives us our likelihood function, assuming independence of outcomes across wells. Our inoculated doses
were of volume 0.1 mL, so we incremented inferred titers by 1 to convert to units of log;, TCIDso/mL.



2.3 Virus inactivation regression

Duration of virus of detectability depends not only on environmental conditions and treatment method but
also initial inoculum and sampling noise. We therefore estimated the exponential decay rates of viable virus
(and thus virus half-lives) using a Bayesian regression analogous to that used in [18, 45]. This modeling
approach allowed us to account for differences in initial inoculum levels across samples as well as other
sources of experimental noise. The model yields estimates of posterior distributions of viral decay rates and
half-lives in the various experimental conditions — that is, estimates of the range of plausible values for these
parameters given our data, with an estimate of the overall uncertainty [46].

Our data consist of four different experimental conditions corresponding to four heat-treatment procedures,
all at 70°C: (1) an uncovered plate of wells in a dry oven, (2) a covered plate in the oven, (3) a set of closed
vials in the oven, and (4) set of closed vials in a heat block.

For each treatment, we took three samples per time point at multiple time-points.

We model each sample j for experimental condition ¢ as starting with some true initial log,, titer: v;;0. At
the time ¢;; that it is sampled, it has titer v;;.

We assume that viruses in experimental condition ¢ decay exponentially at a rate A; over time. It follows
that:
vij = vijo — Aitij ()

We use the direct-from-well data likelihood function described above, except that now instead of titers we
estimate A; under the assumptions that our observed well data Yjq reflect the titers v;;.

We assume that each experiment ¢ has a mean initial log,, titer ¥;0. We model the individual initial titers
V350 as normally distributed about ;0 with an estimated, experiment-specific standard deviation o;:

vij0 ~ Normal(v;o, 0;) o

2.4 Regression prior distributions

We placed a Normal prior on the mean initial log, titers v;o that reflects the known inocula.

U0 ~ Normal(4.5,0.5) (7)

We placed a Half-Normal prior on the standard deviations o; that allows for potentially large variation (1
log) variation about the experiment mean, as well as for less variation:

o; ~ Half-Normal(0, 0.25) (8)
To encode prior information about virus inactivation rate in an interpretable way, we placed a Normal prior
on the log half-lives In(h;), where h; = ln)f):

In(h;) ~ Normal(In(0.5), 2) (9)

This prior reflects that both of rapid virus inactivation and substantially slower inactivation are plausible a
priori.

2.5 Predictive checks

We assessed the appropriateness of prior distribution choices using prior predictive checks and assessed
goodness of fit for the estimated model using posterior predictive checks. The resultant checks are shown
below.
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Figure S2. Titer estimation prior check. Violin plots show distribution of simulated titers sampled from
the prior predictive distribution. Points show estimated titers for each collected sample; vertical bar shows
a 95% credible interval. Time-points with no positive wells for any replicate are plotted as triangles at
the approximate single-replicate detection limit of the assay (LOD; denoted by a black dotted line at 10°-5
TCIDs5p/mL media) to indicate that a range of sub-LOD values are plausible. Wide coverage of violins
relative to datapoints show that priors are agnostic over the titer values of interest.
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Figure S3. Prior predictive check for regression model. Violin plots show distribution of simulated titers
sampled from the prior predictive distribution. Points show estimated titers for each collected sample;
vertical bar shows a 95% credible interval. Time-points with no positive wells for any replicate are plotted
as triangles at the approximate single-replicate detection LOD (denoted by a black dotted line at 10°-
TCIDs5p/mL media) to indicate that a range of sub-LOD values are plausible. Wide coverage of violins
relative to datapoints show that priors are agnostic over the titer values of interest, and that the priors
regard both fast and slow decay rates as possible.
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Figure S4. Posterior predictive check for regression model. Violin plots show distribution of simulated
titers sampled from the posterior predictive distribution. Points show estimated titers for each collected
sample; vertical bar shows a 95% credible interval. Time-points with no positive wells for any replicate are
plotted as triangles at the approximate single-replicate detection LOD (denoted by a black dotted line at
10%® TCID5p/mL media) to indicate that a range of sub-LOD values are plausible. Close correspondence
between distribution of posterior simulated titers and estimated titers suggests the model fits the data well.
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