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Abstract 

Targeted, untargeted and data-independent acquisition (DIA) metabolomics workflows are often 

hampered by ambiguous identification based on either MS1 information alone or relatively few 

MS2 fragment ions. While DIA methods have been popularized in proteomics, it is less clear 

whether they are suitable for metabolomics workflows due to their large precursor isolation 

windows and complex co-isolation patterns. Here, we quantitatively investigate the conditions 

necessary for unique metabolite detection in complex backgrounds using precursor and fragment 

ion mass-to-charge separation, comparing three benchmarked MS methods (MS1, MRM, DIA). 

Our simulations show that DIA outperformed MS1-only and MRM-based methods with regards 

to specificity by a factor of ~2.8-fold and ~1.8-fold, respectively. Additionally, we show that our 

results are not dependent on the number of transitions used or the complexity of the background 

matrix. Finally, we show that collision energy is an important factor in unambiguous detection and 

that a single collision energy setting per compound cannot achieve optimal pairwise differentiation 

of compounds. Our analysis demonstrates the power of using both high resolution precursor and 

high resolution fragment ion m/z for unambiguous compound detection. This work also establishes 

DIA as an emerging MS acquisition method with high selectivity for metabolomics, outperforming 

both DDA and MRM with regards to unique compound identification potential. 
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Introduction 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allows for the robust 

analysis of complex samples in metabolomics. LC/MS-based metabolomics allows researchers to 

explore a large fraction of chemical diversity, uncovering fundamental metabolism, regulation, 

genetics, and interspecies analyte transfer in complex systems of global importance, such as 

nutrient cycling, wastewater treatment and the human microbiome.1-2  

 

However, the amazing diversity of the metabolome and its lack of a generic polymer template, as 

in the genome or proteome, greatly complicates the confident identification of unique metabolites 

required to provide meaningful biological data. Untargeted workflows focused on the precursor 

ion (MS1-based) are comprehensive, but often unspecific with compound detection hampered by 

their reliance on a single precursor m/z value. An increase in confidence occurs with the addition 

of fragment ion (MS2) data (an MS2 match in literature, towards a level 2 identification with 

orthogonal information such as retention time or collision cross-section values).3 However, MS2 

data acquired using data-dependent workflows (DDA) heavily relies on stochastic MS1 data 

collection, with a high degree of variance based on sample complexity. On the other hand, although 

targeted methods (multiple/parallel reaction monitoring; MRM/PRM) using MS2 data are highly 

specific, they are strongly limited in both mass accuracy and analyte throughput for traditional 

MRM with a focus on few fragments, generally unsuitable for omics type of analysis. 

 

Data-independent acquisition (DIA) is a next-generation MS method with capabilities of capturing 

the complete precursor and fragment ion signal (MS1 and MS2) in a single run. It uses a set of 

pre-programmed isolation windows which span the whole mass range, thus ensuring that any 

precursor is fragmented. In each cycle, a set of high resolution fragment ion spectra is acquired for 

every isolation window, and the process is repeated once the last isolation window has been 

acquired, generating a series of fragment ion spectra with the same precursor isolation window. 

This method allows high analyte throughput with reproducible and consistent quantification to 

facilitate metabolite discovery.4-10  

 

Current DIA methods for metabolomics aim to reduce interference in the overlapping m/z and RT 

space. One all-ion fragmentation MS method named MSE involves alternating scans at low or high 

collision energy for simultaneous precursor and fragment ion data acquisition within a single  

analytical run.11 MSE maximizes data collection efficiency and duty cycle by taking advantage of 

the characteristic high acquisition speed and mass accuracy of a quadrupole time-of-flight (Q-

TOF) instrument, making it suitable for a large number of highly complex samples.10-11 However, 

as fragmentation is performed for all precursor ions within a wide m/z window, the acquired 

nonselective and highly complex fragment ion spectra may result in poor specificity, which then 

requires efficient post-acquisition data processing software tools.5 An alternative technique to 

obtain DIA-MS/MS spectra is called SWATH-MS. Initially applied in the proteomics field, this 

method commonly uses 25 Da consecutive precursor ion isolation windows with the targeted 

extraction of precursors (25 ppm), and allows for accurate fragment-ion based targeted analysis in 

a high-throughput, unbiased manner. The associated analysis software OpenSWATH is capable of 

targeted precursor and fragment ion extraction from DIA data, and subsequent probabilistic 

scoring of the resulting peaks.12 In comparison to MSE, SWATH uses narrower MS1 mass isolation 

windows, maintaining the ability to obtain MS2 data from a wide precursor mass range. Although 
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data is still highly multiplexed, this workflow has been effectively used in metabolomics with 

increased versatility.13 In our work, our interpretation of DIA is of targeted SWATH-like methods.  

 

MS1-only, MRM/PRM and DIA methods all use a combination of evidence based on precursor 

ion signals, fragment ion signals or a combination of the two for compound detection. Here, we 

will investigate the required conditions to uniquely detect a compound among a given set of 

expected compounds in a complex sample using precursor and fragment ion signals. While relying 

on multiple characteristic fragment ions is a generally accepted technique to increase certainty in 

targeted metabolomics assay generation, it is unclear how many transitions are “enough” and few 

studies have tried to quantify the effect of the acquisition method on compound detection on a 

large scale.14-16  

 

Sherman et al. first introduced the concept of using information content as criterion to select 

suitable transitions (the combined representation of a compound with both MS1 and MS2 data) for 

targeted methods in proteomics.14-16 This work is based on the concept of unique ion signatures 

(UIS), referring to the combinations of ions that map uniquely to one analyte (a peptide in their 

work), for a given analyte background. In both cases, the selection of assays with minimal 

interference with other analytes averted the high likelihood of ambiguous detection due to multiple 

analytes sharing a particular combination of transitions. Here, we introduce the UIS concept for 

metabolomics, and use it to calculate non-redundant theoretical assays for thousands of compounds 

in a given metabolomic background. Specifically, we quantify the capabilities of metabolite 

detection using mass accuracy to compare current methods in metabolomics. The exclusion of 

interfering candidates during identification facilitates increased confidence, towards Level 1 or 

Level 0 identifications with the use of internal standards or pure isolation respectively.3 These 

analyses assess the specificity and the power to detect analytes with MS1-only, or with MS2, in 

addition to assessing the potential of novel combinatorial approaches (DIA) in the field of 

metabolomics. Methods, such as DDA, where data acquisition is dependent on precursor 

abundance and sampling biases, are not included in our analyses.  

 

Experimental Section 

UISn  

Using the NIST 17 LC/MS library (~14,000 compounds, 600,000 spectra), compounds and spectra 

were filtered to retain only structurally different compounds measured in positive-ion mode on a 

high resolution instrument type (higher energy dissociation - HCD and Q-TOF) and a collision 

energy of 35eV+/-5eV to obtain a “background metabolome” of 10186 compounds (21334 unique 

precursors, including in-source fragments).17 After filtering for common adduct types (H+, Na+), 

9156 queries (individual metabolites in the given metabolome) were used for simulations by 

setting realistic mass tolerances associated with different MS methods (Fig. 1A-B). Fragment ion 

spectra were additionally filtered to only include valid transitions greater than 10% of the 

maximum relative intensity in the fragment spectrum, and the unfragmented precursor ion signal 

was removed. Precursor ions derived from in-source fragments were included in the background 

metabolome to assess the effect of in-source fragmentation on unique detection (as defined by 

NIST 17).17 

Each query was independently compared against the full 10186 compounds in the background 

metabolome using the UIS concept for the tested MS methods (MS1-only, MRM, DIA). UISn is 

defined as a set of top n analyte transitions (precursor and fragment m/z) that map exclusively to 
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one metabolite in the metabolome to be analyzed within the constraints of a given mass 

resolution.14-15 Appropriate values for mass accuracy were used for both the precursor m/z window 

(MS1) and the fragment m/z window (MS2) based on the resolution of commercially available 

instrumentation (triple quadrupole - QQQ or Orbitrap/QTOF). For QQQ instruments we chose an 

isolation width of 0.7 Da and for high resolution instruments we conservatively assumed a 

resolution achievable by all high resolution instruments of 40 000 and a corresponding extracted 

ion chromatogram width of 25 ppm. To simulate instruments with higher resolution, we also 

explored extraction windows up to 1 ppm (Fig. S-4, Table S-3). However, while mass accuracy is 

higher than 25 ppm, for targeted extraction the full peak is required for an extracted ion 

chromatogram (XIC), which is why an extraction window based on resolution and not mass 

accuracy was used. Additionally, when using a high resolution MS2 (1 ppm), we show that the 

difference between using an MS1 signal of 25 ppm and 1 ppm is less than 1% (Fig. S-4, Table S-

3). Isolation window sizes were set accordingly, centered at the corresponding precursor and 

fragment m/z values of the query, with the number of transitions defined by a value of n (UISn). 

The following MS1/MS2 mass isolation windows were set (in daltons - Da, or parts per million of 

1 Da - ppm): MS1-only: 25 ppm/-; Multiple Reaction Monitoring (MRM): 0.7 Da/0.7 Da; and 

Data-Independent Acquisition (DIA): 25 Da/25 ppm, 25 ppm/25 ppm (Table S-1).  

Figure 1. Unique Ion Signature 

Analysis Pipeline. (A) Using the 

NIST 17 LC/MS library (~14,000 

compounds, 600,000 spectra), 

compounds and spectra were filtered 

for the removal of stereoisomers, and 

experimental settings of positive-ion 

mode, high resolution instrument 

type (HCD and Q-TOF) and collision 

energy of 35eV+/-5eV for a 

background of 10186 compounds. 

(B) After isolating for common 

adduct types (H+, Na+), 9156 

queries, individual metabolites in the 

given metabolome, were used for 

simulations by setting realistic mass 

tolerances associated with different 

MS methods (Table S-1, MRM – 

Multiple Reaction Monitoring, DIA – 

Data Independent Acquisition). (C) 

The UIS concept was used, here 

exemplified using three analytes that 

have some transitions in common. 

UISn is defined as a set of top n 

transitions that map exclusively to 

one analyte in the metabolome to be 

analyzed. Assuming a metabolome 

consisting of three analytes that 

resolve on the chromatography, using 

the top n transitions - Analyte 1 has 

no UIS1, a UIS2 of A and B, and a 

UIS3 of A-C. Note that transition A is 

not a unique ion signature because 

this signal can be explained by either 

Analyte 1, Analyte 2 or Analyte 3. 

Figure adapted from: Röst, H.; 

Malmström, L.; Aerbersold, R. Mol. 

Cell. Proteom. 2012.  
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Simulations provided a measure of uniqueness for each metabolite based on the number of 

compounds found in the background that were not differentiable from the query at the given 

parameters. For example, in Fig. 1C, assuming a metabolome consists of three analytes, our 

simulation would determine that for analyte 1, the transition pair A and B (using the two most 

abundant transitions) produces a UIS2, as no other compound contains the combination of these 

two transitions. With no interfering compounds, the UIS2 A-B allows for the unique detection of 

analyte 1 (Fig. S-12). With this method, the number of hits in the background and the percentage 

of compounds in the NIST library (queries) with no interference (the background for each query 

based on the given parameters), was determined for each method. Analyses and visualization 

discussed herein were performed using Python 3.6. All scripts are available through Github [BSD 

License 3.0] at: https://github.com/premyshan/DIAColliderMetabo.  

 

Theoretical Saturation  

Number of Transitions. Simulations were performed with respect to the number of transitions 

defined for UISn using different acquisition methods that use MS2 information (MRM, DIA). 

Fragment spectra for each query were filtered to include the top n transitions greater than 10% of 

the maximum relative intensity, ranging from n=1-8 for UISn. Simulations were then conducted 

using these individual queries to determine corresponding background metabolites that interfere 

within the set MS1/MS2 isolation windows for MRM (0.7 Da/0.7 Da) or DIA (25 Da/25 ppm, 25 

ppm/25 ppm). The percentage of unique compounds was then calculated (100% = 9156 queries). 

Matrix Complexity. UIS simulations were conducted to determine the performance of different 

MS methods (measured by the percentage of unique compounds) in relation to matrix complexity, 

as indicated by the number of compounds included in the background. The following methods 

were used to perform 100 simulations for each subset of the NIST 17 LC/MS library as background 

(ranging from 1000-9000 compounds) - MS1-only: 25 ppm/-; MRM: 0.7 Da/0.7 Da; and DIA: 25 

Da/25 ppm, 25 ppm/25 ppm. For methods using MS2, three transitions were used (UIS3). The 

median percentage of unique compounds was calculated for each method (for all subsets), and 

saturation effects were then modelled using statsmodels (Python module) with a logarithmic 

transformation (with extrapolation to 15,000 compounds).  

Collision Energy. Compounds from the NIST 17 LC/MS library were filtered by experimental 

conditions (positive ion mode and removal of stereoisomers), mass isolation window size (MS1 = 

25 Da), adduct (H+) and acquisition instrument (Q-TOF) to calculate optimal collision energies 

(CE) for each compound (Fig. 5A, Fig. S-8). Individual compounds were compared against each 

of their interfering compounds using two values to create a similarity matrix - (i) the negative 

absolute difference in CE and (ii) their cosine similarity score based on their spectra. First, 

comparisons with a minimum absolute difference in CE were chosen for each row and column 

(below a maximum CE difference threshold, Fig. S-8). From these comparisons, pairwise-optimal 

CE (POCE) were determined based on the overall minimum similarity score.  

 

Results and Discussion. To investigate the problems of assay redundancy and specificity in 

metabolomics, we used computational models to calculate nonredundant theoretical assays using 

the UIS concept for a given metabolomic background. For this analysis, we simulated different 

MS methods (MS1-only, MRM, DIA) using the NIST 17 LC-MS library as a background (10186 

compounds at collision energy = 35eV+/-5eV), using realistic values for both the precursor m/z 

window (MS1) and the fragment m/z window (MS2), measured in daltons (Da), or parts per million 
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of a dalton (ppm) (Fig. 1). In our simulations, we selected single query molecules to be tested 

against a complex background (e.g. the full NIST 17 library). 

 We compared the selected precursor and fragment ion coordinates of the query compound against 

each compound in the background set (excluding stereoisomers which would not be 

distinguishable by MS). We report any overlap in precursor and fragment ion coordinates at a 

given m/z threshold, which can occur at a level of MS2 only, with separability by high resolution 

MS1 data (Fig. 2A), or at both levels of MS1 and MS2 (Fig. 2B). 

Figure 2. MS1 and MS2 contribute orthogonally to unambiguous compound detection. Pairs of queries and their interfering 

analytes are displayed with corresponding MS2 maps, with relative intensity (as a percentage of the most abundant ion) on the y-

axis and fragment m/z on the x-axis. The number of interfering compounds from UIS simulations are represented by the gradient 

from orange to purple signifying low to high interference for varying MS methods using MS1 and/or MS2 information (MS1-only, 

MRM, DIA). (A) 3-Hydroxydodecanoic acid requires high resolution MS1 for its unique detection with respect to 3-Oxo-1,8-

octanedicarboxylic acid, demonstrated by no interference at an MS1 mass isolation window set at 25 ppm and their similar 

fragmentation patterns. (B) L-Threonine produces distinct MS2 spectra for its unique detection with regards to L-β-Homoserine, 

demonstrated by no interference with the use of an MS2 window at UIS2/UIS3, which cannot be accomplished solely using MS1 

information. (C) Using the NIST 17 LC/MS library (10186 compounds) as background, UIS simulations were conducted for each 

analyte (9156 queries) to investigate the quantitative comparison of common acquisition methods in metabolomics (Table S-1). 
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The following MS1/MS2 mass isolation windows were set (in daltons – Da or parts per million of 1 Da - ppm): MS1-only: 25 

ppm/-; Multiple Reaction Monitoring (MRM): 0.7 Da/0.7 Da; and Data-Independent Acquisition (DIA): 25 Da/ 25 ppm, 25 ppm/25 

ppm. The percentage of compounds in the NIST 17 library with no interference (the background for each query based on the given 

parameters), known as the percentage of unique compounds (y-axis), was calculated for each method (x-axis). *For UIS analyses, 

MS1-only methods used only a single precursor XIC (XIC – extracted ion chromatogram). 

 

MS1 and MS2 Contribute Orthogonally to Unambiguous Detection of Complex Metabolites. 

We simulated four different acquisition modes: MS1, MRM, and DIA with/without a high 

resolution MS1 scan. For our MS1 analysis, we assumed that high resolution MS1 scans (at least 

40 000 resolution or 25 ppm) would be acquired followed by extracted ion chromatogram (XIC) 

analyses. For our targeted metabolomics analysis, we assumed a standard QQQ instrument to be 

used with a 0.7 quadrupole isolation window. For DIA data we first simulated a method using a 

high resolution MS1 scan, followed by several high resolution fragment ion scans (at least 25 ppm) 

with a large (25 Da) quadrupole isolation window analyzed by both MS1 and MS2 XIC analysis. 

A second method was also simulated for DIA, only reliant on the high resolution MS2 scans (no 

MS1). Our simulations demonstrate that both accurate precursor and fragment ion information 

contribute orthogonally to unambiguous compound detection in complex samples (Fig. 2). By 

using high resolution precursor and fragment ion information, we observe improvements in the 

unique detection of these metabolites, maximizing the overall percentage of unique compounds 

detected.  

 

First, we investigated the effects of mass accuracy on the unique detection of compounds using 

two representative examples: 3-Hydroxydodecanoic acid and L-Threonine. For the compound 3-

Hydroxydodecanoic acid (associated with fatty acid metabolic disorders), accuracy at the MS1 

level allows unique detection with respect to 3-Oxo-1,8-octanedicarboxylic acid, which has a 

similar fragmentation pattern but differs in precursor m/z by over 300 ppm (217.1798 and 217.1071 

respectively). These compounds are thus resolvable with a high resolution MS1 scan (within 25 

ppm) but not separable using a standard quadrupole mass filter (MS1-only), with masses of 

216.1725 Da and 216.0998 Da respectively. The similarity between their MS2 spectra highlights 

the importance of acquiring high resolution MS spectra, as only a high resolution MS1 precursor 

scan can distinguish the two analytes, while even utilizing three high resolution MS2 fragments 

will not uniquely map to a single analyte in the background library (Fig. 2A). In our second 

example, L-Threonine and L-β-Homoserine produce distinct MS2 spectra that are easily 

distinguishable using the second most abundant fragment ion filtering even with a low resolution 

QQQ instrument (comparing high-quality transitions greater than 10% of the maximum relative 

intensity in the fragment spectrum), but cannot be distinguished using only MS1 information, as 

these amino acids have the same precursor m/z (mass of 119.0582 Da, precursor m/z of 120.0655) 

but differ in their fragmentation patterns. For this pair of metabolites, their unique fragment ion 

spectra specifically provides optimal discriminating power, as methods using MS2 data show no 

interference (Fig. 2B). These examples highlight the combined importance of both high resolution 

precursor and high resolution fragment ion m/z to provide high selectivity for analyte detection. 

 

DIA Outperforms MRM and MS1-only Metabolomics Methods with respect to 

Unambiguous Detection. Next, we compared our four simulated analytical methods on the full 

NIST 17 library by using each of the 9156 compounds (filtered for common adducts) as a query 

against the full set of 10186 compounds (21334 unique precursors) in the library. When 

quantitatively comparing different metabolomics methods, our simulations show that DIA data 
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acquisition followed by the extraction of ion chromatograms with narrow mass tolerances (25 ppm 

MS1 XIC / 25 ppm MS2 XIC) outperformed both MS1-only and MRM-based methods with 

respect to unambiguous detection, reducing the number of ambiguous compounds by ~2.8-fold 

and ~1.8-fold respectively (76.4% ambiguous compounds for MS1-only, 49.2% for MRM UIS3, 

and 27.4% for DIA with MS1 UIS3, Fig. 2C). Our analysis demonstrates that neither MS1-based 

extraction at 25 ppm accuracy nor a single transition in MRM (0.7 Da MS1/0.7 Da MS2) is 

sufficient to uniquely detect most of the compounds in the NIST 17 library. This demonstrates that 

neither reliance on few transitions (as in MRM) nor reliance on MS1 signal alone is sufficient for 

unambiguous compound detection using mass alone. Interestingly, MRM assays performed 

comparably to DIA when using fragment ion information only. While extracting a single fragment 

ion only performed worse than using accurate precursor information both in MRM and DIA, the 

selectivity of fragment-ion based analysis can be boosted substantially by simply adding additional 

qualifier ions (e.g. selecting multiple fragment ions) for analysis (see difference between UIS1 and 

UIS3 in Fig. 2). Interestingly, we find that MS2-based DIA analysis performs highly similar to 

MRM both measured when using a single transition (83.6% vs. 82.5% non-unique compounds) or 

using three transitions (50.9% vs. 49.2%). However, in DIA analysis (but not MRM), specificity 

can be further enhanced using accurate precursor information, which then outperforms both MRM 

and MS1 (rightmost bars in Fig. 2C). Overall, we show that both MRM and DIA outperform MS1-

only analysis in terms of specificity, while DIA enhanced with high-resolution MS1 data 

outperforms both MS1-only and MRM-based analyses, due to its capability of extracting both high 

resolution precursor and fragment ion traces for any analyte of interest.  

   
      

   
         

   
         

                     

 
 
  
 
 
  
 
 
  
  
 
 
  
 
 
  
 
 
 
 
 
 
 
 

 

  

  

  

  

     

  

        

                

               

              

               

                         

Figure 3. Theoretical Saturation of Unique Compounds based on the 

Number of Transitions. UIS simulations were performed for different 

acquisition methods using MS2 information (MRM, DIA), in relation to the 

number of transitions (n) defined for UISn ranging from n=1-8 (x-axis). 

Mass isolation windows were set (MS1/MS2) in daltons (Da) or parts per 

million (ppm) of 1 Da (Table S-1). (A) A saturation effect is observed at 

36.0% non-uniquely detected analytes for MRM (0.7 Da/0.7 Da), 36.3% for 

DIA without MS1 (25 Da/25 ppm), and 19.8% for DIA with MS1 (25 

ppm/25 ppm). Using more than three transitions maximizes the percentage 

of unique compounds for DIA with MS1, while saturation starts at more 

than five transitions for MRM and DIA without MS1 (<3% difference in 

ambiguous detection). (B) The total number of transitions for each spectrum 

in the NIST 17 LC/MS library is displayed (post-filtering of the background 

metabolome with transitions greater than 10% of the maximum relative 

intensity in fragment spectra). About 50% of the background library 

contains ≤ 5 transitions, in which D   has reduced assay redundancy in 

comparison to MRM with minimal transitions available. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.03.19.434579doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.19.434579
http://creativecommons.org/licenses/by/4.0/


 

9 
 

Theoretical Saturation of Compound Uniqueness based on Number of Transitions, Matrix 

Complexity and Collision Energy. In order to estimate the relative contribution of individual 

factors to ambiguous detection in metabolomics, we performed simulations where we varied the 

transition number, background complexity and collision energy. Using our UIS framework, we 

were able to quantify the effects of the number of transitions, matrix complexity, and collision 

energy on unambiguous detection.  

 

Experimentally, additional selectivity can often be achieved by increasing the number of 

monitored transitions (qualifier ions). However, this may result in a higher limit of detection and 

lower throughput (for MRM), thus increasing cost. To evaluate this tradeoff quantitatively, we 

assessed the theoretical saturation of unique compounds based on the number of transitions utilized 

for UIS measures (Fig. 3A). While DIA methods (with accurate MS1 information) are close to 

saturation already when using the 3 most abundant transitions and only small gains can be achieved 

by using more than 3 fragment ion transitions, this was not the case for methods without a high 

resolution MS1 scan (traditional targeted metabolomics approaches on a QQQ instrument and DIA 

without accurate MS1 information). The relative difference between MRM and DIA (with MS1) 

was 42.0% when using 1 transition and 16.2% when using up to 8 transitions, indicating that using 

more transitions in MRM closes the gap between MRM and DIA. However even when using 8 

transitions, MRM failed to uniquely detect 36.0% of analytes (compared to the 19.8% of 

ambiguous analytes when using DIA with the precursor ion trace). Since about half of the NIST 

library compounds have less than 5 high quality transitions (Fig. 3B), the use of minimal transitions 

available is important to determine methods that perform best with limited data, a common 

occurrence in clinical literature. Our findings indicate that specifically for compounds with 

relatively few fragment ions, DIA strongly outperforms traditional QQQ platforms in terms of 

assay selectivity, highlighting the potential of this method in untargeted clinical studies (Fig. 3B). 
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Figure 4. Theoretical Saturation of 

Unique Compounds based on 

Sample Matrix Complexity. 

Simulations were conducted to 

determine the performance of 

different MS methods (measured by 

the percentage of unique compounds, 

y-axis), in relation to different matrix 

complexities (x-axis). Mass isolation 

windows were set (MS1/MS2) in 

daltons (Da) or parts per million 

(ppm) of 1 Da (Table S-1). For 

methods using MS2, three transitions 

were used (UIS3). Simulations were 

performed for 100 samples of each 

subset from the NIST 17 LC/MS 

library as background (varying from 

1000-9000 compounds), with 

extrapolation to 15,000 compounds. A 

saturation effect is observed at 87.0% 

non-uniquely detected analytes for 

MS1-only (25 ppm/-), 54.8% for 

MRM (0.7 Da/0.7 Da), 55.9% for DIA 

without MS1 (25 Da/25 ppm), and 

30.3% for DIA with MS1 (25 ppm/25 

ppm). 
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Next, we investigated whether our findings were dependent on the specific sample matrix (~9000 

compounds) chosen and whether our results would change in samples of different background 

complexity or by restricting the number of considered compounds. Restricting analysis to a 

particular subset of compounds is equivalent to the practically employed approach of restricting 

compound detection to a narrow window of chromatographic retention time, thus effectively 

removing a large amount of potentially interfering background analytes. We simulated this by 

randomly choosing subsets of the NIST 17 library to produce background sample matrices of lower 

complexity (ranging from 1000-9000 compounds) and used extrapolation to estimate how a more 

complex sample matrix would behave (Fig. 4). We found that the relative performance of the 

individual methods using MS2 (MRM using a QQQ and DIA) is independent of the sample 

complexity, demonstrated by the level of saturation of each method in regards to the percentage of 

uniquely detected compounds. This demonstrates that our findings are not dependent on the 

compound library size, but are likely to be generalizable for a wide range of analytical and sample 

conditions (with corresponding increased sample complexity), and would likely also hold when 

analysis is restricted to a small region of the chromatography. Comparably, MS1-profiling 

methods demonstrate a higher dependence on the background composition, with saturation at 

larger sample complexities. This demonstrates the importance of additional separation methods 

(like RT) for MS1-only approaches. Analyzing increasing sample complexity, we found saturation 

beginning at around ~8,000 compounds in the background for MS1-profiling methods and around 

~3,000-5,000 compounds for MS2-based methods (defined by <3% difference), resulting in 87.0% 

non-uniquely detected analytes for MS1-only, 54.8% for MRM, and 30.3% for DIA when 

including the precursor ion trace at UIS3. These observed saturation behaviors may indicate that 

our results would not change even for more complex backgrounds, assuming that the structural 

composition of more complex samples are comparable to the one studied here. 
 

Figure 5. Identifying Pairwise-Optimal Collision Energies using Cosine Similarity. Collision energies (CE) were studied 

through pairwise evaluation of spectral similarity to determine if different CE facilitate the differentiation of interfering compounds. 

Compounds from the NIST 17 library measured using a Q-TOF instrument were filtered (by experimental conditions, H+ adduct, 

and an MS1-only mass isolation window set at 25 Da) to calculate pairwise-optimal CE for each compound. Spectra of the 

remaining 2234 compounds (2234/2240 had interference) and their interfering compounds acquired at varying collision energies 

(up to 29 different CE settings) were compared by their negative absolute difference in CE and their cosine similarity score. A) For 

example, a query compound and its interfering compound were compared and their similarity matrix is shown. Comparisons with 

a minimum absolute difference in CE were first chosen for each row and column (below a maximum CE difference threshold, Fig. 

S-8, highlighted in purple), from which a pairwise optimal CE (POCE) was selected based on the overall minimum similarity score 

(highlighted in yellow). B) The distribution of the number of POCE groups required for optimal differentiation per compound 

(2234 compounds) is demonstrated.  

 

Finally, we studied the effect of collision energy (CE) for the optimal differentiation of interfering 

compounds based on their fragment spectra. While our previous analyses were restricted to spectra 
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with CE 35eV+/-5eV only, we now performed a pairwise evaluation of spectral similarity across 

all available collision energies in the analyte library (for Q-TOF instruments), to answer the 

question whether specific collision energies are particularly efficient at producing pairwise 

dissimilar spectra and thus allowing compound differentiation. The use of different collision 

energies has been previously shown to facilitate structural elucidation, findings suggesting the 

exploration of different collision energy settings for broader coverage of the metabolome.18-20 For 

this analysis we used a total set of 2240 compounds which had fragment ion spectra acquired with 

up to 29 different collision energy settings, resulting in ~3,000,000 spectral pairs for analysis when 

using an MS1-only acquisition at 25 Da (Fig. 5). For each pair of interfering compounds, we 

computed the collision energies at which we achieved maximally different spectra. From the 

compounds with interference (2234/2240 compounds), we observed that metabolites varied in the 

number of unique pairwise-optimal collision energies (POCE) from 1-26, and in the number of 

required POCE to differentiate between its interfering compounds from 1-16, highlighting the 

diversity of analyte pairs being compared (Fig. 5B). POCE varies substantially between analyte 

pairs, indicating that different collision energies provide unique information, and while one 

collision energy may be optimal to differentiate a target compound from another compound A, a 

different collision energy may be needed to differentiate it from a second compound B. Thus, our 

analysis suggests that choosing a single CE value for each compound would not be optimal for the 

analysis of diverse metabolites which differ in bond strength and have wide mass dependencies 

(and where normalized collision energies are commonly used to compensate for this aspect). The 

observed spread of required POCE per compound demonstrates the importance of measuring 

compounds at multiple collision energies due to the distinctive information present at different CE 

that aids in a compound’s unique detection   hus, the observed optimal discriminating power of 

collision energy between interfering compounds from our analysis indicates the importance of 

prior CE optimization in assay design, specific to instrument type and background sample matrix.    

 

When accounting for factors of transition number and background complexity in regards to 

unambiguous detection, the overall theoretical saturation of a compound’s uniqueness was 

observed at 87.0% non-uniquely detected analytes for MS1-only, 40.0% for MRM, and 21.9% for 

DIA. From the analyzed methods, we include MS1-only analysis as a baseline comparison, and 

focus on highlighting the need for MS2 information in metabolomics analyses. One important 

limitation of our study is that we assume that all analytes are separable by retention time (RT) and 

we do not simulate patterns of exactly co-eluting fragment ions created by more than one analyte. 

Secondly, additional information is often used for confirmation of compound detection such as 

accurate retention times (derived from internal or external standards), isotopic intensity patterns 

or relative fragment ion intensity. This means that our values for selectivity are lower bounds and 

this extra information will improve selectivity across all studied acquisition methods equally, and 

thus not impact our overall conclusions in regards to the relative performance of the individual 

methods; in fact, our subsampled simulations (Fig. 4) clearly indicate that if the number of eligible 

interfering analytes are restricted (for example by restricting the analysis to a narrow RT window), 

our conclusions still hold. Similarly, in practical applications sample matrices will vary and 

assuming a sample matrix composed of all NIST 17 library compounds may either be too 

optimistic or too pessimistic for a particular application. This includes the poor coverage of lipids 

in the NIST 17 dataset that may lack representation of common lipid fragmentation patterns 

amongst isomers (i.e. double bonds, modifications and total carbon number), as well as the 

presence of bioactive peptides; these compounds should ideally be treated separately from other 
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metabolites. However, while the sample matrix will influence the absolute number of 

unambiguously detectable analytes, it will not impact the relative performance profile of the 

individual methods, which we have also shown (Fig. 4). Finally, we have not analyzed sensitivity 

in our analysis, where a clear tradeoff is present between sensitivity and selectivity. Although 

opting for wider peak isolation windows increases sensitivity in traditional data-dependent 

methods, here we focus on the study of targeted methods where small isolation window sizes are 

more common. Specifically in this study, high resolution precursor isolation windows (25 ppm) 

have been studied in addition to 0.7 Da windows, representative of traditional isolation behaviour 

in triple quadrupole instruments.21  

 

We demonstrate that an acquisition method using both precursor and fragment ion XIC at 25 ppm 

accuracy (DIA) is sufficient to unambiguously detect a large number of structurally heterogeneous 

analytes in a complex sample matrix of over 10,000 compounds. This work uses simulations to 

showcase DIA as an emerging MS acquisition method with high selectivity for metabolomics, 

consistent with previous experimental work in the field.5,8,20,25-26 Here we quantitatively show the 

impact that orthogonal information contributed from both MS1 and MS2 levels have on compound 

detection and differentiation from background compounds using m/z separation. Additionally, 

these findings support the need for an efficient pipeline for DIA analysis, building upon current 

tools in the field (i.e. MetaboDIA, MetDIA, MS-DIAL).22-24 Since our method only requires m/z 

coordinates as input, our conclusions are independent of lab-specific factors and chromatographic 

setup. We further demonstrate that the relative performance of the studied acquisition methods is 

consistent over a wide number of parameters, such as sample complexity and chromatographic 

constriction of the search space. In addition to the criterion of m/z, we expect additional orthogonal 

sources of information to maximize unique detection in the metabolome. This is supported by 

previous studies demonstrating the benefits of utilizing additional information for detection, such 

as retention time, collision cross-section and isotopic abundance patterns (Fig. S-4).27  

 

Conclusions. We use unique ion signature analyses to study the performance characteristics of 

several widely used acquisition methods in metabolomics, and demonstrate the benefit of using 

both high resolution precursor and high resolution fragment ion m/z for unambiguous compound 

detection on a set of over 10,000 compounds. Our study highlights the potential of DIA for 

unambiguous compound detection (and quantification) in complex samples. Overall, we provide 

a global perspective on unambiguous compound detection and present a robust framework to study 

this phenomenon quantitatively.  
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