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The Drosophila larva is extensively used as model species in exper-
iments where behavior is recorded via tracking equipment and eval-
uated via population-level metrics. Although larva locomotion neu-
romechanics have been studied in detail, no comprehensive model
has been proposed for realistic simulations of foraging experiments
directly comparable to tracked recordings. Here we present a vir-
tual larva for simulating autonomous behavior, fitting empirical ob-
servations of spatial and temporal kinematics. We propose a trilayer
behavior-based control architecture for larva foraging, allowing to ac-
commodate increasingly complex behaviors. At the basic level, for-
ward crawling and lateral bending are generated via coupled, interfer-
ing oscillatory processes under the control of an intermittency mod-
ule, alternating between crawling bouts and pauses. Next, naviga-
tion in olfactory environments is achieved via active sensing and top-
down modulation of bending dynamics by concentration changes. Fi-
nally, adaptation at the highest level entails associative learning. We
could accurately reproduce behavioral experiments on autonomous
free exploration, chemotaxis, and odor preference testing. Inter-
individual variability is preserved across virtual larva populations al-
lowing for single animal and population studies. Our model is ideally
suited to interface with neural circuit models of sensation, memory
formation and retrieval, and spatial navigation.

larva foraging | control architecture | exploratory behavior | chemotaxis
| olfactory preference | autonomous agent

Introduction

Building virtual agents that behave indistinguishably from
living organisms is an endeavour at the interface of behav-
ioral and cognitive neuroscience, artificial intelligence and
behavior-based robotics. The pursued level of similarity to
real animal behavior defines the target level of model abstrac-
tion, which can vary from low-level detailed neuroscientific
models to high-level abstract cognitive architectures. Recent
advances in tracking equipment have allowed highly resolved
recordings of larva populations under diverse foraging condi-
tions (1–4). Here, we ask how to build virtual larvae behaving
indistinguishably from the real ones as captured by established
larva tracking protocols. To this end we suggest a layered
behavioral control architecture (Fig. 1). At the basic layer,
we propose a locomotory model that features a bisegmental
virtual larva body, coupled crawling and bending oscillators,
and crawling intermittency. Integrating previously suggested
features and novel data-driven hypothesis we compare diverse
configurations against empirical data in order to choose the
optimal locomotory model. Expanding our model to the upper
layers of the control architecture enables increasingly more
complex foraging-related behaviors (Fig. 1). In virtual larva
populations with realistic inter-individual variability we evalu-
ate model performance in simulations of several established
behavioral paradigms.

Drosophila larvae possess a fairly tractable behavioral reper-

toire that is consistent across the 4-5 days of the larval life
stages (5) and controlled by a conserved neural circuit structure
throughout development (6), making it a formidable system
for studying behavioral control and decisions (7). Most of
the larval time is dedicated to foraging the environment for
suitable nutrients while avoiding danger. Foraging consists
of a combination of more basic behaviors: crawling, turning,
digging into the substrate (8), and feeding, the latter even
including cannibalizing conspecifics in extreme cases (9). In
the absence of available food resources, larvae have to engage
in free exploration to locate food patches (10). This behav-
ior is intermittent, meaning it consists of bouts of activity
interspersed by brief pauses generated via cessation and re-
initiation of crawling (11), a property also reported for adult
fly behavior (12, 13). Salient olfactory cues can trigger chemo-
taxis during which larvae employ active sensing to navigate
along chemical gradients (14). Finally, novel odorants coupled
to food reward induce olfactory learning enabling long-term
behavioral adaptations (15–19). After reaching critical mass
for pupation, homeostatic signals switch behavior towards
food aversion, hypermobility and collaborative burrowing (20),
terminating the feeding state and leading to pupation and
metamorphosis.

Statistical regularities that govern foraging behavior have
been unveiled by analysis both at the microscale of body
kinematics and at the macroscale of larva trajectories (2, 21,
22). Crawling and turning have been in the main focus of
recent studies (10, 23, 24) whereas tracking studies of feeding
behavior remain scarce (25). Both, crawling and feeding
behavior are indisputably of oscillatory nature (23, 26, 27)
controlled by central pattern generating circuits. With respect
to turning, it is still debated whether individual turns should be
considered as discrete reorientation events that are temporally
non-overlapping with crawling bouts (10), or whether turning
occurs in an oscillatory fashion generating turns both during
crawling and during pauses (24, 28). The latter is supported by
detailed eigenshape analysis confirming that larvae rarely crawl
straight, rather forward locomotion is always accompanied by
continuous small amplitude lateral bending (29). It follows
that crawling does not exclude bending rather the two strictly
co-occur. In contrast, both feeding and crawling movements
require mouth-hook motion recruiting the same effector system,
thus they can be considered competing, mutually exclusive
behaviors (7, 30). Finally, it is unclear whether bending and
feeding can overlap.

Modulation of exploratory behavior under salient olfactory

Simulations were run via the Larvaworld behavioral analysis and simulation platform,
available at https://github.com/nawrotlab/larvaworld

*To whom correspondence should be addressed.
e-mail : p.sakagiannis@uni-koeln.de
webpage : http://computational-systems-neuroscience.de/

July 7, 2021 | 1–15

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451470doi: bioRxiv preprint 

https://github.com/nawrotlab/larvaworld
http://computational-systems-neuroscience.de/
https://doi.org/10.1101/2021.07.07.451470
http://creativecommons.org/licenses/by-nc/4.0/


input during positive and negative chemotaxis has been ex-
tensively studied (14, 16, 31, 32). There is general consensus
that during appetitive chemotaxis increasing odor concentra-
tions suppress pauses and turns leading to longer lasting bouts
of activity, while turns are promoted during down gradient
navigation. Turning is biased by the detection of minor con-
centration changes during lateral bending, a process described
as active sensing (24, 28, 33). The opposite effect has been
reported during aversive chemotactic behavior whether due
to punishment or reward omission (34). Larva behavioral
preference under conflicting olfactory stimuli has been estab-
lished as a population-level metric in multiple settings from
quantifying the formation of memory after associative learning
(15–17, 35, 36) to detecting individual differences in genetically
identical larva strains (37). This sensory-driven behavioral
modulation does not seem to be affected by social cues, jus-
tifying the study of individual larva kinematics even during
population-level experiments (38).

Results

Kinematic analysis of larva locomotion. We start out with the
kinematic analysis of experimental larva trajectories and body
postures in order to infer and parametrize several aspects of
larva locomotion that will inform our modeling approach. Us-
ing diverse metrics that capture spatial and temporal dynamics
we specifically assess the oscillation of forward velocity during
individual peristaltic strides, the influence of this oscillation on
lateral bending, the intermittent nature of crawling, and the
inter-individual variability of a number of locomotion-related
parameters across different larvae.

Color annotation of larva trajectories in Fig. 2A illus-
trates nicely that forward locomotion consists of consecutive
steps (strides) that are characterized by an alternating in-
crease/decrease of the locomotion velocity v̂ . To characterize
this oscillation we detected all strides performed by an in-
dividual animal and verified their stereotypical structure in
terms of strude duration, resulting body displacement, and the
phase-dependence of v̂ (Fig. 2D). Scaling both, displacement
dstr and velocity to the individual larval body-length increases
stride stereotypicality independent of larva size. This analysis
justifies an oscillatory model process (crawler, ) that generates
forward-velocity in subsequent stride cycles (crawler, Fig. 1B)
is introduced for model comparison.

Our analysis of orientation velocity ˙̂
θor during crawling

strides reveals that it is phasically coupled to the stride
phase exhibiting an increase around 3π

2 of the oscillatory cycle
(Fig. 2H). This implies phasic interference of the crawling and
the lateral bending mechanism (Fig. 1B), which is incorpo-
rated in our model (see Material and Methods). A plausible
mechanistic explanation featuring bodily interference of crawl-
ing and bending is suggested in the discussion.

Larvae transiently pause crawling before re-assuming it
resulting in sequences of concatenated strides (stridechains)
intermitted by brief crawl-pauses (Fig.2C). We analyzed the
distributions of stridechain length and pause duration in the
experimental dataset. The limited duration of the recordings
(3’) does not allow assessment of individual differences there-
fore the stride chain and pause bouts over a population of 200
larvae have been pooled together. Testing power-law, exponen-
tial and log-normal distributions revealed the highest quality
of fit for the log-normal distribution for both parameters (see

A

B

Fig. 1. Behavioral control architecture for larva foraging. A: In the trilayer control
architecture the bottom layer consists of three basic sensorimotor effectors that
constitute the locomotory model. The intermediate layer features innate reactive
behavior in response to unexpected environmental stimuli. The top layer allows
for behavioral adaptation through experience. Framed areas denote more complex
behavioral modes that require subsumption of subordinate modes. Light-colored
modules are plausible extensions described in Discussion. B: The locomotory model
at the bottom layer of the architecture. Oscillatory behaviors are either phasically
coupled or mutually exclusive. Initiation/cessation of oscillation is controlled by an
intermittency module. Light-colored modules are plausible extensions described in
Discussion.

Material and Methods). In our model we propose a behav-
ioral intermittency module (Fig.1B) that samples from the
empirically fitted model distributions and controls cessation
and re-initiation of crawling (see Material and Methods).

Behavioral architecture. Larval behavior is hierarchically
structured in the sense that simple behavioral motifs such
as crawling, bending and feeding motions can be integrated
into more complex behavioral modes such as exploration, taxis
and exploitation. It has been proposed that animal behavioral
hierarchy is reflected by the underlying neuroanatomy as a hier-
archy of nested sensorimotor loops (39). A functional modeling
paradigm that exploits this idea regards the neural system
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Fig. 2. Kinematic analysis of the Drosophila larva in locomotion. A Individual larva trajectory tracking a rear point along the midline of the animal. Trajectory color denotes
the forward velocity v̂ from 0 (red) to maximum (green). Inset focuses on the track slice analyzed in C and G. Dark green rectangle denotes a single stride described in B. B:
Sketch of a single crawling stride. The larva first stretches its head forward, anchors it to the substrate and then drags its body forward via peristaltic contraction. Scaled
stride displacement dstr is defined as the resulting displacement d scaled by the body-length l. C: Forward velocity v̂ during the 40 s track slice selected in A, inset. Green
and red markers denote the local minima and maxima used for stride annotation. Individual strides are circumscribed by vertical dashed lines. Successive strides constitute
uninterrupted stridechains (white). Epochs that do not show any strides are annotated as crawl-pauses (gray). Velocity is scaled to the larva body-length. D: Forward velocity of
head, midpoint and tail as a function of the stride cycle. All detected strides of the tracked larva have been interpolated to a stride oscillation cycle of period 2π. Solid lines
denote the median, shaded areas the lower and upper quartiles. Velocity is scaled to the larva body-length. E: Same trajectory as in (A) now tracking the head segment. Color

denotes the orientation angular velocity ˙̂
θor from 0 (red) to maximum (green). F: Definition of bending angle θb and orientation angle θor for the original 12-segment (blue)

and the simplified 2-segment (red) larvae. G: Three angular parameters during the same track slice shown in (C). Bending angle θ̂b, bend and orientation angular velocities ˙̂
θb,

˙̂
θor are shown. Background shadings denote left and right turning bouts. For illustration purposes only turns resulting in a change of orientation angle ∆θ̂or > 20◦ are shown.
H: Same as D but showing the average absolute orientation angular velocity θ̂or during the stride cycle.

as a layered control (subsumption) architecture (40) where
low-level stereotyped reflexive and repetitive behaviors are au-
tonomously generated by localized peripheral motor circuitry
while multisynaptic loops involving more centralized neural
circuits only act as top-down modulators on the local circuits
in order to coordinate global and complex behavioral control.
The central idea is that energy-efficient decentralized neural
control is the rule, while higher centers are recruited only when
more extensive integration is needed. Furthermore there are
only limited degrees of freedom by which higher layers can
influence local sensorimotor loops e.g. by starting/stopping or
accelerating/decelerating their autonomous function (see Dis-
cussion). Layered control architectures have been used mainly

in behavior-based robotics allowing sequential calibration and
modular integration of partial neuroscientific models under a
common framework (39, 40).

We here propose a trilayer behavioral control architecture
for Drosophila larva foraging as illustrated in Fig. 1A. The
bottom layer comprises three basic stereotyped behaviors:
crawling, turning and feeding. Each is realized by a low-level
local sensorimotor loop between motor effectors and sensory
feedback - mainly proprioception and mechanoreception - and
additionally gustatory input in the case of feeding. Integra-
tion of these basic behaviors gives rise to composite behaviors.
Exploration in stimulus-free conditions requires crawling and
turning while integration of all three basic elements allows
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exploitation of a nutritious substrate. The intermediate layer
introduces salient sensory stimulation of different modalities
therefore allows reactive behavior in the face of presented risks
and opportunities. Modulation of exploratory behavior under
appetitive or aversive stimulation enables coherent naviga-
tion along sensory gradients. Here, we consider odor-driven
chemotaxis as a process of active sensing in which the larva
constantly samples the odor concentration during lateral bend-
ing motions enabling odorscape navigation and odor source
discovery. At the top layer, associative learning during prior
experience biases the evaluation of recurring sensory stimuli
resulting in modulation of innate odor valence and providing
experience-dependent adaptation of navigation.

The proposed behavioral architecture is naive to the under-
lying neural mechanisms that generate the respective behav-
iors. We hereby populate the architecture with diverse con-
figurations of candidate mechanisms and explore autonomous
and integrated control exerted by each subsequent layer in
increasingly-complex behavioral simulations from exploration
to chemotaxis to adaptive learning in odor preference experi-
ments.

Locomotory model. We simplify the larva to a two-segment
body (Fig. 2 F). This abstraction allows describing the body
state at any point in time through only three parameters.
These are (i) position of a selected midpoint (Fig. 9), (ii) ab-
solute orientation of the front segment θor, and (iii) bending
angle θb between the front and rear segments. This approach
is in line with the common practice of quantifying larva bend-
ing via a single angle between one anterior and one posterior
vector, although the chosen vectors vary between study groups
(14, 34, 41). Body dynamics as analyzed in the empirical
data depends on instantaneous linear (Fig. 2A-C) and an-
gular velocities (Fig. 2E-G) generated through crawling and
bending respectively. Kinematic analysis on the locomotion
of these simplified real larvae allows us to realistically cali-
brate bisegmental virtual larvae resembling the real ones in
multiple spatial and temporal parameters (see Materials and
Methods). For a demonstration of the larva-body bisegmental
simplification see Video 1. The individual trajectory depicted
in Fig. 2 can be seen at its full length in Video 3, while the
slice depicted in the inset is shown in Video 4.

Locomotion of the bisegmental body is achieved via dy-
namic coupling of forward crawling and lateral body bending.
Crawling moves the midpoint along the orientation vector.
Bending reorients the front segment by rotation around the
midpoint. Forward displacement restores θb back to 0 by
gradually aligning the rear segment to the orientation axis.

We adopt the hypothesis that attributes alternating left-
right bending to an underlying oscillatory neural process and
compare the lateral oscillator model described by Wystrach et
al. (24) to a simple sinusoidal oscillator. This model (turner)
applies torque oscillations on the two-segment body, which acts
as a restorative torsional spring (see Materials and Methods).
The turner can be coupled to a second oscillator producing
crawling strides (crawler) in the form of linear velocity oscil-
lations as suggested by our kinematic analysis. Under the
constraints of the subsumption architecture paradigm these
effectors can be influenced by higher-order circuits only in a
limited number of ways. Frequency modulation and stride ini-
tiation/cessation are the only possible top-down modulations
on the crawler. Likewise, the turner can receive olfactory input

affecting both the frequency and the amplitude of oscillation.
To quantify the contribution of each of the locomotory

model’s components to replicating real larva kinematics we
perform a broad model comparison study across diverse model
configurations (Fig. 3). The behavioral metrics used for eval-
uation are structured in five categories covering angular and
forward motion, reorientation, spatial dispersion and stride-
cycle structure. Overall, the bisegmental is superior to the
single-segment body in capturing angular motion metrics, pre-
dominantly due to the decoupling of the bending velocity θ̇b
from the orientation velocity θ̇or (in the single segment body
these are considered identical). A realistic crawling oscilla-
tion allows much more accurate assessment of stride-cycle
dependent metrics compared to non-oscillatory constant-speed
forward motion (despite the lack of a velocity oscillation in
the latter case, strides might still be detected due to noise).
Finally, both oscillator coupling and crawl-intermittency con-
tribute to better fitting of the empirical data. Our final model
is represented by the far bottom right column, exhibiting the
smallest error.

The detailed structure and optimal configuration for the ba-
sic layer of the behavioral architecture as suggested by model
comparison is illustrated in Fig. 1B, specifying the interplay
between the oscillators. Two additional features are imple-
mented based on our empirical analyses. First, the crawler and
turner are phasically coupled such that turning is suppressed
during a defined phase interval of the stride cycle, reflecting
our finding in Fig. 2H. Second, crawler-generated chains of
concatenated strides (stridechains) are intermitted by brief
pauses during which the crawler-induced interference is lifted,
resulting in more acute turning events. The duration distribu-
tion of stridechains and pauses are fitted to the empirical data.
The pipeline for model calibration is described in detail in
Material and Methods. For a demonstration of the locomotory
model in different configurations see Video 2. We note that in
the current implementation effectors receive no sensory input
from the environment. Sensory feedback is introduced only
at the intermediate reactive layer (Fig. 1A) via an olfactory
sensor located at the front end of the body (head). All model
parameters are shown in Table 1.

Inter-individual differences are crucial for achieving realistic
population-level behavior. To capture variability across larva
we computed three crawl-related parameters, body-length l,
crawling frequency fc, and scaled stride displacement dstr
across a population of 200 experimental larvae. The univariate
and bivariate empirical distributions are illustrated in blue
in Fig. 4. When generating virtual larva populations for the
behavioral simulations we sample all three parameters from a
multivariate Gaussian distribution fitted to the empirical data.
This preserves the linear correlation structure. A generated
set of the three parameters completely defines the crawling
oscillation of an individual virtual larva. The bivariate pro-
jections are shown in red in Fig. 4 with parameters given in
Table 1 in blue.

Simulation of behavioral experiments. The layered behavioral
architecture in Fig.1 is exploited in modeling as it justifies
sequential calibration and evaluation of subsequent behavioral
layers from the bottom to the top, as for any specific behavior
to be successfully realized, only integration up to a certain
layer is required. In this section we simulate increasingly more
complex behavioral experiments using virtual larva popula-
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Fig. 3. Model comparison. A total of 32 model configurations have been tested in 3-minute free-exploration simulations of 50 virtual larvae. The controlled body either
has a single (top) or two segments (bottom). The crawler and turner modules implemented in each model are illustrated in the bottom legend (simple sinusoidal vs neural
turner oscillator and constant-speed vs analysis-fitted crawler oscillator). The oscillator coupling and crawling-intermittency mode is illustrated in the x axis (coupled vs
uncoupled, intermittent vs uninterrupted). Noise levels are identical in all models as shown in Tab. 1. Derived metrics are compared to the experimentally measured in 3-minute
free-exploration recordings of 200 real larvae. The evaluation metrics are grouped in 5 categories as shown in the top legend. For metrics in the angular, spatial motion and
reorientation categories the KS distance between the simulated and the empirical distributions, pooled across individuals, has been computed while for metrics in the dispersion
and stride cycle categories the least-squares distance of the mean simulated and empirical curves has been used. The maximum fit-error per category has been scaled to 1
based on the worst fit. The resulting global error for each model configuration is the sum of errors across the 5 evaluation categories and is reflected by the height of the
respective column.

tions. Starting from stimulus-free exploration we advance to
chemotactic navigation and finally to adaptive odor preference
experiments. Individual virtual larvae behave independently
of each other as they move through the spatial arena and
odorscape (38).

Free exploration. Larvae explore a stimulus-free environment,
dispersing in space from their starting positions. As there is
no food nor any salient odor gradient, integration of crawl-
ing and bending behaviors is sufficient. We compared free
exploration in populations of 200 virtual and real larvae re-
spectively (Video 6). Statistical evaluation showed a good
agreement of simulated and empirical data with respect to spa-
tial dispersion of larvae from their initial position (Fig. 5A,B),
total distance traveled, time fraction allocated to crawling and
number of performed strides (Fig. 5C). For a demonstration
of virtual and real larvae exploring a dish see Video 5 while
for a comparative assessment of their dispersion dynamics see
Video 6.

Chemotaxis. Chemotaxis describes the process of exploiting
an odor gradient in space to locate an attractive or avoid a
repelling odor source. An olfactory sensor (olfactor) placed at
the front end of the virtual body enables active sensing during
body bending and allows detection of concentration changes
that modulate turning behavior accordingly (see Methods).
To assess chemotactic behavior in our model we reconstruct
the arena and odor landscape (odorscape, see Methods) of two
behavioral experiments described in (14). In the first, larvae

are placed on the left side of the arena facing to the right.
An appetitive odor source is placed on the right side. The
virtual larvae navigate up the odor gradient approaching the
source (Fig. 6A), reproducing the experimental observation in
Fig. 1C in (14). In the second, both the odor source and the
virtual larvae are placed at the center of the arena. The larvae
perform localized exploration, generating trajectories across
and around the odor source. (Fig. 6 B), again replicating the
observation in Fig.1D in (14). Fig. 6 E and F show the average
time-varying odor concentration encountered by the virtual
larvae along their trajectories, replicating the estimations from
real larval tracks in (14). Two sample simulations can be seen
in Video 7.

Odor preference test. We simulate the odor preference paradigm
as described in the Maggot Learning Manual (42). Larvae are
placed at the center of a dish containing two odor sources in
opposite sides and left to freely explore. The odor concentra-
tions are Gaussian-shaped and overlapping, resulting in an
odorscape of positive and/or negative opposing gradients. Af-
ter 3minutes the final situation is evaluated. The established
population-level metric used is the olfactory preference index
(PI), computed for the left odor as PIl = Nl−Nr

N
where Nl

and Nr is the number of larvae on the left and right side of
the dish while N is the total number of larvae.

The extend of olfactory modulation on the turning behavior
is determined by the odor-specific gain G (see Materials and
Methods). As this is measured in arbitrary units, we first
need to define a realistic value range that correlates with
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the behaviorally measured PI. We perform a parameter-space
search independently varying the gain for left and right odors
and measuring the resulting PI in simulations of 30 larvae. The
results for a total of 252 gain combinations within a suitable
range of G ∈ [−100, 100] are illustrated in Fig. 7A. Simulation
examples for one appettitive and one aversive odor are shown
in Video 8.

In order to simulate larval group behavior in response to
an associative learning paradigm we interface our behavioral
simulation with the spiking mushroom body (MB) model intro-
duced in (43) (Fig. 7C). It implements a biologically realistic
neural network model of the olfactory pathway according to
detailed anatomical data using leaky integrate-and-fire neu-
rons (44). The MB network undergoes associative plasticity
at the synapses between the Kenyon cells and two MB output
neurons as a result of concurrent stimulation with an odor and
a reward signal. Both, odor and reward is simulated as spike
train input to the receptor neurons and the reinforcement sig-
nalling dopaminergic neuron, respectively. The model employs
two output neurons (MB+, MB-), representing a larger num-
ber of MB compartments associated with approach/avoidance
learning respectively (45). The initially balanced firing rates
between MB+ and MB- are skewed after learning and encode
the acquired odor valence (46, 47) here defined as

MBout = MB+ −MB−
MB+ +MB−

∈ [−1, 1].

We first trained the MB model via a classical conditioning
experiment where, in each conditioning trial, it experiences
an odor (conditioned stimulus, CS+) in combination with a
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to originate from the center of the arena. B: Median dispersion from origin. Shaded
area denotes first and third quartiles. C: Histograms for total number of strides, time
ratio allocated to crawling and pathlength. (arena dimensions = 500x500 mm, N =
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sugar reward during 5min, following the standard training
protocol in (42). 5 groups of 30 MB models undergo between
1 and 5 sequential conditioning trials (48). The resulting
odor valence MBout from each MB model was converted to
an odor gain G via a simple linear transformation and used
to generate a virtual larva (Fig. 7B). Each population of 30
larvae was then tested in an odor preference simulation. The
larvae were placed on a dish in presence of the previously
rewarded odor (CS+) and a neutral odor in opposite sides
of the dish (Video 8), again following standard experimental
procedures (42). To obtain robust results we replicated the
experiment 100 times per population with a different random
seed for a total of 600 simulations. The obtained preference
indexes (PI) are illustrated in Fig. 7D. The PI increase with
increasing number of trials as well as its saturation resembles
empirical observations (48). Note that the variability of the PI
across the 100 simulations per condition is introduced solely
by the behavioral simulation and resembles that seen across
real experiments.

The current implementation only sequentially couples a
trained MB model to be tested in a behavioral simulation. In
the discussion we further elaborate on a possible extension
featuring their closed-loop integration allowing for full behav-
ioral simulations of both the training and the testing phase of
the associative learning paradigm in a virtual environment.

Discussion

Neural pathways. The neural mechanisms enabling most of
the basic behaviors have been extensively studied. Crawling
occurs via fairly stereotypical repetitive strides. Head and
tail segments initiate the stride concurrently with a ’visceral
piston’ mechanism followed by a laterally symmetric peri-
staltic wave traversing neighboring segments longitudinally
from back to front (23) (Fig. 2B). Segmental central pattern
generators (CPGs) coupled via premotor-involving interseg-
mental short- and long-range connectivity motifs constitute
the underlying neural circuitry (26, 49, 50). Lateral bend-
ing results from asymmetric contraction of body musculature
initiated at the thoracic segments (51). Finally, feeding is
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Fig. 6. Simulation of chemotaxis. A: Experiment 1: A single odor source of 8.9µM
peak concentration is placed on the right side of the rectangular arena creating a
chemical gradient as indicated by the color scale. Larvae are placed on the left side
facing to the right. Larvae are expected to navigate up the gradient approaching the
source. A single larva trajectory is shown. This setup mimics the first experiment
in (14). D: Experiment 2: A single odor source of 2.0µM peak concentration is
placed at the center of the rectangular arena. Larvae are placed in close proximity
to the odor source. Larvae are expected to locally explore generating trajectories
around and across the source. A single larva trajectory is shown. This setup mimics
the second experiment in (14). C,D: The trajectories of 25 virtual larvae during the
two experiments. E,F: The odor concentration encountered by the virtual larvae as
a function of time. Red curves refer to the single larva in A and B. Gray denotes
the mean and quartiles of all 25 larvae in C and D. The simulation results fit well
to the experimental estimates of concentration sensing during larval chemotaxis in
(14). (arena dimensions = 100x60 mm, N = 30 larvae, experiment duration = 3 and
5 minutes respectively)

generated via a network of mono- and multi-synaptic senso-
rimotor loops from enteric, pharyngeal and external sensory
organs to motor neurons controlling mouth-hook movement,
head-tilt and pharyngeal pumping (27).

All three basic behaviors are autonomously generated by
local circuitry while higher brain centers modulate their ac-
tivity via descending input, mediated by dopamine, seroto-
nine, achetylocholine, octopamine and other neurotransmitters
(27, 52–56). It has been suggested that the transition between
exploration and exploitation (feeding) is acutely induced via
dopaminergic signaling (57) while their long-term balance is
regulated via hugin-mediated homeostatic neuromodulation
(58). Identification of sensory pathways towards motor effec-
tor neuropiles further elucidates the role of interoception in
behavioral modulation (59).

The neural mechanisms that underlie olfactory modulation
of the basic locomotory behavior are also under intense in-
vestigation. Chemotactic approach and avoidance to innately
valenced odors has been attributed to a predominantly innate
pathway involving the antennal lobe (AL) and its direct pro-
jection to the lateral horn (LH), both in the larva (56) and in
the adult fly (60–62). Modulation of learned odors strongly
involves top-down control by the MB in juvenile (45, 55) and
adult (31) stages. Both pathways have similar modulating
effects on foraging behavior and are likely integrated in a

premotor network downstream of the AL (16, 63). In the sen-
sorimotor loop, descending pathways involving the LH control
cessation of crawling, possibly triggering sharper reorientation
when navigating down-gradient, facilitating chemotaxis (64).
Finally, the internal homeostatic state (e.g. starvation vs.
satiation) regulates behavior via neuromodulatory transmitter
release at multiple levels, including AL, LH and MB (56).

Existing computational models. Crawling and bending mech-
anisms have been successfully captured in previous computa-
tional models. CPG models of segmentally repeated paired
excitatory and inhibitory (EI) neuronal rate units, standing for
average EI population activity, can autonomously generate for-
ward and backward crawling, possibly involving proprioceptive
feedback (65, 66) and the contribution of the visceral-piston
mechanism to the peristaltic cycle has been assessed in a
biomechanical model (67). The hereby adopted, continuous
oscillatory lateral bending process has been implemented as
a pair of bilateral mutually inhibitory EI circuits (24). The
idea has been elaborated in a neuromuscular model generating
autonomous forward / backward crawling and turning as well
as their interplay during free exploration in a 12-segment larva
body by modeling segmental localized reflexes and substrate
frictional forces and assuming empirically informed axial and
transverse oscillatory frequencies (68). Chemotaxis has also
been modeled computationally either in stochastic transition
models assuming discrete behavioral states of crawling (runs)
and turning (head-casts) (69) or by introducing olfactory mod-
ulatory input on the underlying locomotory circuit (24, 68).

We propose here that modeling locomotion as coupled
intermittent oscillatory processes (Fig. 1B) is adequate for
generating realistic larva kinematics as these are captured via
larva tracking. This locomotory model efficiently summarizes
the underlying CPG activities into global linear and angular
velocity oscillations (23, 26) and accurately reproduced a num-
ber of experimental observations. It is therefore well suited
for the bottom layer of the proposed behavioral architecture
(Fig. 1). The latter though allows for a modular approach,
where the level of abstraction can be chosen independently
for each individual module as exemplified by combining this
locomotory model with a spiking neural network that captures
plasticity in a central brain neuropile (MB) at the top layer.
It follows that the proposed control architecture affords any
substitution of the currently selected oscillator modules by one
of the aforementioned more-detailed neuromechanical models
if a higher degree of biological realism is pursued.

Crawl-bend interference. Crawling includes mouth hook mo-
tion. Specifically, the first phase of a crawling stride consists
of concurrent forward motion of head and tail segments, aided
by a ’visceral pistoning’ mechanism that generates forward
displacement of the gut. Subsequently, the mouth hooks an-
chor the head to the substrate so that the second phase of
peristaltic motion can drag all other segments forward as well,
completing the stride (23). Crawling and bending partially re-
cruit the same effector neural circuitry and body musculature
at least at the level of the thorax. Peristaltic motion during
crawling includes sequential symmetric bilateral contraction
of all segments while bending occurs due to asymmetric uni-
lateral contraction of the thoracic segments. This partial
effector overlap could result in interference between the two
processes. Indeed here we report an increase of orientation
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velocity during a specific phase of the stride cycle (Fig. 2H),
synchronous to an increase of head forward velocity (Fig. 2D).
The latter coincides with the stride phase when the head is not
anchored to the substrate and therefore free to move laterally.
When applying attenuation of lateral bending outside a phase
interval [π2 , π] of the stride cycle we managed to accurately
reproduce the empirical relation (Fig. 8A).

A reasonable hypothesis would then be that the asymmetric
thoracic contraction generating lateral bending is only possi-
ble while the head is not anchored to the substrate therefore
during a specific phase interval of the stride cycle. We suggest
that crawling phasically interferes with lateral bending because
of these bodily constraints. A consequence of the proposed
hypothesis is that the amplitude of turns generated during
crawl-pauses is larger in comparison to those generated dur-
ing crawling because during pauses the crawling interference
to lateral bending is lifted. We postulate that it is exactly
this phenomenon that dominates the description of larva ex-
ploration as a Levy-walk with non-overlapping straight runs
and reorientation events, where the minor orientation changes
taking place during crawling are neglected (10, 70). We note
that in the implemented model the turner neural oscillation is
not inhibited at all during crawling strides as we consider this
merely a bodily interference, although the resulting torque
might eventually not be applied to the body depending on the
stride-cycle phase.

Behavioral intermittency. Larval locomotion is intermittent
meaning that crawling runs are transiently intermitted by

brief pauses. The spatial dynamics of these alternating states
have been studied in the context of motion ecology. During
free exploration, power-law distributed runs, in line with Levy-
walk theoretical models (10, 70) and diffusion-like kinematics
have been reported (32) while the speed-curvature power-law
relationship has been disputed (71–74). Regarding the tem-
poral dynamics of intermittency, the duration distributions
of activity and inactivity bouts captured via larva-tracking
recordings have been studied. More specifically, the duration
of inactivity bouts has been reported to follow a power-law
while that of activity bouts a log-normal distribution (11),
partly in line with findings in adult-fly studies (12, 13). In all
these studies micro-movements like feeding and lateral bend-
ing could not be detected due to technical constraints. Thus,
the reported inactivity and activity bouts can be regarded as
crawl-pauses and crawl-runs respectively, the duration of the
latter being equivalent to our discretized stridechain-length
metric.

Our analysis reveals that both distributions are approx-
imated best by log-normal distributions (Fig.8,B). The log-
normal stridechain distribution is in line with previous findings,
while the log-normal pause distribution diverges from a previ-
ously reported power-law (11). This might be attributed to
the short, 3-minute duration of the recordings in the present
study contrary to the long, up to one hour recordings used in
the latter.

Computational models of behavioral intermittency are
scarce. A recent study presented a simple binary-neuron
model exhibiting state transitions between power-law and non
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used for coupling the Mushroom Body (MB) model with the behavioral simulation. First a MB model is trained via a classical conditioning experiment where olfactory input is
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8 | Sakagiannis et al.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.07.451470doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451470
http://creativecommons.org/licenses/by-nc/4.0/


power-law regimes via self-limiting neuronal avalanches and
proposed a plausible underlying mechanism that explains ini-
tiation/cessation of crawling (11). In the current model we
remain agnostic to the intermittency generative process and
simply sample pause duration and stidechain length from the
empirically fitted distributions. Further neuroanatomical ev-
idence of the underlying circuits is needed to elucidate the
neural mechanism of intermittent crawling.

Architecture extensions. The here adopted subsumption ar-
chitecture paradigm is mainly used in behavior-based robotics
(75) and is supported as a theoretical framework for the descrip-
tion of the nervous system of living organisms (39). According
to this, neural control of behavior consists of nested sensori-
motor loops where more stereotyped reflexive behaviors are
autonomously generated by localized neural circuitry at a
faster timescale without recruiting more centralized resources.
Once there is need for more extensive integration, e.g. in
order to react suitably to unexpected sensory stimulation,
slower multisynaptic loops enable higher centers to modulate
local circuits achieving more coordinated global behavioral
control. In other words, the nervous system is considered a
multilayered control architecture within which higher layers
subsume their subordinate layers into comprehensive behav-
ioral modes. The main idea governing this paradigm is that
there are only limited degrees of freedom in which higher layers
can influence the lower ones e.g. by initiation/cessation or
acceleration/deceleration of their autonomous function.

The modularity of the proposed architecture facilitates
further extensions capturing novel aspects of the body, the
nervous system, the metabolism or the environment as shown
in Fig.1, allowing for more refined or more complex behavioral
patterns. We here summarize some plausible extensions.

Feeding. Despite their central role in foraging, feeding mecha-
nisms have not been modeled computationally nor has their
integration with the exploratory circuitry in the context of sub-
strate exploitation. Feeding behavior also consists of repetitive
stereotypical movements of the head, mouth hook and inges-
tive muscles (27). Every cycle is an intertwined sensorimotor
loop under instantaneous feedback from the environment and
slower regulation by higher self-regulatory centers. In adult
flies successive feeding movements are organized in intermit-
tent feeding bouts, interspersed by locomotory or idle periods
(76). Although detection of larval feeding motions in free-
foraging conditions is technically difficult due to their small
amplitude, it is reasonable to assume these are also structured
in intermittent bouts. The frequency of this repetitive motion
has been reported to vary at least from 1 to 2.5 Hz. There-
fore feeding behavior can be implemented as a third oscillator
(feeder). Top-down modulation affecting initiation/cessation
and oscillation frequency can be assumed, similar to crawl-
ing while sensory feedback can be implemented as recurrent
modulation depending on successful ingestion.

Considering oscillator coupling, crawling and feeding cycles
partially compete for control of the same effectors as they
both recruit the head and mouth muscles. It has been re-
ported that the number of mouth hook motions over a given
duration of foraging does not differ between rover and sitter
larva phenotypes and is not correlated to the amount of food
ingested, although rovers crawl more and feed less than sitters
(30). Therefore an individual mouth hook motion can equally

be part of either a crawling or a feeding cycle. The conclusion
drawn is that individual crawling and feeding cycles are com-
peting mutually exclusive behavioral motifs meaning crawling
and feeding bouts can alternate but do not overlap. Conversely
there is no empirical evidence on the potential coupling of
feeding and bending motions. Integration of the feeder in the
current locomotory model is illustrated in Fig.1B.

Multimodal sensory feedback. Sensory feedback from the environ-
ment can be extended to other modalities beyond olfaction.
Mechanosensation can be implemented via additional touch
sensors around the body contour. This will allow detection
and behavioral modulation by conspecific contact (collisions)
(77) and external mechanosensory stimulation driving star-
tle/evasion (hunch/bend) (78) or navigation along wind gradi-
ents (anemotaxis) (79). Accordingly, temperature and light
sensors could allow thermotaxis (80–82) and phototaxis (83).
The respective environmental sensory gradients can be Gaus-
sian as in the case of odorscapes or linear along a certain arena
axis. Behavioral modulation can be either summed up across
modalities or separately applied to the bending, crawling and
feeding effectors. Integration of additional sensory modalities
is illustrated in Fig.1A.

Olfactory learning in closed loop behavioral simulations. We have
shown an open-loop simulation of the classical conditioning
paradigm (Fig. 7B-D) reproducing a basic experimental result
in the fruit fly larva (36). This modeling approach can be
extended in multiple ways. First, the larva demonstrates a
number of interesting learning abilities/features that require
synaptic and circuit mechanisms such as differential condition-
ing (15, 16, 36), extinction learning (84), and relief learning
(35, 45, 48, 85). Interfacing neural network simulations of
these mechanisms with our behavioral model allows to directly
compare virtual and empirical behavioral experiments, both
for the typical group assays and for individual animals. Sec-
ond, while information about odor concentration is provided
via olfactory sensing, direct input from a feeder module could
provide the reward stimulus that activates the dopaminergic
pahtway required for synaptic plasticity the mushroom body
(45, 86). This would further allow realistic foraging scenarios
with food depletion and competition. Closing the loop from
active sensing to associative memory formation and behavioral
control requires to synchronize a (spiking) neural network at
the adaptive layer with the sensory (reactive layer) and loco-
motor modules (basic layer). This will enable the simulation of
virtual larva experiencing spatial and temporal dynamics in a
virtual environment or on a robotic platform (87). Such model
approaches will allow to test model hypotheses on sensory-
motor integration and to infer predictions for experimental
interventions such as optogenetic stimulation (45) or genetic
manipulations (88–91).

Materials and Methods

Dataset description. The larva-tracking dataset was obtained
by M.Schleyer and J. Thoener at the Leipzig Institute of
Neurobiology (https://doi.org/10.12751/g-node.5e1ifd). It
consists of 200 third-instar larvae tracked at a framerate of
16Hz for 3minutes while exploring a non-nutritious substrate.
12 points are detected along the longitudinal axis of each larva.
Detected collisions have been excluded and the data has been
filtered with a first-order butterworth low-pass filter with a
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cutoff frequency of 2Hz in order to decrease tracking-related
noise but retain the behaviorally relevant crawling frequency
of ≈ 1.5Hz. The effect of inadequate and excessive filtering is
illustrated in Video 9.

All data processing and all simulations were performed
using the Larvaworld behavioral analysis and simulation plat-
form programmed in python. We made Larvaworld freely
available at https://github.com/nawrotlab/larvaworld. In
Larvaworld, simulated and empirical data are treated in-
distinguishably, meaning that the exact same analysis pipeline
and behavioral metrics are applied in both.

Parameter Symbol Value Unit

PHYSICS
linear damping 1 -

angular damping 2.5 -

BODY

length l 4.325* mm

front/rear ratio 5/6 -
spring constant k 0.02

bend correction coefficient 1.4 -

TURNER

initial activation 20 -

activation range [10,40] -

0.5 -

torque coefficient 0.4 -

0.15 -

CRAWLER

frequency 1.428* Hz

0.225* -

0.1 -

INTERFERENCE
interference-free phase interval [π/2, π] -

attenuation ratio 0.1 -

INTERMITTENCY

pause duration
range [0.1 - 2] sec

distribution -1.2, 0.7 -

stridechain length
range [1 - 41] # strides

distribution 1.4, 1 -
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Table 1. Model parameters. Red values: hard coded; green values:
fitted from empirical data; blue values: collectively sampled from
an empirically fitted multivariate Gaussian distribution (Fig. 4) for
which mean values are shown here.

Model definition and calibration.

Crawler oscillator. Crawling behavior is modeled as an oscillatory
process. Each oscillation generates a cycle of forward velocity
v increase-decrease resulting in displacement of the larva along
the axis of its front-segment, simplistically modeling the result
of exactly one peristaltic stride. An analytically tractable
curve is fitted to the average empirical velocity curve measured
during strides (Fig. 2D):

v∗ = dstr · fc · (0.6 cos (Φ− Φmax) + 1) [1]

where dstr is the displacement per stride, scaled to the lar-
val body-length l, fc being the crawling frequency and Φ the
instantaneous phase of the oscillation iterating from 0 to 2π
during an oscillatory cycle. Φmax = π is the phase where the
maximum velocity occurs. The equation ensures a constant
dstr despite fc changes. Gaussian noise is applied so that
v = N (v∗, nC · v∗).nC is selected so that the variance across
strides fits the empirical observations (Fig. 8 A,top). The 3
parameters (l,dstr and fc) defining the velocity curve are sam-
pled from empirical data, retaining their paired correlations
(Fig. 4). The oscillatory process can only be halted/initiated
at the start of a cycle meaning that once a stride is initiated
it will be completed.

To calibrate Φmax in the stride cycle, a sliding window
analysis was performed (data not shown). dstr was computed
for all possible Φmax in windows of the reference stride duration

f−1
c , selecting the one displaying the minimum variance for
displacement, which results in more stereotypical strides.

Turner oscillator. The lateral oscillator model described in (24)
assumes an underlying oscillatory process driving alternating
bending to the left and right side. The oscillator consists of two
mutually inhibiting components (L vs R) that quickly settle in
antiphase, while adaptation ensures that periodic transitions
occur. The system is driven by external activation At. The
baseline activation At = 20 was held constant as in the original
implementation (24), resulting in an average 0.3Hz oscillation
frequency. Perturbations of this external drive cause transient
changes in both amplitude and frequency, up to transient
loss of oscillation. This feature is exploited during olfactory
modulation (see Olfactory sensor). Turner activity is the
instantaneous difference in the firing rates ∆f = (fL − fR)
and is scaled by a coefficient ct to generate the oscillating
torque T = ct · ∆f . This is applied to the body which is
modeled as a torsional spring of restorative spring constant k,
causing lateral bending θb. The angular velocity is attenuated
by angular damping ratio z. It holds that :

θ̈or = T − z · θ̇or − k · θb [2]
Gaussian noise is applied to both the input activation

At = N
(
A∗t , nA ·A

∗
t

)
and the output turner activity ∆f =

N
(
∆f∗, nT ·∆f∗

)
.

In its original implementation the model deliberately ne-
glects two aspects of the real turning behavior of the larva.
First there is no distinction between bending θ̇b and orienta-
tion θ̇or angular velocities. Second there is no correction of the
bending angle θb due to forward motion. We tackle the first
via the bisegmental body so that θ̇b between the front and rear
vector is distinct from the front vector’s θ̇or. Regarding the
second, we introduce a simple linear bending-angle correction
as the rear vector is aligned to the front vector’s orientation
during forward motion, according to the equation :

θ′b =
{
θb · (1− d/dmax), if 0 ≤ d < dmax

0, if d ≥ dmax

dmax = l

2bc
[3]

where d is the linear displacement during a timestep, b and
b′ are the original and corrected bending angles, l is the body
length and bc is the bend correction coefficient which has been
fitted from the empirical data. In Fig. 8E the resulting ∆θb
correction during individual strides is plotted in relation to θb
at the beginning of the stride. The fitted linear curves show
close matching of empirical and simulated findings.

To calibrate the turner oscillator we need to determine
5 parameters, namely the torque coefficient ct, the angular
damping ratio z, the restorative spring constant k and the noise
ratios nA, nT . To this end we analyze the angular dynamics
of a population of 200 larvae and compute the distribution
of 3 empirical metrics, namely bending angle θ̂b, bend and
orientation angular velocities ˙̂

θb, ˙̂
θor. In order to find optimal

parameter combinations providing the best fit of simulated
and empirical distributions a two-step parameter space search
is performed :

• We first evaluate the function of the isolated turner oscil-
lator, in autonomous runs. We constrain the parameter
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Fig. 8. Model calibration A variety of behavioral metrics are used to optimize the locomotory model’s fit to empirical data. Here the final calibrated model is assessed in a
3-minute simulation of free exploration using a population of 200 virtual larvae. The simulated data (red) are compared to empirical data (blue) from a 3-minute free exploration
experiment of 200 real larvae. Data are pooled across individuals in each population. A: Crawl-bend interference. Mean scaled forward velocity (top) and orientation velocity
θ̇or (bottom) during strides. All detected strides across the entire populations have been interpolated to a common stride cycle from 0 to 2π. Shaded areas denote first and
third quartiles. Dashed green lines show the cycle interval boundaries of unconstrained angular motion. Outside the boundaries angular motion is attenuated due to crawler
interference. B: Bout distribution. Dots describe the cumulative probability density over logarithmic bins for the length of stridechains and the duration of crawl-pauses. Lines
indicate the distribution with the lowest Kolmogorov-Smirnov distance among the best fitting power-law, exponential and log-normal distributions. Stridechain length and pause
duration are best approximated by log-normal distributions. C: Distribution of front and rear segment orientation change ∆θorf

,∆θorr during individual strides. D: Bend
correction due to forward motion : Scatterplot of the bending angle change ∆θb over individual strides relevant to θb at the beginning of the stride. Lines denote the fitted linear
curve for real and virtual larvae. E: Histograms of angular metrics using the optimal set of turner-relevant parameters as determined by the calibration process. The three
metrics shown are bending angle θb, bending and orientation angular velocities θ̇b, θ̇or .

space by selecting parameter combinations that fit the
range of the empirical metrics (first and fourth quartiles
within the empirical lower and higher halfs) without θb
overshooting the maximum allowed π (data not shown).

• We then evaluate the turner-crawler integration in free
exploration simulations of virtual larva populations op-
timizing for best fit to the empirical distributions. The
results of the optimal parameter set is shown in Fig. 8D.

Crawler-turner coupling. In order to reproduce bending behavior
during strides we define a phase interval Prange during which
the turner is free to exhibit its full effect on the body. Outside
this interval, the torque T generated by the turner is atten-
uated by a scalar coefficient cat before being applied to the
body, according to the equation :

T =
{
T, if pc in Prange
cat · T, otherwise

where pc is the instantaneous phase of the crawling stride.
We calibrate the two parameters Prange and cat so that the

average orientation angular velocity θ̇or during the stride cycle
fits the empirically measured. The results for Prange = [π2 , π]
and cat = 0.1 are shown in Fig. 8A,bottom. Furthermore the
orientation change during individual strides for the front ∆θor
and rear ∆θorr segments fits well to empirical measurements
(Fig. 8C).

Olfactory sensor. Olfaction is introduced in the second layer of
the control architecture allowing chemotactic behavior. The
olfactory sensor is located at the front end of the virtual larva
therefore any reorientation and/or displacement influences
sensory input. As in (14) we assume that olfactory perception
Ao relates to changes in odor concentration C according to the

Weber-Fechner law, meaning that ∆Ao ∼ ln ∆C. We further
add a decay term that slowly resets Ao back to 0. The rate of
change is given by the equation :

Ȧo = −Ao · co +
∑
i

Gi ·
Ċi
Ci

with − 1 ≤ Ao ≤ 1 [4]

where co = 1 is the olfactory decay coefficient, Gi is the
gain for odor i and Ci the respective odor concentration. Per-
ceived olfactory stimulationAo modulates the turner activation
At from its baseline value At = 20 within a suitable range
Arange = [Atmin, Atmax] = [10, 40] :

At = Āt +Ao
(
At

lim − Āt
)

[5]

where At
lim =

{
At

max ifAo ≥ 0
At

min ifAo ≤ 0
[6]

Parameter definition.

Segmentation and angular metrics. To specify the body segmen-
tation providing the most suitable contact/rotation point for
the definition of the correlated empirical bending ˙̂

θb and ori-
entation ˙̂

θor angular velocities we analyse their relationship
in a subset of 40 larvae. Tracking of 12 midline points allows
computation of the absolute orientation of 11 body-segments
and the respective 10 angles θ1−10 between successive body
segments (Fig. 2 F). We define θ̂or as the head-segment orien-
tation because this defines the movement orientation of the
animal. We ask how ˙̂

θor results from the bending of the body
as this is captured by the 10 angular velocities θ̇1−10. The
regression analysis depicted in Fig. 9B shows as expected
that ˙̂

θor depends primarily on the front angular velocities
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Fig. 9. Segmentation and velocity definition. A: Forward velocity definition. 24
candidate velocity metrics are compared for use in stride annotation of 3-minute tracks
of a population of 20 larvae. For each candidate the mean coefficient of variation of
temporal duration cvt and spatial displacement cvs of the annotated strides is shown.
The centroid velocity vcen provides the most temporally and spatially stereotypical
strides, therefore it is selected as the reference forward velocity for stride annotation
and model fitting. vcen : centroid velocity, v1 − v12 : 1st-12th point’s velocity,
vc

2 − v
c
12 : 2nd-12th point’s component velocity parallel to the front segment’s orien-

tation vector. B: Regression analysis of individual and cumulative angular velocities

θ̇i=1−10 to orientation angular velocity ˙̂
θor . When considered individually, θ̇2 best

predicts reorientation with the θ̇1 and θ̇3 following. When considered cumulatively the
anterior 5 θ̇i allow optimal prediction of reorientation velocity. C: Correlation analysis

of the sum of all possible θ̇i combinations to ˙̂
θor . The sum

5∑
i=1

θ̇i shows the highest

correlation therefore we define θ̂b =
5∑

i=1

θi as shown in A. For illustration purposes

only the 5 highest correlations are shown.

while this dependence decays as we move towards the rear
segments, in line with previous studies (41). Timeshift anal-
ysis also shows that the front 3 angles change concurrently
while angles further down the midline are increasingly lagging
behind (data not shown). The correlation analysis depicted in
Fig. 9C shows that the sum of the front 5 angular velocities
best correlates to ˙̂

θor. In other words the cumulative body
bend of the front 5 segments best predicts head reorientation.
Therefore we define the reorientation-relevant bending angle
as θ̂b =

∑5
i=1 θi (Fig. 2 F). The remaining 5 angles between

the rear body-segments can safely be neglected as they do
not contribute to reorientation. This analysis results in a
segmentation of the body in a front and a rear segments of
length ratio 5:6. The segmentation process is demonstrated in
Video 1.

Forward velocity. To define forward velocity we need to choose
which midline-point is most suitable to track and which veloc-
ity metric to use for defining the start and end of a stride. To
this end we perform stride annotation of 3-minute tracks of a
population of 20 larvae using each of 24 candidate instanta-
neous velocity metrics, namely the velocities of the 12 points,
the component velocities of the rearest 11 points parallel to
their front segment’s absolute orientation and finally the cen-
troid velocity. To compare the candidate metrics we compute
the spatial cvs and temporal cvt coefficient of variation of the
annotated strides for each larva to assess how variant their time
duration and displacement is. We finally compute the mean
cvs and cvt across individuals. In Fig. 9A the spatiotemporal
stride variance is shown for each candidate metric. We choose
the metric that provides the minimal spatial and temporal
stride variance, assuming that strides of an individual larva are
more or less stereotypical in both duration and displacement
(23). Our study reveals that the centroid velocity is the most
suitable metric for stride annotation. All spatial metrics are
therefore computed via this point’s displacement.

The instantaneous body-length of an individual larva fluc-
tuates due to subsequent stretching and contraction during
crawling. Its histogram is well fitted by a Gaussian distribu-
tion (data not shown). Therefore individual larva length l
was computed as the median of the midline length across time
(total length of the line connecting all 12 midline points). All
spatial parameters, including displacement and velocity, are
scaled to this body-length.

To analyze the temporal dynamics of crawling we perform
spectogram analysis of the linear velocity. The dominant
frequency fc across a plausible range of 0.75 to 2.5 Hz is
defined as the crawling frequency. We use the inverse of this
frequency f−1

c as a reference for the expected stride duration
during stride annotation.

Epoch annotation. Strides are annotated using the forward ve-
locity v timeseries, under a number of constraints (Fig. 2
C):

• Each stride epoch is contained between two v local min-
ima.

• The v local maxima contained in the epoch needs to be
higher than the mean.

• The duration of the epoch needs to be between 0.6 and
1.6 times the reference stride duration tstr = f−1

c , where
fc the crawling frequency.This allows individual strides
to temporally vary without overlapping so that adjacent
strides can be concatenated in stridechains.

Stridechains are defined as uninterrupted sequences of suc-
cessive strides (Fig. 2 C). Stridechain length equals the number
of concatenated strides and is a discrete metric equivalent to
crawl-run duration. Pauses are defined as epochs containing
no strides. After stride annotation the resulting displacement
due to each individual stride is computed for each larva and
divided by the larva’s body-length (Fig.2A-C). The individual
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distributions are well fitted by Gaussians (data not shown).
Therefore stride displacement dstr is defined as the average
scaled displacement per stride for each larva.

Turn epochs are contained between pairs of successive sign
changes of orientation angular velocity ˙θor. For each epoch
the turning angle θturn is defined as the absolute total change
of orientation angle ∆θor (Fig. 2 G).

Supplementary videos. Here we provide the supplementary
videos cited in the text. Videos can be played by clicking on
the image frame.

Video 1. Bisegmental larva-body simplification The first video shows the original

larva body as recorded by the tracker. 12 points are tracked along its longitudinal axis

defining 11 segments while 22 points constitute the body contour. In the second

video the body contour is dropped. In the third video an artificial rectangular contour

is added for each body segment. In the last video the body-midline is segmented into

2 segments. The absolute head orientation angle θ̂or is preserved while the single

bending angle between the 2 segmentw is defined as θ̂b =
∑5

i=1
θi

Video 2. Locomotory model for Drosophila larva The function of the locomotory

model in Fig. 1 B is illustrated by gradually integrating its 4 modules (crawler, turner,

oscillator-coupling, crawling-intermittency). In each of the 6 videos the implemented

modules are shown in the inset.
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Video 3. Full-length larva trajectory The trajectory depicted in Fig. 2 is shown in its

full length. Trajectory color tracks instantaneous forward v and angular ˙θor velocities

while tracking a midline point or the head respectively. Color code ranges from red (0
velocity) to green (maximum velocity).

Video 4. Larva trajectory slice The trajectory slice depicted in the inset of Fig. 2 is

shown. Trajectory color tracks instantaneous forward v and angular ˙θor velocities

while tracking a midline point or the head respectively. Color code ranges from red (0
velocity) to green (maximum velocity).

Video 5. Free exploration simulation A population of 25 real (left) or virtual (right)

larvae is placed on a dish and left to freely explore. The body of the real larvae has

been simplified into 2 segments as shown in Video 2(see Model, Bisegmental body).
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