
 1 

Expansion of mutation-driven haematopoietic clones is associated with 
insulin resistance and low HDL-cholesterol in individuals with obesity 
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Material and Methods: 

Subjects and samples 

Study cohort 

The SOS study is an ongoing, prospective, controlled intervention study designed to 

compare outcomes in patients with obesity treated by bariatric surgery (n=2010) and a 

matched control group given usual care (n=2037)1. Inclusion criteria were age between 37 

and 60 years and body-mass index (BMI) of ≥34 for men and ≥38 for women. The exclusion 

criteria were earlier surgery for gastric or duodenal ulcer, earlier bariatric surgery, gastric 

ulcer during the past 6 months, ongoing malignancy, active malignancy during the past 5 

years, myocardial infarction during the past 6 months, bulimic eating pattern, drug or alcohol 

abuse, psychiatric or cooperative problems contraindicating bariatric surgery, other 

contraindicating conditions (such as chronic glucocorticoid or anti-inflammatory treatment). 

The current study includes individuals from the control group given usual care, with follow-

up visits at 480 primary health care centers at baseline (0), 0.5, 1, 2, 3, 4, 6, 8, 10, 15, and 20 

years. 

 

CHDM detection by single-molecule Molecular Inversion probe (smMIP) sequencing 

DNA extraction 

For most individuals in the single-timepoint dataset a blood sample specifically for 

genetic analyses was collected between 1998 and 2006. The blood was collected in EDTA-

tubes, transferred to plastic bottles and stored in -80°C until DNA extraction. DNA was 

extracted using the AGOWA mag kit (LGC Group, Teddington, Middlesex, UK). Extractions 

were performed by the Genomics core facility at Sahlgrenska Academy, University of 

Gothenburg (Gothenburg, Sweden). 
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In the multiple-timepoint dataset, DNA was extracted from blood samples routinely 

collected at the follow-up visits at baseline, 2-, 10-, 15-, and 20-years. Blood was collected in 

Heparin-tubes, transferred to cryotubes and stored at -80°C until DNA extraction. Extractions 

were performed by the Qiagen genomics services (Hilden, Germany) using the DNeasy 96 

Blood & Tissue kit (Qiagen, Hilden, Germany). 

 

Sequencing 

CHDMs were analyzed by ultra-sensitive sequencing, as essentially previously 

described2. We modified the existing assay by removing non-CH-related hotspot targets and 

designing additional double tiling smMIP probes3 for the entire coding sequence of the most 

prevalently reported CH-driver gene DNMT3A. The final assay consisted of a total of 300 

smMIP probes, with 54 nucleotide target sequence per probe, spanning a total of 7612 bases 

of target sequence (see File S3, table 1a for a list of genes, bases and target hotspots covered, 

and File S3, table 1b for a list of all smMIP probes). smMIP captures were likewise 

performed with slight modifications: 200-300ng gDNA of each sample with a DNA to 

smMIP ratio of 1:2,400; all samples were captured twice and each replicate was tagged with 

an independent barcode by PCR. Sequencing was performed in batches of up to 380 samples 

per run by 2x79 basepair PE reads on a high-output run on a NextSeq500 instrument 

(Illumina) (File S2, fig. a). 

 

Variant calling 

For the purpose of providing true positive somatic variant calls, we applied two 

independent data processing strategies followed up by targeted quality control, specifically 

designed for this study (File S2, fig. b). Specifically, FASTQ files were: 1) aligned to the 

entire reference genome (Hg19) with BWA-MEM4, and 2) imported into the commercially 

available NGS software package Sequence Pilot (JSI Medical Systems), using the optimized 

smMIP analysis module as described previously5, 6. The latter allows for a consensus calling 

per smMIP probe, enhancing individual variant quality by reducing random PCR or 

sequencing artefacts, using a majority vote of Unique Molecular Identifier (UMI) duplicates. 

This also enabled the same molecule to be read with forward and reverse sequencing reads, 

due to 2x79 basepair reads and a 54 nucleotide insert size of gDNA. Variant calling with 

Sequence Pilot was performed with the following settings: Minimum combined forward and 

reverse coverage was set to 10 reads, mutation calling required at least 5 consensus reads 

(forward and reverse reads considered separately) without a minimal % of variant reads, 
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enabling some somatic calls down to 0.01% (depending on locus specific coverage); 

consensus calling was done with a minimum of 2 consensus UMI reads and by ignoring 

consensus read threshold of <30% as ‘likely artefacts'; and UMI-tags with “N" bases or low 

quality were ignored. 

 

Quality control single-timepoint dataset 

The resulting variant calls were then subjected to the following stringent quality 

filtering steps (File S2, fig. c): First, individuals with an average coverage below 500x based 

on the untargeted aligned BAM files were excluded (STEP1). Second, only variants called in 

both technical replicates were kept (STEP2). Third, the remaining duplicate variant calls 

were further filtered by excluding non-coding, synonymous, and likely germline (variant 

allele frequency (VAF) ≥40%) variant calls (STEP3). Fourth, variants called in >5% of the 

individuals that are considered likely run-specific artefacts (excluding most common known 

drivers) and common smMIP-run artefacts (based on previously processed smMIP-data) were 

excluded (STEP4). Fifth, remaining variant calls were flagged based on the following 

characteristics; a) PTPN11 variants were excluded, due to mapping issues related to 

homology with various regions in the genome, b) variants with unspecified alternative allele 

by JSI (N-allele) were excluded, c) variants called in four or more samples with an alternative 

allele count below 16 when considering forward and reverse reads separately (based on JSI 

parameters) were excluded, and d) variants called in less than four samples with an 

alternative allele count below 24 were excluded, and e) based on visual inspection combined 

with previous validations2 we flagged likely true positive and likely false positive variants in 

green and red respectively, excluding all variants with a red flag, overruling any of the 

previously described flags. Finally, the percentage of alternative alleles for the remaining 

variant calls was generated using samtools mpileup7 on the untargeted aligned BAM files. 

Inconclusive mpileups, due to different indexing or complex variant calls, were checked 

manually, and were excluded if read-end or -start marker was present in the mpileup 

sequence. The resulting mpileup percentage provided the final VAF for our variant calls and 

was used in all subsequent analyses. 

 

Quality control multiple-timepoint dataset 

Our multiple-timepoint dataset was subjected to the same quality filtering pipeline, 

with exception of the run-specific threshold in STEP3 as multiple timepoints of the same 

individuals constituted one run. The final output from STEP6 was used to trace CHDM calls 
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per individual over all of its available timepoints, to allow most sensitive detection of the 

same CHDMs appearance at previous timepoints. However, as these supplemental mpileups 

were not initially identified as CHDMs by JSI Medical Systems Sequence Pilot, our two-fold 

CHDM detection approach is violated. We therefore added a level of stringency to the 

parsing of multiple-timepoint mpileups in terms of 1) a position-based coverage threshold of 

≥500x, and 2) a minimum alternative allele count threshold of ≥3. 

 

Statistical Analyses 

All analyses were performed in R version 3.6.1 (R Core Team, URL https://www.R-

project.org/), p-values <0.05 were considered statistically significant. Differences in 

categorical parameters were assessed primarily by means of Chi-square tests, or for expected 

frequencies <5 by means of Fisher’s Exact tests. Differences in continuous parameters were 

primarily assessed by means of Wilcoxon-rank sum tests. 

We created two logistic regression models for our detected single-timepoint mutations 

using either 1) CHDM prevalence (both small and large clones), or 2) CHIP prevalence (large 

clones only) as dependent variable. Model fit was assessed by means of a 

givitiCalibrationBelt-plot using the package givitiR. Parameters of logistic regression models 

can be found in File S3, tables 5a and 5b. The effect of age on clone size was assessed by 

means of a linear regression model for log-transformed VAF, the resulting parameters can be 

found in File S3, table 5c. 

To determine the effect of age on clone growth in our multiple-timepoint dataset, we 

first selected the most important trajectory per individual. We then created a mixed linear 

model (MLM) with random intercept and slope using the nlme package. This model was 

compared an MLM with random intercept and fixed slope, and an MLM with both fixed 

parameters by means of the anova() function from the stats package. Details on these model 

comparisons can be found in File S3, table 7b. Finally, to determine whether clinical 

correlations could underlie differences in speed of clonal outgrowth, we correlated the 

individual effect estimates from our MLM to aggregated clinical parameters. Specifically, for 

each parameter the average of baseline, 2- and 10 year follow-up was computed, after which 

we computed the Spearman correlation coefficient by means of the rcorr() function from the 

package Hmisc.  

All figures were generated in R using a variety of packages (dplyr, reshape2, ggplot2, 

ggpubr, tidyverse, ggpmisc, rcompanion, ggbeeswarm, ggrepel, ggridges, ggiraphExtra, 
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plotrix, ggallin), after which they were optimized in Adobe Illustrator version 23.11.1 (Adobe 

Inc.)  

 

Results: 

CHDM characteristics and comparison to well-established driver mutations 

As expected and in line with previous reports, DNMT3A was the most frequently 

mutated gene in both our single- and multiple-timepoint dataset (File S5). We also identified 

several loss of function (LoF) mutations in TET2 and ASXL1, and frequently recurring (i.e. 

identified each at least five times in the single-timepoint data of our cohort) missense 

mutations in GNAS [p.(Cys843Arg) and p.(Arg844His)], GNB1 [p.(Lys57Glu)], TP53 

[p.(Arg174Gly)], and JAK2 [p.(Val617Phe)]. The majority of CHDMs in the single-timepoint 

dataset involved the same genes as the growing clones from the multiple-timepoint dataset 

(File S5, figs a and b). The amino acid residues most frequently affected by CHDMs in the 

single-timepoint dataset were similarly enriched in trajectories that grew in our multiple-

timepoint dataset (File S5, fig. c). 

Our full gene coverage of DNMT3A allowed us to examine the location of CHDMs in 

this gene. We observed that DNMT3A missense mutations detected in our single-timepoint 

dataset clustered around the three known protein domains: PWWP, ADD and SAM-

dependent MTase C5-type (File S5, fig. d). In our 20-year longitudinal dataset, all LoF 

mutations in DNMT3A were defined as traceable trajectories apart from one late-appearing 

clone, whereas one third of DNMT3A missense mutations were classified as events and two 

thirds as trajectories (File S5, fig. e). Of all the LoF mutations in DNMT3A, five out of six 

early stops or frameshifts (before amino acid 432) were classified as growing (four 

trajectories and one late-appearing clone), while none of the six later LoF mutations fit this 

classification. Figure f in File S5 shows that the clustering of CHDMs in DNMT3A 

previously reported in the literature is comparable to that in both of our datasets, 

substantiating their role as established driver mutations. 

The majority of mutations identified in this study have previously been described 

(File S3, table 3a). Of all the 273 detected single-timepoint mutations, 226 (82.8%) were 

identical to previously identified CHDMs from the literature or showed an LoF mutation in 

DNTM3A, TET2 or ASXL1. Of those 226, 61.9% were well-established drivers (≥5 counts in 

literature) and 10.3% were new substitutions at previously described amino acid positions; 
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the remaining 7.0%, corresponding to 5 different mutations, were therefore novel candidate 

CHDMs (File S3, table 3b). 

Of all the 115 mutations identified in the multiple-timepoint measurements, 71 

(61.7%) have been reported in the literature or represent LoF mutations in DNMT3A, TET2 or 

ASXL1, this refers to 39 (73.58%) when only counting different mutations. Amongst the 

CHDMs classified as events (i.e. mutations only seen at one or two of the timepoints), the 

overlap with the literature was lowest (12/38; 31.6%). In contrast, the overlap was higher for 

all CHDMs classified as trajectories: static trajectories (27/42; 64.3%) shrinking trajectories 

(5/5; 100%) and growing trajectories (27/30; 90.0%) (File S3, table 3c). 
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