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S§1 Simulation Study1

To demonstrate the issues that arise from not treating samples as data, we performed a series of2

experiments in RevBayes (Höhna et al. 2016), which we selected for convenience; the problems we3

demonstrate are inherent to the standard treatment of tree models as priors and are independent of4

any particular implementation of these models. For each of the three experiments below, we per-5

formed a series of simulations under a specific model, and then compared the fit of a pair of com-6

peting models to these simulated data, using Bayes factors calculated with marginal-likelihood- and7

posterior-probability-based approaches. For the marginal-likelihood-based approach, we computed8

Bayes factors using a power-posterior algorithm, stepping-stone MCMC (SS MCMC; Xie et al. 2011),9

and for the posterior-probability-based approach we used reversible-jump MCMC (RJ MCMC; Green10

1995). In all cases, we fixed the tree topology to the true value for computational tractability, but es-11

timated the node ages, the birth-death parameters, and the parameters that governed the process of12

character evolution; for fossilized birth-death datasets, we also estimated whether each fossil was a13

sampled ancestor (i.e., whether it was sampled along a branch leading to another sample).14

Initial experiments indicated that sufficiently precise marginal-likelihood estimates using SS15

MCMC would be computationally prohibitive for large trees and sequence datasets. We therefore16

simulated relatively small trees and character datasets (exact sizes described below). Further, we17

implemented an adaptive power-posterior algorithm in RevBayes, similar to the one proposed by18

Friel et al. (2014). Power-posterior algorithms work by running a set of Markov chains, each with19

a “power”, βi, ranging between 0 and 1. For any given βi (a “stone”), the chain samples from the20

distorted posterior distribution:21

Pi(θ | X) ∝ Pi(X | θ)βi P(θ),

so that β = 1 corresponds to sampling from the posterior, and β = 0 corresponds to sampling from22

the prior. The sampled likelihood values among the separate stones—Pi(X | θ)—can then be used to23

estimate the marginal likelihood, e.g., using the stepping-stone estimator (Xie et al. 2011). Usually, the24

number of stones and the values of β are fixed in advance, but in our analyses we found that accurate25

marginal-likelihood estimates demanded a large number of stones, so adopted an adaptive approach.26

Briefly, our adaptive algorithm begins with two stones, β1 = 1 and β2 = 0, and then places additional27

stones until the estimate of the marginal likelihood converges; as with the original algorithm, the28

number of MCMC samples per stone is fixed in advance.29

For each analysis described below, we performed two replicates to ensure stability of marginal-30

likelihood and posterior-ratio estimates. Our simulated data and code (including specific param-31

eter settings for simulations and analyses) are available at Zenodo (http://doi.org/10.5281/32

zenodo.5072533) and GitHub ( https://github.com/mikeryanmay/bd_bayes_factors/releases/33

tag/initial_submission).34

S§1.1 Molecular substitution models35

To demonstrate that SS and RJ MCMC compute the same BFs (and also to demonstrate that both36

of these methods are implemented correctly, i.e., that our results are not a consequence of program-37

ming errors), we compared the fit of competing substitution models to simulated molecular datasets.38

We simulated ten trees under a birth-death (BD) model for each of four numbers of extant samples,39

n = {8, 16, 32, 64}. We assumed the tree began with two species at time t = 1, diversified at rates40

λ = 4 and µ = 2, and that all extant species were sampled. For each tree, we simulated a nucleotide41

dataset with 100 sites under a Jukes-Cantor (JC; Jukes and Cantor 1969) model with rate parameter r42

http://doi.org/10.5281/zenodo.5072533
http://doi.org/10.5281/zenodo.5072533
http://doi.org/10.5281/zenodo.5072533
https://github.com/mikeryanmay/bd_bayes_factors/releases/tag/initial_submission
https://github.com/mikeryanmay/bd_bayes_factors/releases/tag/initial_submission
https://github.com/mikeryanmay/bd_bayes_factors/releases/tag/initial_submission


(scaled such that the expected number of substitutions per site was three). For each of the 40 simu-43

lated datasets, we computed Bayes factors between JC69 and K80 (Kimura 1980) substitution models44

using SS and RJ MCMC as described above, assuming the tree evolved under the true birth-death45

model (Fig. 2A, main text). Positive values of 2 ln BF indicate support for the variable-rate model.46

S§1.2 Contemporaneous birth-death processes47

Our second experiment considers the case of comparing two birth-death models for extant (contem-48

poraneous) samples. We analyzed the same datasets simulated in the previous section, but in this49

case compared two tree models. The first model, M1, is the Yule model (with speciation rate λ, and50

no extinction rate parameter), and the second model, M2, is a BD model (with speciation rate λ and51

extinction rate µ); M2 is the same tree model used to simulate the data, as described above. We com-52

puted Bayes factors between Yule (M1) and BD (M2) processes, again using both SS and RJ MCMC,53

assuming the sequence data evolved under the true JC69 substitution model (Fig. 2B, main text). In54

this case, positive values of 2 ln BF indicate support for the true model.55

S§1.3 Fossilized birth-death processes56

Our third experiment considers the more complex case of comparing two birth-death models for non-57

contemporaneous samples. We simulated four fossilized birth-death trees under a model that allowed58

the fossilization rate to vary. Specifically, each tree began with one lineage at time t = 1 (in the past,59

with t = 0 the present) and initially evolved under a fossilized birth-death model with λ = 4, µ = 2,60

φ = 3; at time t = 0.5 in the past, the fossilization rate changed to φ = 0.5 (i.e., the fossilization rate61

was high in the early part of the process, and decreased in the second half by a factor of six). We62

then simulated stratigraphic uncertainty by dividing time into 20 equally sized bins and using the63

boundaries of the bin that a given fossil sample fell into as the minimum and maximum ages of64

the sample (we assigned extant samples minimum and maximum ages of zero). For each tree, we65

simulated 100 binary characters under an Mk model (Lewis 2001) with rate r (scaled such that the66

expected number of substitutions per site was three). We then compared the fit of two competing67

fossilized birth-death models to the simulated data. The first model, M1, has constant speciation,68

extinction, and fossilization rates (λ, µ, and φ, respectively). The second model, M2, is the same as69

M1, but allows the fossilization rate to vary over time. Specifically, the initial fossilization rate (at70

time t = 1 in the past) is φ1, and at time t = 0.5 units in the past, it changes to rate φ2, which persists71

until the present (t = 0). M2 is similar to the simulating process in that the fossilization rate is not72

constant, and the time of the rate change is fixed; however, for both M1 and M2, we assume that the73

speciation, extinction, and fossilization rates are unknown. For both models, we also assume that74

all extant species are sampled, ρ = 1. We computed the Bayes factors between M1 and M2 using SS75

and RJ MCMC, assuming the morphological data evolves under the Mk model (Fig. 2C, main text).76

Positive values of 2 ln BF indicate support for the variable-rate model.77



S§1.4 Extended Results78

Our results indicate that SS and RJ MCMC provide essentially identical Bayes factors when comparing79

models of molecular evolution (simulation 1, Fig. 1A, main text), as expected based on the theoretical80

equivalence of these estimators. However, these method produce disparate estimates when com-81

paring tree models, either for contemporaneous lineages (simulation 2, Fig. 1B, main text) or when82

including non-contemporaneous lineages (simulation 3, Fig. 1C, main text).83

The discrepancy is not a consequence of a programming bug: the comparison of substitution mod-84

els demonstrates that both algorithms are correctly implemented. Likewise, it is not a consequence of85

numerical MCMC errors: we performed two replicates of each of the analysis to confirm that Bayes-86

factor estimates were sufficiently precise both for SS-based estimates (Fig. S1) and RJ-based estimates87

(Fig. S2). For the contemporaneous birth-death models, we can make precise quantitative predictions88

about the magnitude of the discrepancy (Fig. 1B, colored dashed lines, main text), as we explain in89

Section S§4; our simulation results match these predictions.90
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Figure S1: Precision of Bayes factor calculation using marginal likelihoods. Each analysis was performed twice, and the
value from one run (x-axis) is plotted against the second run (y-axis). A) Bayes factors between JC and K80 models. B) Bayes
factors between Yule and birth-death models. C) Bayes factors between a model with constant fossilization rates and one
with variable fossilization rates. (see caption of Fig. 1)
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Figure S2: Precision of Bayes factor calculation using reversible-jump MCMC. Each analysis was performed twice, and the
value from one run (x-axis) is plotted against the second run (y-axis). A) Bayes factors between JC and K80 models. B) Bayes
factors between Yule and birth-death models. C) Bayes factors between a model with constant fossilization rates and one
with variable fossilization rates. (see caption of Fig. 1)



S§2 Empirical Analysis91

S§2.1 Analysis92

We re-analyzed the empirical dataset of marattialean ferns from our previous study (May et al. 2021)93

to demonstrate the impact of not treating samples as data in a realistic model-comparison scenario, as94

well as to provide an example of the impact of the tree model on estimates of divergence times. For95

the sake of computational tractability, we included only ingroup taxa—comprising 26 extant and 4596

extinct samples—and only analyzed the binary morphological data from that study (i.e., we excluded97

the molecular data and multistate morphological characters).98

We analyzed this dataset under an Mkv model (Lewis 2001) with gamma-distributed rate varia-99

tion among characters (Yang 1994), and assumed that rates of morphological evolution varied across100

branches of the tree according to an uncorrelated-lognormal relaxed-clock model (UCLN Drummond101

et al. 2006). We compared the fit of two competing birth-death models: 1) a fossilized birth-death102

model where speciation and extinction rates varied over time, but the fossilization rate was constant103

over time (the “constant” model), and; 2) a fossilized birth-death model where fossilization, specia-104

tion, and extinction rates each varied over time (the “variable” model). Specifying arbitrary variable-105

rate fossilized birth-death models that are amenable to efficient reversible-jump MCMC is non-trivial.106

We therefore used the results from our previous study to constrain the rate variation so that it was107

both appropriate for the dataset, and possible to specify in the existing reversible-jump machinery108

available in RevBayes. For the speciation- and extinction-rate variation, we assumed that these rates109

varied according to a piecewise-constant model defined by five time intervals intended to capture the110

major patterns present in our prior analyses: (∞, 323.2], (323.2, 298.9], (298.9, 66.0], (66.0, 5.3], (5.3, 0.0].111

Within each time interval, speciation and extinction rates were drawn independently from a shared112

prior distribution. For the model that allowed the fossilization rate to vary, we assumed a piecewise113

constant model with four time intervals: (∞, 323.2], (323.2, 298.9], (298.9, 66.0], (66.0, 0.0], with corre-114

sponding fossilization rates {ψ1, ψ2, ψ3, ψ4}. We assumed that the rates of the first and fourth interval115

were the same (ψ1 = ψ4), but allowed the fossilization rates for the second and third intervals to be116

different, reflecting an apparent peak in fossilization rates in the Pennsylvanian (the second interval),117

followed by moderate fossilization rates from the Permian to the end of the Cretaceous (the third118

interval).119

For both tree models, we fixed the tree topology to the maximum-clade-credibility (MCC) tree120

topology inferred in our previous study, but estimated the node ages, the fossilized birth-death param-121

eters, the character-evolution parameters, and also whether each fossil was a sampled ancestor. We122

then computed the Bayes factors between the constant and variable models using SS and RJ MCMC.123

Our empirical data and code for these analyses (including specific parameter and prior settings) are124

available at XXXX.125

XXXX


S§2.2 Results126

Under the variable model, we infer extreme variation in fossilization rates: rates are inferred to be127

substantially higher during the Pennsylvanian than in the other time intervals, and rates from the128

Permian to the Late Cretaceous are also elevated compared to the first and fourth intervals (Fig. S3).129

This result is unsurprising, given that 24 of the 45 fossil samples come from the 23 My window that130

constitutes the Pennsylvanian subperiod. Despite this evident rate variation, BFs based on marginal131

likelihoods favor the constant model (2 ln BF ≈ 3, Tables S.1 and S.2). By contrast, BFs based on132

posterior model probabilities decisively favor the variable model (2 ln BF ≈ 18, Table S.2). In other133

words, conventional marginal-likelihood-based BFs incorrectly indicate strong evidence for a deci-134

sively worse model.135

Table S.1: Marginal likelihoods for the constant model computed with stepping-stone sampling. We performed four
independent runs to ensure precise marginal likelihood estimates (runs 1 through 4); we report the mean and standard
error of the mean (final column).

Model Run 1 Run 2 Run 3 Run 4 Mean (± SD)

Constant −883.0418 −882.8819 −882.9806 −882.9524 −882.9602 (±0.03634)
Variable −884.5965 −884.5084 −884.4403 −884.4645 −884.5025 (±0.03136)

Table S.2: 2 ln Bayes factors between constant and variable models, computed using two methods. We performed four
independent runs to ensure precise Bayes factor estimates (runs 1 through 4); we report the mean and standard error of the
mean (final column).

Method Run 1 Run 2 Run 3 Run 4 Mean (± SD)

SS −3.0770 −3.3178 −2.9194 −3.0242 −3.0846 (±0.0843)
RJ 18.1055 17.9870 18.0041 18.0804 18.0442 (±0.0287)
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Figure S4: Median number of lineages over time, as predicted by the constant fossilization-rate model (blue) and the vari-
able fossilization-rate model (orange). Vertical dashed lines are placed at 50 My intervals; horizontal dashed line is the
number of extant lineages.

The different models produce significantly different inferences about the history of diversity for136

the group. We simulated 10,000 histories of lineage diversification under each model, and discretized137

time into many (10,000) small time intervals. We then computed the median number of lineages alive138

in each time interval over the group’s history (Fig. S4). Under M1, we predict an average peak diver-139

sity of ≈ 945 lineages in the Pennsylvanian; by contrast, M2 predicts ≈ 546 lineages at that time. This140

discrepancy likely reflects the fact that M1 requires a larger number of lineages during the Pennsylva-141

nian in order to preserve the observed number of samples, given that fossilization rates are lower at142

that time relative to M2 (Fig. S3).143

Beside providing qualitatively different inferences about the nature of the fossilization process144

and the underlying history of diversification, the two tree models strongly influence divergence-time145

estimates for this dataset. We computed the mean of the posterior distribution of the age of each node146

in the tree under both models as ∆ = |av − ac|, where ac and av represent the posterior-mean estimate147

under the constant and variable models, respectively. Posterior-mean estimates of divergence times148

under the constant model differ substantially from those under the variable model: some nodes ages149

are different by 15 million years between the two models (Fig. S5, left). Divergence-time estimates150

for young nodes are systematically more recent under the constant model, i.e.,, the younger nodes are151

disproportionately pulled toward the present (Fig. S6). Presumably, this pattern reflects the fact that152

the fossilization rates in the Cenozoic are higher under the constant model than the variable model153

(Fig. S3): when fossilization rates are high, older clades in these time intervals imply more missing154

fossils, and are therefore “penalized” by the model (i.e., younger clades are preferred).155
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under the variable model).
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S§3 Samples As Data156

S§3.1 The standard phylogenetic model157

In a standard fossilized birth-death analysis (Heath et al. 2014; Zhang et al. 2016), we imagine that158

a phylogeny, Ψ, evolves under a fossilized birth-death process with a set of parameters θΨ, which159

consists of speciation, extinction, and fossilization rates (λ, µ, and φ, respectively), and a sampling160

probability for extant species, ρ. Additionally, we imagine that a set of characters (typically a com-161

bination of molecular and discrete morphological characters) evolve along the branches of the tree162

according to a defined model with a set of parameters θx. These processes give rise to a character163

dataset, X.164

Given a particular character dataset, X, our goal is to infer the phylogeny and model parameters165

that gave rise to that dataset. To do so, we can apply Bayes’ theorem:166

P(Ψ, θx, θΨ | X) =

likelihood︷ ︸︸ ︷
P(X | Ψ, θx)

priors︷ ︸︸ ︷
P(Ψ | θΨ)P(θx)P(θΨ)

P(X)︸ ︷︷ ︸
marginal likelihood

. (S.1)

The prior distributions P(θx) and P(θΨ) represent our belief about these model components before167

observing the data. P(Ψ | θΨ) is generally considered a prior distribution on the phylogeny, and is168

the probability density of a “ranked, labeled1” tree (see equation [2] in Gavryushkina et al. 2014).169

These prior distributions are updated by information in the character data by the likelihood function,170

P(X | Ψ, θx), to produce our posterior belief about the tree and model parameters, P(Ψ, θx, θΨ | X).171

The denominator—P(X), i.e., the marginal likelihood—is the likelihood function averaged over all of172

the model parameters in proportion to their prior probability:173

P(X) =
∫∫∫

P(X | Ψ, θx)P(Ψ | θΨ)P(θx)P(θΨ) dθx dθΨ dΨ (S.2)

(The integrals here represent multidimensional integration over θx and θΨ, as well as summation174

over all possible tree topologies and integration over all sets of branch lengths in Ψ; we omit the175

domains of integration throughout this document for the sake of simplicity.) Different models will176

have different marginal likelihoods; we indicate the marginal likelihood for model i as Pi(X) when177

we need to distinguish among models.178

Typically, we refer to probabilities of data (observations) as likelihoods (technically, in a frequen-179

tist framework, the likelihood of the parameters is proportional to the probability of the data given180

the parameters), and probabilities of parameters as prior probabilities. The labeling of terms affects181

marginal likelihoods estimated using standard methods, which depend on treating likelihoods and182

priors differently (e.g., Lartillot and Philippe 2006; Xie et al. 2011). However, the number of samples183

and their ages are observations that provide information about the lineage-diversification process,184

independent from the character data; indeed, paleontologists regularly use this type of information,185

by itself, to estimate parameters of lineage-diversification models. From this perspective, the “prior186

probability” of the phylogeny, P(Ψ | θΨ), actually represents the joint probability of the samples and187

the phylogeny, and some of this probability—the portion related to the samples—belongs to the like-188

lihood.189

1Here, “ranked” means the nodes in the tree have ages, and ”labeled” means the tips and sampled ancestors in the tree
are associated with specific named samples in our dataset (Murtagh 1984).



S§3.2 A paleontological model190

There is a long history of studying lineage diversification from a purely paleontological perspective191

(e.g., Raup 1975, 1985; Foote 2000, 2001). Some of these methods, particularly PyRates (Silvestro et al.192

2014, 2019), use stochastic birth-death models that are effectively interchangeable with those used in193

phylogenetic methods. In this framework, the data are taken to be fossil occurrences of the clade(s)194

of interest, and the goal is to estimate speciation (origination) and extinction rates based on how the195

fossil occurrences are distributed over time. In contrast to phylogenetic methods, the relationships196

among the fossil occurrences are not of direct interest, so this method does not depend on character197

data or models of character evolution.198

In a Bayesian framework, we can conceive of a generic “paleontological” model (similar to199

PyRates) that would be represented as:200

P(λ, µ, φ, ρ | S) =

likelihood︷ ︸︸ ︷
P(S | λ, µ, φ, ρ)

priors︷ ︸︸ ︷
P(λ)P(µ)P(φ)P(ρ)
P(S)︸︷︷︸

marginal likelihood

, (S.3)

where S represents the set of samples, comprising individual fossil occurrences—the ages of the201

specimens, which for the time being we assume are known exactly, i.e., there is no stratigraphic-age202

uncertainty—as well as any extant members of the group being analyzed, and the diversification pa-203

rameters are the same as those described above for the fossilized birth-death model. Here, it is clear204

that P(S | λ, µ, φ, ρ) is the probability of the observations, and is thus (proportional to) the likelihood205

function. It may be difficult to compute the probability of the samples without knowing the complete206

tree (including unsampled lineages), Ψ̃. However, if we can compute the conditional probability of207

the samples given the complete tree, in principle we can write the unconditional probability of the208

samples as:209

probability of
the samples︷ ︸︸ ︷

P(S | λ, µ, φ, ρ) =
∫ joint probability of

the tree and samples︷ ︸︸ ︷
P(S, Ψ̃ | λ, µ, φ, ρ) dΨ̃ (S.4)

=
∫

P(S | Ψ̃, φ, ρ)︸ ︷︷ ︸
conditional probability

of the samples,
given the tree

P(Ψ̃ | λ, µ)︸ ︷︷ ︸
probability of

the tree

dΨ̃,

where the integral represents integration over all possible complete phylogenies, Ψ̃, in proportion210

to their probability. Given the phylogeny, the probability of the samples is independent of the di-211

versification parameters, λ and µ; likewise, the probability of the full tree does not depend on the212

sampling parameters, φ and ρ. (Note that this complete tree is different from the “reconstructed” tree213

in equation [S.1], Ψ, which hides all the unsampled lineages.)214

While the probability of the samples given the complete tree—P(S | Ψ̃, φ, ρ)—may be relatively215

easy to compute, the above integral may be quite difficult to compute. However, a simple solution216

would be to include the complete phylogeny in the posterior distribution as an additional parameter:217

P(Ψ̃, λ, µ, φ, ρ | S) =
P(S | Ψ̃, φ, ρ)P(Ψ̃ | λ, µ)P(λ)P(µ)P(φ)P(ρ)

P(S)
. (S.5)



Importantly, this will produce the same posterior estimates of λ, µ, φ, and ρ as produced by equation218

(S.3) when we integrate over the phylogeny:219

∫
P(Ψ̃, λ, µ, φ, ρ | S) dΨ̃ =

∫ P(S | Ψ̃, φ, ρ)P(Ψ̃ | λ, µ)P(λ)P(µ)P(φ)P(ρ)
P(S)

dΨ̃

P(λ, µ, φ, ρ | S) =

[∫
P(S | Ψ̃, φ, ρ)P(Ψ̃ | λ, µ) dΨ̃

]
P(λ)P(µ)P(φ)P(ρ)

P(S)

P(λ, µ, φ, ρ | S) =
P(S | λ, µ, φ, ρ)P(λ)P(µ)P(φ)P(ρ)

P(S)
.

Additionally, both representations have the same marginal likelihood, P(S). The equation (S.5) im-220

plies an approach that is very similar to the approach used by the Bayesian program PyRates (Silve-221

stro et al. 2014), which estimates the times of origin and extinction of every sampled lineages (much222

like branch lengths in the complete phylogeny), but not the relationships between lineages (i.e., the223

phylogenetic topology).224

S§3.3 Combining phylogenetic and paleontological models225

While the phylogenetic and paleontological models use the same underlying models of lineage diver-226

sification and sampling, they do not appear to use the same data (the phylogenetic model uses the227

character data, X, whereas the paleontological model uses the sample data, S). We can resolve this228

apparent discrepancy by simply adding character data, X, and a model of character evolution to the229

paleontological model that includes an implicit tree (equation [S.5]). In this case, the data are both S230

and X, and the corresponding posterior distribution is:231

P(Ψ̃, θx, λ, µ, φ, ρ | S, X) =

likelihood︷ ︸︸ ︷
P(X | Ψ̃, θx)P(S | Ψ̃, φ, ρ)

priors︷ ︸︸ ︷
P(Ψ̃ | λ, µ)P(θx)P(λ)P(µ)P(φ)P(ρ)

P(S, X)︸ ︷︷ ︸
marginal likelihood

.

We can attempt to derive something like the standard phylogenetic model—equation (S.1)—from232

this combined model by first recognizing P(S | Ψ̃, φ, ρ)P(Ψ̃ | λ, µ) as the joint probability of the sam-233

ples and full tree, P(S, Ψ̃ | λ, µ, φ, ρ) (see equation [S.4]):234

P(Ψ̃, θx, λ, µ, φ, ρ | S, X) =

likelihood︷ ︸︸ ︷
P(X | Ψ̃, θx)

some likelihood,
some prior︷ ︸︸ ︷

P(S, Ψ̃ | λ, µ, φ, ρ)

prior︷ ︸︸ ︷
P(θx)P(λ)P(µ)P(φ)P(ρ)

P(S, X)
.

Next, we must reduce Ψ̃ to Ψ. For any given Ψ, there are an infinite number of unobserved histories235

consistent with Ψ, each of which produces a unique Ψ̃. We label the unobserved history Ψc, and236

say that Ψ̃ = {Ψ, Ψc}. The posterior distribution of the phylogenetic model should integrate over all237



possible unobserved histories in proportion to their probability:238

P(Ψ, θx, λ, µ, φ, ρ | S, X) =
∫

P(Ψ, Ψc, θx, λ, µ, φ, ρ | S, X) dΨc

=

[∫
P(X | S, Ψ, Ψc, θx)P(S, Ψ, Ψc | λ, µ, φ, ρ) dΨc

]
P(θx)P(λ)P(µ)P(φ)P(ρ)

P(S, X)

=
P(X | S, Ψ, θx)P(S, Ψ | λ, µ, φ, ρ)P(θx)P(λ)P(µ)P(φ)P(ρ)

P(S, X)

P(Ψ, θx, θΨ | S, X) =

likelihood︷ ︸︸ ︷
P(X | S, Ψ, θx)

some likelihood,
some prior︷ ︸︸ ︷

P(S, Ψ | θΨ)

prior︷ ︸︸ ︷
P(θx)P(θΨ)

P(S, X)︸ ︷︷ ︸
marginal likelihood

. (S.6)

(We include S as a dependency in P(X | S, Ψ, θx) because Ψ is a function of S and Ψ̃.)239

Equation (S.6) is very similar to the standard phylogenetic representation, but with critical differ-240

ences. First, the data include both X and S, rather than just X; consequently, the marginal likelihoods241

must be different. Second, the prior probability of the sampled tree—P(Ψ | θΨ) in equation (S.1)—has242

been replaced with the joint probability of the samples and the sampled tree, P(S, Ψ | θΨ). Because243

this joint probability includes observations, some part of it should be regarded as part of the likelihood244

of the model.245

These equations demonstrate that probabilities we are used to thinking of as prior probabilities—246

specifically, the probabilities of trees under a birth-death model—are actually an ambiguous mixture247

of likelihood-like and prior-like quantities. That is, the likelihood and prior functions in the standard248

Bayesian model are mislabeled. We explore the consequences of this mislabeling in Section S§4.249

S§3.4 When sample ages are uncertain250

So far, we have assumed that the ages of the fossil occurrences are known without error, which helps to251

clarify our main argument that samples should be treated as data. However, in real datasets, the ages252

of fossil specimens are often uncertain, because the age of the sediments in which the specimens are253

found can only be known within a certain interval. This phenomenon—referred to as stratigraphic-254

age uncertainty—is somewhat orthogonal to our argument, but we mention it here because previous255

work has argued that stratigraphic-age uncertainty should be treated a part of the likelihood function256

Drummond and Stadler (2016). We agree with this perspective, and show how it fits in to the frame-257

work we outlined above. Unfortunately, stratigraphic-age uncertainty leads to additional challenges258

when computing marginal likelihoods.259

Following Drummond and Stadler (2016), we represent stratigraphic-age data as260

A = {a1, a2, . . . , an} for the n samples, where ai = {
∨
ai,
∧
ai} are the minimum and maximum ages261

of the ith sample, respectively. The probability of the data (the stratigraphic ranges) would then be:262

P(A | λ, µ, φ, ρ) =
∫

P(A, S | λ, µ, φ, ρ) dS

=
∫

P(A | S)P(S | λ, µ, φ, ρ) dS, (S.7)

where the integration is over the exact ages of all the samples, S, and P(A | S) is a product of indicator263



functions:264

P(A | S) =
n

∏
i

P(ai | Si),

with265

P(ai | Si) =

1 if
∨
ai ≤ si ≤

∧
ai

0 otherwise.

Including the full tree, the likelihood with stratigraphic age uncertainty becomes:266

P(A | λ, µ, φ, ρ) =
∫∫

P(A | S)P(S | Ψ̃, φ, ρ)P(Ψ̃ | λ, µ) dΨ̃ dS.

Even if this integral were analytically tractable, we could not use it with character data, because the267

probability of the character data will generally depend on the exact ages of the samples. However, we268

can use data augmentation (Tanner and Wong 1987) to include the exact ages in the model, and write269

the full posterior distribution:270

P(S, Ψ, θx, θΨ | A, X) =
P(X | S, Ψ, θx)P(A | S)P(S, Ψ | θΨ)P(θx)P(θΨ)

P(A, X)
,

where now the data are A and X. This approach amounts to a data augmentation because the likeli-271

hood should average over the exact sample ages, S, as implied by equation (S.7).272

Without special machinery, generic methods for computing the marginal likelihood that depend273

on raising the likelihood function to a power cannot effectively deal with data-augmented models274

(Rodrigue and Aris-Brosou 2011). As a consequence, correct solutions for marginal-likelihood estima-275

tors with stratigraphic uncertainty are currently unavailable.276



S§4 Sequential Bayesian Inference277

Above, we showed that the traditional phylogenetic model mistreats the probability of the samples278

as part of the prior rather than the likelihood function. Here, we use the principle of of sequential279

Bayesian inference to understand the quantitative consequences of this error. The parameters of the280

prior distributions (hyperparameters) we choose for a Bayesian model represent our prior belief about281

plausible parameter values, and in principle reflect our previous experiences with analyzing relevant282

data (or ignorance, if we have no previous experience). In a sense, when informed by previous analy-283

sis, these hyperparameters encapsulate the information in the previous datasets about the parameters,284

i.e., they can be viewed as “old” data. When we analyze a “new” dataset, we update our prior beliefs285

accordingly. We can repeat this process indefinitely, as we collect additional datasets. This sequential286

Bayesian updating process is the basis of Lindley’s aphorism that “today’s posterior is tomorrow’s287

prior” (Lindley 1972).288

When we perform a Bayesian phylogenetic analysis under a birth-death model, we can imagine289

collecting two datasets. We first collect samples, represented by their ages S. We may infer the tree290

model (birth-death and sampling) parameters, θΨ, directly from this dataset. We can write the poste-291

rior distribution of this model as:292

P(θΨ | S) =

likelihood︷ ︸︸ ︷
P(S | θΨ)

prior︷ ︸︸ ︷
P(θΨ)

P(S)︸︷︷︸
marginal likelihood of

the samples

, (S.8)

which corresponds to the posterior distribution of a “paleontological” model (equation [S.3]).293

However, if we then become additionally interested in the phylogenetic relationships themselves,294

we can assemble a character dataset, X. Rather than re-doing the initial analysis, we may apply the295

principle of sequential Bayesian updating and use the first posterior as a prior in our second analysis:296

P(Ψ, θx, θΨ | X, S) =

likelihood︷ ︸︸ ︷
P(X | S, Ψ, θx)

priors︷ ︸︸ ︷
P(Ψ | θΨ)P(θΨ | S)P(θx)

P(X | S)︸ ︷︷ ︸
marginal likelihood of the characters

given the samples

. (S.9)

In this equation, S is effectively treated as a hyperparameter, i.e., a fixed parameter of the prior dis-297

tribution on θΨ. (We note that all prior distributions have hyperparameters, but we usually exclude298

them from our notation for simplicity.)299

Alternatively, we could start again and do both analyses simultaneously (jointly). The posterior of300

such a joint analysis would be301

P(Ψ, θx, θΨ | X, S) =

likelihood︷ ︸︸ ︷
P(X | S, Ψ, θx)

some likelihood,
some prior︷ ︸︸ ︷

P(S, Ψ | θΨ)

priors︷ ︸︸ ︷
P(θΨ)P(θx)

P(X, S)︸ ︷︷ ︸
marginal likelihood of
samples and characters

, (S.10)

where we view the likelihood function as P(X | Ψ, θx), as well as some contribution from P(S, Ψ | θΨ),302

as we explain in Section S§3. We can verify that the posterior distribution from the joint analysis, equa-303

tion (S.10), is equivalent to the posterior distribution after the second step of the sequential analysis304



by substituting equation (S.8) into equation (S.9), and recognizing that305

P(X, S) = P(X | S)P(S),

i.e., that the marginal likelihood of the joint analysis is the product of the marginal likelihoods of each306

step in the sequential analysis.307

The remaining task is to explain why SS and RJ MCMC estimate different Bayes factors. Methods308

for calculating the marginal likelihood, such as SS, require that we clearly distinguish the probability309

terms that are “likelihood” from those that are “prior”. In the standard phylogenetic notation (equa-310

tion [S.1]), the probability of the character data is labeled the likelihood, while the joint probability of311

the tree and samples is labeled the prior. This corresponds to the labeling in the second step of the312

sequential analysis, equation (S.9), in which case the marginal likelihood is P(X | S); this marginal313

likelihood perceives the samples as “old” data, and only computes the marginal likelihood of the314

“new” data, X. When we compare two models in this way, we are essentially imagining that for each315

model, we first update the priors according to S, and then compute the marginal likelihood of X given316

the corresponding posteriors from the first step. The resulting Bayes factor between the two models i317

and j will be318

BFij =
Pi(X | S)
Pj(X | S)

, (S.11)

where Pk(X | S) is the marginal likelihood of model k. By contrast, RJ MCMC does not depend on the319

labeling of probability terms. In this case, the dataset implicitly includes both samples and character320

data, and the Bayes factors will be321

BFij =
Pi(X, S)
Pj(X, S)

=
Pi(X | S)
Pj(X | S)

Pi(S)
Pj(S)

, (S.12)

Equations (S.11) and (S.12) predict that the discrepancy in Bayes factors between SS and RJ MCMC322

should be equal to the ratio of the marginal likelihoods of the samples, Pi(S)÷ Pj(S).323

For birth-death processes that generate contemporaneous samples, the probability of the samples324

for a given set of parameters is straightforward to compute (Kendall 1948; Höhna 2015), and we can325

relatively easily compute the marginal likelihood. Indeed, when we calculate the marginal likelihood326

of the samples, it corresponds exactly to the discrepancy we observe between SS and RJ MCMC esti-327

mates of the Bayes factor (Fig. 1B, main text, middle, dashed lines). For birth-death processes generat-328

ing non-contemporaneous samples, the marginal probability of the samples is not possible to compute329

analytically, and therefore we cannot make precise numerical predictions about the discrepancy.330



S§5 Factorizing Bayes’ Theorem331

The problem with equation (S.6) is that P(S, Ψ | θΨ) combines likelihood and prior quantities. This332

could be resolved by factoring this quantity as:333

P(S, Ψ | θΨ) = P(Ψ | S, θΨ)P(S | θΨ),

in which case each term on the right is unambiguously likelihood (the marginal probability of the334

samples) or not (the conditional probability of the tree, given the samples). This can be directly sub-335

stituted into the posterior:336

P(Ψ, θx, θΨ | S, X) =
P(X | S, Ψ, θx)P(Ψ | S, θΨ)P(S | θΨ)P(θx)P(θΨ)

P(S, X)
, (S.13)

which is compatible with standard numerical methods for computing the marginal likelihood that337

rely on raising the likelihood function to a power (“power-posterior” methods, for example, path-338

sampling and stepping-stone-sampling algorithms; Lartillot and Philippe 2006; Xie et al. 2011). How-339

ever, the marginal probability of the samples and the conditional probability of the tree and the sam-340

ples are not generally easy to compute; in particular, analytical solutions are only currently available341

for simple models of contemporaneous samples, and may be impossible for more complex models.342

We implemented this solution for Yule and birth-death models producing contemporaneous sam-343

ples. For these models, P(S | θΨ) is the probability of realizing n samples of a given age, for which344

there are available analytical solutions (e.g., equation [8] from Höhna 2015). Likewise, P(Ψ | S, θΨ)—345

the probability of the tree conditional on n samples—also has an available analytical solution (e.g.,346

equation [3] from Yang and Rannala 1997). We re-analyzed our simulated data from Section S§1.2347

using this formulation, demonstrating that it provides correct marginal-likelihood estimates (Fig. S7).348
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Figure S7: Bayes factor discrepancies are resolved by refactoring Bayes’ theorem. We compared the fit of two birth-
death processes—the Yule model (with no extinction rate parameter) and the standard birth-death (BD) model—to datasets
simulated under the BD model (as described in Section S§1.2). We corrected the likelihood function according to equation
(S.13). As expected, there is no discrepancy between the BFs calculated using marginal likelihoods and reversible-jump
MCMC.



S§6 Posterior-Predictive Simulation with Samples as Data349

While Bayes factors are useful for comparing the relative fit of competing models, they provide no350

guarantee that the best model adequately describes the process that gave rise to the observed data.351

Posterior-predictive simulation (PPS; Gelman et al. 1996) is a Bayesian tool that fills this gap by as-352

sessing model adequacy—whether our inference model provides an adequate description of the true353

process that produced our observed dataset—and is therefore useful for assessing absolute model fit.354

Generally, the procedure works by drawing parameters of the model from their joint posterior dis-355

tribution (e.g., as produced by an MCMC analysis), simulating new datasets under these parameters,356

and checking whether the simulated data resembles the observed dataset: are the values of a partic-357

ular summary statistic computed from the simulated datasets reasonably close to the value of that358

statistic computed from the empirical data?359

In phylogenetics, the PPS has been largely limited to morphological or molecular character360

datasets (e.g., Brown 2014; Höhna et al. 2018; Slater and Pennell 2014; May et al. 2021). This lim-361

ited application of PPS is understandable, given that the character datasets are the only component of362

the study that is considered to be data under the standard phylogenetic model. However, for studies363

that rely on the tree model, such as diversification-rate analyses or divergence-time estimation, a more364

natural summary statistic would be one that relates to characteristics of the sample, rather than the365

morphological or molecular data. For example, if we wanted to assess the adequacy of a diversifica-366

tion model, we might use the number of samples at a particular time as a test statistic. The availability367

of this application of sample-based test statistics is one of the primary benefits—to theoreticians and368

empiricists alike—of recognizing the samples themselves as data that inform the tree model.369

To demonstrate the utility of posterior-predictive distributions for samples under birth-death370

models, we applied this technique to the Marattiales analyses described above (S§2). We simulated371

datasets by simulating trees under the sampled fossilized birth-death model parameters, and keeping372

track of the number of fossils recorded in each geological epoch. The posterior-predictive distributions373

of the number of samples shows that the model with constant fossilizaton rates does a poor job of pre-374

dicting the observed number of fossils in the Mississippian, Pennsylvanian, and Cisuralian (Fig. S8).375

By contrast, the model with variable fossilization rates does a much better job at predicting the number376

of fossils in these (and subsequent) intervals (Fig. S8, right). This result is concordant with our relative377

measures of model fit (using Bayes factors), which we report in the main text, and demonstrates that378

the variable-rate model is not only better-fitting than its constant-rate counterpart, but moreover that379

it is an adequate representation of the process that generated our data. (We present these results as a380

proof-of-concept rather than as a method: developing appropriate posterior-predictive methods is a381

significant task that requires validation and evaluation of statistic properties.)382
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S§7 Random Variables and Priors in Phylogenetic Inference383

The problem that we detail in this manuscript—that the standard phylogenetic model mislabels sam-384

ples as belonging to the prior rather than to the likelihood, which prevents accurate marginal likeli-385

hood calculation for tree models—is a specific example of a more general inconsistency in likelihood-386

based phylogenetics of distinguishing random variables (which have probabilities) from parame-387

ters (which have likelihoods). For example, there is a history of mistreating data as parameters in388

maximum-likelihood inference of ancestral states. Ancestral states are an outcome of the model: they389

are random variables, just as the character states at the tips are, an equivalence that is apparent when390

one recognizes that today’s tip data are tomorrow’s ancestral states. It is true, of course, that ancestral391

states are not observed, but that does not make them any less data-like; they are perhaps best con-392

ceived of as missing data, just as there can be missing data at the tips. There is nonetheless a strong393

history of treating ancestral states as parameters and, for example, comparing among different an-394

cestral states with likelihood-ratio tests (e.g., Pagel 1999). We contend that this approach is incorrect:395

ancestral states are not parameters and thus do not have likelihoods; rather, ancestral states are ran-396

dom variables to which we can assign different probabilities, given the tip data and model of character397

evolution (Yang et al. 1995; Yang 2014).398

Similarly, there has been some historical disagreement about whether the phylogeny itself is a399

parameter or a random variable. The current dominant perspective, which derives from Felsenstein400

(Felsenstein 1973a,b), is that the tree is a parameter. In a maximum-likelihood framework, this per-401

spective implies that the tree has a maximum-likelihood estimate; in a Bayesian framework, this per-402

spective suggests that the tree should have a prior distribution. However, a minority perspective is403

that the tree should be viewed as a random variable just as the ancestral states are viewed as a random404

variable (Edwards 1970; Rannala and Yang 1996), and therefore should be associated with a proba-405

bility distribution even in a maximum-likelihood framework. This latter perspective is even more406

germane today, considering the significant development of character-state-dependent diversification407

models (i.e., the binary-state-specific speciation-and-extinction model [BiSSE; Maddison et al. 2007]408

and its derivatives). These models assume that rates of speciation and extinction are a function of an409

evolving character; since the evolution of the character is a random process, the resulting tree must be410

a random variable.411

Our arguments are in alignment with the latter perspective: the tree should be viewed as the out-412

come of a random process, even in a maximum likelihood framework. However, while both Edwards413

(1970) and Rannala and Yang (1996) used birth-death models for the tree, they condition the model on414

achieving exactly the observed number of extant species. This is equivalent to performing the second415

step of a sequential Bayesian analysis, which we describe above. Our view is therefore an extension416

of Edwards’, to include the samples themselves as part of the outcome.417
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