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Abstract  

Brain resident microglia have a distinct origin compared to macrophages in other organs. 

Under physiological conditions, microglia are maintained by self-renewal from the local pool, 

independent of hematopoietic progenitors. Pharmacological depletion of microglia during 

therapeutic whole-brain irradiation prevents synaptic loss and long-term recognition memory 

deficits but the mechanisms behind these protective effects are unknown. Here we demonstrate 

that after a combination of therapeutic whole-brain irradiation and microglia depletion, 

macrophages originating from circulating monocytes engraft into the brain and replace the 

microglia pool. Comparisons of transcriptomes reveal that brain-engrafted macrophages have 

an intermediate phenotype that resembles both monocytes and embryonic microglia. Brain-

engrafted macrophages display reduced phagocytic activity for synaptic compartments 

compared to microglia from normal brains in response to a secondary concussive brain injury. In 

addition to sparing mice from brain radiotherapy-induced long-term cognitive deficits, 

replacement of microglia by brain-engrafted macrophages can prevent concussive injury-

induced memory loss. These results demonstrate the long-term functional role of brain-

engrafted macrophages as a possible therapeutic tool against radiation-induced cognitive 

deficits. 
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Introduction 

Brain resident microglia are the innate immune cells of the central nervous system 

(CNS). Arisen from the yolk sac during embryonic development, microglia actively survey the 

environment to maintain normal brain functions (1, 2). Under physiological conditions, microglia  

are maintained solely by self-renewal from the local pool (3). Following brain injury and other 

pathological conditions, microglia become activated and play a central role in the clearance of 

cellular debris, but if not controlled this process can result in aberrant synaptic engulfment (4-7). 

Temporary depletion of microglia can be achieved by using pharmacologic inhibitors of the 

colony-stimulating factor 1 receptor (CSF-1R) (8). In the normal brain, treatment with CSF-1R 

inhibitors (CSF-1Ri) can deplete up to 99% of microglia without causing detectable changes to 

cognitive functions (8, 9). Full repopulation occurs within 14 days of inhibitor withdrawal and the 

repopulated microglia are morphologically and functionally identical to the microglia in naïve 

brains (9). Microglia depletion and repopulation by local progenitors has been shown to be 

beneficial for disease- ,injury- , and age-associated neuropathological and behavioral 

conditions(10-15). However, the mechanisms for these protective effects are unknown.  

Whole-brain radiotherapy (WBRT), delivered in multiple fractions, is routinely used to 

treat patients with brain tumors. It is estimated that more than 200,000 patients receive WBRT 

yearly in the US alone (16). While it is effective in improving intracranial tumor control, WBRT 

leads to deterioration of patients’ cognitive functions and quality of life (17-19). Currently, there 

is no treatment available to prevent or mitigate these adverse effects. Previous studies 

demonstrated that WBRT causes deleterious effects to the CNS microenvironment by a number 

of mechanisms including apoptosis of neural progenitor cells, disruption of the blood-brain 

barrier, activation of microglia and accumulation of peripherally derived macrophages (20-25). 

We and others have reported that depletion of microglia during or shortly after brain irradiation 
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in animal models can prevent loss of dendritic spines in hippocampal neurons and cognitive 

impairments that develop at later time points (12-14). These reports suggest that microglial 

plays a critical role in inducing synaptic abnormalities and consequently, cognitive deficits after 

brain irradiation. The underlying molecular pathways responsible for the protective effects of 

repopulated microglia against radiotherapy-induced neuronal alterations remain unknown. 

In the current study, 1) we first defined signature of repopulating cells and analyzed the 

transcriptional profile of repopulated brain macrophages from irradiated mouse brains after 

CSF-1R inhibitor-mediated depletion. 2) We next sought to establish the origin of repopulated 

cells coming from the peripheral monocytic lineage. 3) We identified the functionality of 

repopulated macrophages by measuring the ability to engulf synaptic compartments compared 

to brain resident microglia. Lastly, 4) we determined the protective properties of brain-engrafted 

macrophages (BEMs) against a secondary concussive brain injury-induced cognitive deficits. 

Together, these results uncover the mechanism by which brain-engrafted macrophages 

preserve hippocampal synapses and memory functions after radiation injury and also in 

response to an additional brain injury. 
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Significance Statement 

This study reports fate and functions of brain-engrafted macrophages after they replaced 

resident microglia in the brain. Concurrent microglia depletion and therapeutic brain irradiation 

results in replacement of microglia by peripheral derived brain-engrafted macrophages, which 

maintain a stable population in the brain for at least six months. These brain-engrafted 

macrophages are not reactivated as irradiated microglia and do not exhibit irradiation-induced 

transcriptomic signatures. In addition, they express lower phagocytic and lysosome markers, 

and do not respond to a secondary concussive brain injury. As a result, long-term memory 

functions are protected in brain-engrafted macrophages bearing animals. We conclude that 

replacement of microglia by brain-engrafted macrophages protects against radiation- and 

concussive injury-induced memory deficits. 
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Results 

Microglia depletion and repopulation prevents radiation-induced hippocampal-dependent 

memory deficits  

Temporary microglia depletion during or shortly after exposure to brain irradiation prevents 

cognitive deficits, suggesting microglia’s key role in modifying neuronal and cognitive functions 

(12-14). Changes in expression levels of pro-inflammatory cytokine/chemokines have been 

shown to correlate with cognitive performance in mice (12, 15, 20), however, the exact change 

in the transcriptional profile of repopulated microglia after brain irradiation is unknown and is an 

important tool to dissect the roles that repopulated microglia play in preventing of radiation-

induced memory deficits. In this study we used a previously reported WBRT and microglia 

depletion paradigm(13) and performed RNA sequencing using repopulated microglia with and 

without WBRT, and compared with transcriptomes of microglia obtained from mice without CSF-

1R inhibitor-mediated depletion (Figure 1a,b). A CSF-1R inhibitor was used to fully deplete 

microglia in 8-weeks old male mice, for a duration of 21 days. Three fractions of therapeutic 

whole-brain irradiation were given to each mouse every other day over five days starting from 

day 7 of CSF-1R inhibitor treatment. Novel Object Recognition (NOR) test was used to measure 

recognition memory 4 weeks after the last fraction of WBRT. Consistent with our previous report, 

fractionated WBRT resulted in impairment in recognition memory, which was prevented by CSF-

1R inhibitor treatment (Figure 1a, lower panel). No deficits in motor functions or changes of 

anxiety levels were found in the open field test (scored from day 1 of NOR test, data not shown). 

One day after the NOR test, mice were euthanized and whole brains were used to sort microglia 

(Control Sham and Control + WBRT, CD45low/intCD11b+) and repopulated cells (CSF-1R inhibitor 

Sham and CSF-1R +WBRT, CD45low/intCD11b+) for RNA extraction and RNA sequencing 

(Figure 1a).  
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Microglia depletion and repopulation eliminates radiation-induced transcriptome signatures 

To identify biological pathways involved in radiation-induced memory deficits, we listed genes 

differentially expressed in microglia after WBRT with and without microglia depletion and 

repopulation for Gene Ontology Biological Process (GOBP) enrichment analysis. 204 genes 

were found to be differentially expressed (DE genes) only in microglia isolated from irradiated 

brains (Figure 1b and Supplementary Table 1). No enriched GOBP terms were found from the 

87 WBRT down-regulated genes (Supplementary Table 1). There were 193 enriched GOBP 

terms from the 117 WBRT up-regulated genes, the top 20 enriched GOBP terms are listed in 

Figure 1c. Almost half (96) of these enriched GOBP terms were associated with increased 

response to cell cycle regulation, radiation, DNA repair and stress; the rest enriched GOBP 

terms were associated with increased metabolism (21), development (12), regulation of protein 

kinase activity (8), cellular adhesion (4) and other functions (Figure 1d, Supplementary Table 

1). Notably, regardless of WBRT, the expression of these WBRT-induced DE genes did not 

change in cells isolated from brains treated with CSF-1Ri. These results demonstrate that the 

transcriptomic changes in microglia induced by WBRT can be completely eliminated after 

microglia depletion and repopulation.  

To validate the RNAseq results, we next performed qPCR analyses using sorted microglia from 

animals in the same cohort (Figure 1b, and Supplementary Table 1). The expression of the 

toll-like receptor 3 (TLR3) family gene Lgals9 was significantly increased by irradiation (WBRT + 

Control diet versus Sham + Control diet) and was at levels comparable to the shams (Sham + 

Control diet) when treated with CSF-1Ri despite of irradiation (Supplementary Figure S1a). 

TNFα, another TLR3 family member which also belongs to GOBP “regulation of response to 

reactive oxygen species (ROS)”, was significantly upregulated by irradiation (WBRT + Control 

diet versus Sham + Control diet); its expression levels are comparable between the Sham + 

Control diet and the WBRT + CSF1Ri treated groups. However, TNFα remained elevated in 
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microglia from mice treated only by CSF-1Ri (Supplementary Figure S1b). Another gene from 

the GOBP “regulation of response to ROS”, Sesn2, was also significantly upregulated by WBRT 

(Supplementary Figure S1c). Sesn2 remained at the control sham levels in CSF-1Ri only 

group and was significantly down-regulated in the WBRT + CSF-1Ri group. Mdm2, a gene that 

belongs to GOBP “cellular response to ionizing radiation”, was increased after WBRT, and 

significantly downregulated in in CSF-1Ri treated groups (Supplementary Figure S1d). Other 

WBRT-induced expression of radiation induced genes, Ddias, Rad51, FoxM1 and Check 1, 

were all at the control sham levels in repopulated microglia regardless of the exposure to WBRT 

(Supplementary Figure S1 e – h). In conclusion, the qPCR validation confirmed that the 

transcriptomic changes seen in our RNAseq dataset were reliable. These results suggest that 

CSF-1Ri mediated microglia depletion during WBRT followed by repopulation eliminated 

radiation-induced signatures in the microglia transcriptome. 

 

Microglia depletion and repopulation prevents radiation-induced loss of hippocampal PSD-95 

We previously demonstrated that brain irradiation resulted in reduced density of dendritic spines 

in hippocampal neurons (13). To accurately determine the effect of WBRT in the intrinsic 

synaptic protein levels we measured pre- (Syn1) and post-synaptic (PSD-95) markers in the 

hippocampus by flow-synaptometry (26, 27). Fractionated hippocampal cell membranes 

containing synaptosomes were enriched and particles between 1 – 3 µm were analyzed to 

measure synaptic protein levels using mean fluorescent intensities by FACS (Figure 1e). We 

observed no changes in pre-synaptic Synapsin-1 protein levels in the hippocampi across all 

groups (Figure 1f). However, we measured a significant reduction in post-synaptic protein PSD-

95 after WBRT, which was completely prevented by CSF-1R inhibitor mediated microglia 

depletion (Figure 1g). These results cement the role of microglia in the radiation-induced loss of 

post-synaptic components after WBRT.  
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Repopulated microglia after WBRT originate from peripheral monocytes  

The fractalkine receptor CX3CR1 is expressed in both microglia and peripheral monocytes (28), 

while chemokine receptor CCR2 is mainly expressed in monocytes (29). In the 

Cx3cr1GFP/+Ccr2RFP/+ reporter mice, the different expression patterns of GFP and RFP can be 

used to distinguish microglia (GFP+RFP-) from monocytes (GFP+RFP+) (29). To investigate the 

cell-of-origin of repopulated microglia in our experimental paradigm we generated bone marrow 

chimeras with head-protected irradiation using fluorescent labeled bone marrow from 

Cx3cr1GFP/+Ccr2RFP/+ donor mice (Figure 2a). This allowed partial replacement of bone marrow 

cells without changing the permeability of the blood-brain-barrier (2, 30, 31).  At 6 weeks after 

bone marrow transplantation about two thirds of peripheral monocytes were replaced by 

transplanted cells with fluorescent labels (Figure 2b). Bone marrow chimera animals were then 

treated with WBRT and CSF-1R inhibitor following the same experimental timeline used for 

RNA sequencing (Figure 2a). Next, we compared the compositions of myeloid cells in the brain 

after CSF-1R inhibitor-mediated depletion and repopulation. Flow cytometry analyses performed 

33 days after WBRT revealed that microglia depletion and repopulation alone (Sham + CSF-1Ri) 

only resulted in limited accumulation of transplanted cells in the brain (Figure 2c, BMT only). 

However, in mice that received WBRT and CSF-1R inhibitor two thirds of the microglia were 

replaced by Cx3cr1-GFP labeled cells, close to the chimera efficiency (Figure 2 b and c, BMT 

+fWBI). These results suggest that microglia depletion during WBRT resulted in significant 

contribution of the CNS microglia pool by peripheral monocyte-derived BEMs.  

 

Brain-engrafted macrophages retain monocyte signatures 
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We next assessed the transcriptomic profile of the BEMs after microglia depletion and WBRT by 

comparing our RNAseq dataset with a previous report by Lavin and Winter et al (32). To 

minimize false discovery and noise signals, we examined 1201 genes from this published 

dataset with a fold change greater than 1.50 or smaller than 0.667 for down-regulated genes 

(FDR <0.01, monocyte compared to naïve microglia), and found that 1066 genes were 

expressed in our samples (Supplementary Table 2). Strikingly, the hierarchical clustering of 

525 monocyte- and 541 microglia-signature genes revealed that the expression profile of 

monocyte-derived BEMs (WBRT + CSF-1Ri) does not cluster with naïve (Sham + Control diet), 

irradiated (WBRT + Control diet) or repopulated (Sham + CSF-1Ri) microglia (Figure 2d). 

Similarity matrix analysis using this microglia/monocyte signature gene list revealed that the 

expression pattern in BEMs is different from naïve, irradiated and repopulated microglia (Figure 

2e). Next, we counted genes in each group that expressed in the same trends as microglia or 

monocyte signature genes from the Lavin data set to determine the similarity scores to these 

two cell populations. We found that naïve, irradiated and repopulated microglia had 60%, 57% 

and 51% (718, 685 and 612) genes expressed in the same trends as microglia signature genes, 

respectively, with minimum similarity (2-3%) to monocyte signature genes; while BEMs 

expressed both microglia (28%, 331 genes) and monocyte signature genes (32%, 386 genes) 

(Figure 2f).  

To validate microglia and monocyte signature genes that were differentially expressed in our 

RNAseq results we performed qPCR analyses (Supplementary Figure 2 and Supplementary 

Table 2). Microglia signature genes Sall1, P2ry12, Tmem119 and Trem2 were expressed at 

comparable levels in naïve, irradiated and repopulated microglia, while at significantly lower 

level in BEMs (Supplementary Figure 2 a – d). On the other hand, expression of monocyte 

signature gene Runx3, was significantly higher in BEMs than other groups (Supplementary 

Figure 2 e). Notably, previously reported brain-engrafted macrophage specific genes Lpar6 and 
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Pmepa1 (33) have significantly higher expression levels in BEMs after CSF-1Ri and WBRT 

treatments compared to other groups (Supplementary Figure 2 f and g). In addition, the 

expression of Ccr2, a monocyte signature gene that was not differentially expressed in our 

RNAseq dataset, was also not differentially expressed among the four experimental groups by 

qPCR, suggesting that monocyte derived BEMs had lost their Ccr2 expression at this time point 

(Supplementary Figure 2 h). Taken together, these results confirm that after WBRT and CSF-

1R inhibitor-mediated microglia depletion BEMs originate from peripheral monocytes.  

 

Monocyte-derived brain-engrafted macrophages resemble embryonic microglia signatures 

Because monocyte-derived BEMs were exposed to the brain microenvironment for a short 

period of time, we hypothesized that they were functionally immature. To test this hypothesis, 

we first examined genes that were highly expressed at different developmental stages in 

microglia, and used yolk sac/embryonic and adult-specific genes as references (called 

embryonic and adult signature genes hereon) (34). Hierarchical clustering of 1617 embryonic 

and 785 adult microglia signature genes revealed that transcriptomes of BEMs were highly 

similar to embryonic microglia, while the transcriptomes of microglia from other groups were 

similar to adult microglia and did not resemble the embryonic microglia (Supplementary Figure 

S3a, and Supplementary table 3). In addition, a similarity matrix analysis using all 2402 

overlapped genes between two datasets showed that BEMs had the lowest similarity with 

microglia from other groups (Supplementary Figure S3b). In addition, 54% of the listed genes 

(n=1306) in BEMs expressed in the same trends as yolk sac/embryonic microglia compared to 

adult microglia (Supplementary Figure S3c). In contrast, naïve (Sham), irradiated (WBRT only) 

and repopulated microglia (CSF-1Ri only) had much lower embryonic signature similarity scores 

(16%, 19% and 17%, n=381, 445 and 405, respectively, Supplementary Figure S3c). Notably, 

naïve, irradiated and repopulated microglia transcriptomes had high adult signature similarity 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2021. ; https://doi.org/10.1101/794354doi: bioRxiv preprint 

https://doi.org/10.1101/794354
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

scores (69%, 59% and 63%, n=1649, 1409 and 1507, respectively), while BEMs had the lowest 

adult similarity score (32%, n=759). These data suggest that the monocyte-derived BEMs start 

to resemble microglia by expressing more embryonic than adult microglia transcriptomic 

signature genes. 

 

Radiation-induced aberrant phagocytosis activity is abrogated in brain-engrafted macrophages  

Aberrant loss of synapses during neuroinflammatory conditions has been linked with increased 

engulfment of synaptic compartments by microglia (35). To determine if WBRT affects the 

phagocytosis potency of microglia, we injected pre-labeled synaptosomes from a naïve donor 

mouse into the hippocampi of mice after WBRT and CSF-1R inhibitor treatment and measured 

engulfment by microglia using flow cytometry (Figure 3a). After WBRT there was a significant 

increase in the number of microglia engulfing synaptosomes in the hippocampus compared to 

naïve non-irradiated animals (Figure 3b). Strikingly, synapse engulfment activity was 

unchanged compared to naïve animals in animals treated with CSF-1R inhibitor during WBRT 

(Figure 3b). Immunofluorescent imaging at the injection sites confirmed that the injected 

synaptosomes were indeed engulfed by microglia, and the increased trend of engulfment by 

irradiated microglia remained unchanged (Figures 3 c and d, Supplementary Figure 4a). 

Notably, after hippocampal injection of fluorescent labeled latex beads into the hippocampus, 

we found that WBRT resulted in increased engulfment of latex beads was also inhibited by 

CSF-1R inhibitor treatment, suggesting that the WBRT-induced increase of engulfment was not 

specific to synaptosomes, but rather a general increase of phagocytosis potency 

(Supplementary Figure 4b). These data are the first to demonstrate that WBRT results in an 

increase in microglial phagocytosis activity in the hippocampus that can be prevented by 

transient microglia depletion and full repopulation.  
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Irradiation-induced complement and phagocytic receptors expression in microglia are absent in 

BEM after WBRT. 

Microglial complement receptors play essential roles in physiologic synaptic elimination during 

development and aberrant elimination during neuroinflammatory conditions (35, 36). To 

understand the mechanisms of increased microglia phagocytic activity after WBRT, we 

measured expression levels of a list of complement receptors, phagocytic markers and 

lysosome proteins in microglia by flow cytometry. The expression of complement receptor C5aR 

was significantly elevated in microglia at one month after WBRT. However, in animals treated 

with CSF-1Ri C5aR expression was unchanged from naïve animals (Figure 3e). The same 

trend was observed in the expression levels of CD68 and lysosomal-associated membrane 

protein 1 (LAMP-1) (Figure 3 f and g). These results were consistent with our data 

demonstrating decreased PSD95 levels (Figure 3b) and increased microglial phagocytosis 

activity in the hippocampus after WBRT (Figure 3 b and d). In addition, complement receptor 

CR3 (CD11b) was significantly elevated in microglia after WBRT or CSF-1Ri treatments alone, 

and remained unchanged in BEMs with combined WBRT and CSF-1Ri treatments 

(Supplementary Figure S5a). No changes in the complement receptor C3ar1 were measured 

after WBRT or CSF-1R inhibitor treatment (Supplementary Figure S5b). These results 

demonstrate that the increased microglia phagocytosis of synaptosomes after WBRT was 

associated with increased phagocytic and lysosome proteins, and was likely through the 

complement pathways.  

 

Brain-engrafted macrophages after microglia depletion persist in the brain 
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To determine whether BEMs are present long-term in the brain, we monitored this cellular 

population for 6 months after WBRT. To eliminate the limitation of using bone marrow obtained 

from the Cx3cr1+/GFPCcr2+/RFP knock-in reporter mouse strain, we used an actin-GFP transgenic 

line as bone marrow donors and generated chimeras using the same body-only irradiation 

protocol (Figure 4 a). Six weeks later, mice were treated with CSF-1R inhibitor and WBRT and 

then used to trace BEMs at varies time points (Figure 4 a). Whole coronal sections at the level 

of the dorsal hippocampus were stained with Iba1 and imaged to quantify total Iba1+ and GFP+ 

cells (Supplementary Figure 6 a). We found that all GFP+ cells in the brain were also Iba1+, 

suggesting that BEMs were indeed derived from the periphery. In addition, the morphology of 

Iba1+GFP+ BEMs were analyzed and compared to Iba1+GFP- microglia (Figure 4 b and d). 

We found that round-shaped Iba1+GFP+ BEM cells entered the brain starting from 7 days after 

WBRT, and started to obtain more processes that resembled microglia morphology (Figure 4 b). 

However, Sholl analysis demonstrated that the morphology of BEMs remained stable from 33 

days after WBRT and never reached the structural complexity of microglia (Figure 4c, 

Supplementary Figure S7).  We found that 40 – 90% of Iba1+ cells are also GFP+ at 14 days 

after WBRT. This ratio remained at high levels at 1, 3 and 6 months after WBRT (Figure 4 e). 

Interestingly, although the Iba1+ and Iba1+GFP+ cell numbers are not fully recovered at 14 

days after WBRT, the microglia replacement ratio was similar to the level of later time points 

(Figure 5 e and Supplementary Figure S6 b and c), suggesting a non-competitive manner of 

brain parenchyma occupancy by microglia and BEMs. These data demonstrate that BEMs enter 

the brain shortly after WBRT, adapt to a microglia-like morphology and maintain a stable 

population.  

 

BEMs provide long-term protection against WBRT-induced memory deficits and hippocampal 

dendritic spine loss 
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To measure the long-term cognitive outcomes, we treated a batch of wildtype animals, and 

tested their recognition memory at 3 and 6 months after WBRT (Figure 5 a). We found that 

WBRT resulted in persistent loss of recognition memory also at 3 and 6 months, while CSF-1Ri 

treatment alone did not alter recognition memory performance (Figure 5 b and c). Strikingly, 

mice that received WBRT along with temporary microglia depletion did not show any memory 

deficits and performed undistinguishable from control animals at 3 and 6 months (Figure 5 b 

and c). Our previous report demonstrated that WBRT-induced dendritic spine loss in 

hippocampal neurons was fully prevented by temporary microglia depletion during irradiation 

(13). In this study, we sought to understand if the protective effects persisted up to 6 months 

after WBRT.  Our results clearly show that radiation-induced loss of dendritic spines in 

hippocampal neurons persists to this time point, and that the protective effect of microglia 

depletion and subsequent replacement by BEMs is long lasting (Figure 5 d). Taken together, 

brief depletion of microglia during WBRT induces sustainable BEMs in the brain and provides 

long-term protection against irradiation-induced deficits in recognition memory. 

 

Replacement of microglia by BEMs protects against concussive injury-induced memory loss  

To investigate the function of BEMs after they replaced microglia, a single mild concussive 

Closed Head Injury (CHI) was given to mice 30 days after CSF-1R inhibitor treatment and 

WBRT; microglia/BEMs morphology and phagocytic activities were measured following 

recognition memory test by NOR (Fig 6 a). By FACS analysis at 24 days post injury, we found 

that phagocytosis activity increased (p=0.0419) after CHI in microglia but not in BEMs (Figure 6 

b). Quantification of immunofluorescent staining of Iba-1/PSD-95 co-localization also revealed a 

trend of increased engulfment towards pre-stained synaptosomes by microglia but not by BEMs 

(Fig 6 c and d). In addition, the structural complexity of microglia decreased in Sholl analysis, 

while the morphology of BEMs remained unchanged after CHI (Figure 6 e). Furthermore, at 20 
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days after injury, CHI-induced recognition memory deficits were spared in mice whose microglia 

were replaced by BEMs (Figure 6 f). These results demonstrate that unlike resident microglia 

which transition to a less ramified morphology and exhibit increased phagocytic activity towards 

injected synaptosomes, BEMs remain unchanged in both morphology and phagocytic activity in 

response to CHI. More importantly, our data suggest that replacement of microglia by BEMs can 

protect against CHI-induced memory loss. 

 

Discussion 

Here we provide evidence for the direct involvement of microglia phagocytic activity 

towards synaptic compartments as a mechanistic cause for loss of dendritic spines with 

consequent impairments in memory functions after WBRT. Replacement of microglia with 

monocyte derived BEMs prevents loss of synapses and consequent memory deficits. 

Importantly, BEMs replacing microglia are also protective against a second injury to the brain. 

Together our results unravel novel immediate and long lasting therapeutic benefits of microglia 

depletion and repopulation during WBRT.  

Microglia play pivotal roles in reshaping synaptic networks during neonatal brain 

development (37, 38). They engulf synaptic elements by active synaptic pruning in an activity- 

and complement-dependent manner (38). Microglia-driven aberrant loss of synapses and 

consequent impairment of cognitive functions have also been reported in animal models of AD 

(35), infection (39), injury (40, 41), and aging (42). Using RNA sequencing, we compared the 

transcriptomes of microglia from irradiated and non-irradiated brains after CSF-1Ri-mediated 

microglia depletion and repopulation. WBRT induces increased expression of genes that mainly 

belong to cell cycle regulation, DNA damage repair and stress-induced biological processes 

(Figure 1d). As a result, activated microglia have higher engulfing potential towards both 

intrinsic and extrinsic synaptic compartments (Figures 1 g, Figure 3 b - d). This view is further 
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supported by the increased expression of endosome/lysosome proteins CD68 and CD107a with 

the complement receptors CR3 and C5ar1 measured in microglia chronically after WBRT 

(Figure 3 e – g, and Supplementary Figure 5). Notably, both endosome/lysosome proteins 

and complement receptor expressions were comparable to naïve microglia (sham + control diet) 

in BEMs (WBRT + CSF-1Ri) and repopulated microglia (CSF-1Ri only). These results suggest 

that the loss of hippocampal synapses after WBRT may be dependent on the activation of the 

alternative complement pathway. Interestingly, although BEMs are morphologically similar to 

adult microglia, they retain a transcriptomic signature similar to both circulating monocytes and 

embryonic microglia (Figure 2 and Supplementary Figure 3).  

The decrease in post-synaptic protein PSD95 level in hippocampal synaptosomes is 

also paralleled with reductions in hippocampal dendritic spines (Figures 5 d and Feng et 

al(13)). However, pre-synaptic Synapsin 1 protein levels are not affected by WBRT or microglia 

depletion, suggesting that WBRT mainly induces loss of post-synaptic compartments. 

Interestingly, although the phagocytosis potency of repopulated microglia and BEMs are both 

low (Figures 3 b and d), microglia depletion and repopulation alone does not affect dendritic 

spine density (Figures 5 d and e). On the other hand, microglia replacement by BEMs results in 

increased dendritic spine density compared to those with radiation alone, and microglia 

depletion alone (13). Strikingly, the protective effect of microglia depletion during WBRT results 

in protected memory functions and extends to 3- and 6-months following irradiation (Figure 5 b 

and c). The dendritic spine density in mice that received WBRT and CSF-1Ri remained higher 

than those who only received CSF-1Ri (Figure 5 e) suggesting that in an non-reactivate state  

(evidenced by no changes in genes involved in cell cycle and radiation response, in microglial 

phagocytosis and lysosome proteins, and in phagocytosis activity towards injected 

synaptosomes and latex beads) of repopulated microglia and BEMs may have intrinsic 
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differences in maintaining the homeostasis of dendritic spines, which appears to diminish over 

time.  

In the CNS, microglia maintain a stable population by self-renewal in either a random 

manner or through clonal expansion (3, 43). CSF-1R inhibitor treatment alone results in acute 

depletion of up to 99% of CNS resident microglia, with repopulated microglia arising solely from 

the residual microglia and their progenitor cells that remain after treatment (8), (44). The 

repopulated microglia have transcriptional and functional profiles similar to naïve microglia (9). 

Peripheral macrophages can engraft into the brain but remain morphologically, transcriptionally 

and functionally different from CNS resident microglia (45, 46),. Under specific circumstances, 

monocytes entering the CNS can become microglia-like cells. This is most clearly demonstrated 

in experiments where lethal whole-body irradiation was followed by bone marrow transplantation 

with labeled monocytes (Ccr2+Ly6Chigh), resulting in accumulation of these cells in the brain (30). 

In neonatal mouse brains monocytes can enter the brain parenchyma without head irradiation 

and become microglia-like cells at a low frequency (47). In addition, chronic depletion of 

microglia without irradiation also results in myeloid cells entering the CNS and becoming BEMs 

(33). However, the roles of BEMs in cognitive functions are largely unknown. Here we report 

that concurrent microglia depletion and therapeutic brain irradiation causes peripheral 

monocytes to enter the brain parenchyma and become microglia-like BEMs. BEMs enter the 

brain at 14 days after the completion of brain irradiation, or 4 days after the CSF-1Ri withdrawal 

(Figure 4 e, and Supplementary Figure 6). Notably, although the ratio of BEMs was high at 

this time point the total number of Iba1 positive cells is not fully recovered (Supplementary 

Figure 6 b). This ratio remains at high levels in head-irradiated mice throughout the current 

study (Figure 5 e), suggesting that microglia depletion during WBRT results in sustainable 

replacement of microglia by BEMs. Importantly, this observation correlates with long-term 
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protection against WBRT-induced loss of recognition memory and dendritic spines in 

hippocampal granule neurons (Figure 6 b – e).  

In the clinic, cancer patients are unlikely to receive a second round of radiotherapy to the 

brain. Therefore, instead of introducing a second round of WBRT, after they occupied the brain 

we gave BEM-bearing mice CHI that causes memory deficits (48, 49), and further examined 

BEMs’ response to a single head trauma. Our data show that microglia had increased 

phagocytic potential to exogenous synaptosomes after CHI, while phagocytic activity of BEMs 

did not change and remained at a similar level as naïve microglia (Figure 6 b and c). This is 

further demonstrated by Sholl analysis of BEMs showing no change in morphology after CHI 

(Figure 6 e). Most importantly, CHI-induced memory deficit was prevented in BEM-bearing mice 

(Figure 7 f). These data are the first to demonstrate that BEMs can prevent brain injury-induced 

cognitive dysfunction.  

A limitation of the current study is that we didn’t investigate transcriptomic profiles and 

phagocytic functions of BEMs at chronic time points after they replaced microglia. Therefore, it 

is unknown whether BEMs can obtain transcriptomic profiles and functions closer to adult 

microglia at later time points. In addition, microglia have been shown to mediate forgetting 

through complement-dependent synaptic elimination (50). We did observe increased dendritic 

spines in hippocampal granule neurons at both 1 and 6 months after WBRT compare to sham 

animals, suggesting that BEMs may have lower activity in eliminating synapses than naïve 

microglia. Therefore, the consequences of microglia replacement by BEMs in normal forgetting 

need further investigation. In addition, transcriptomic and functional studies at chronic time 

points with other microglia depletion models will provide insights into the transcriptomic and 

functional dynamics of BEMs in the brain. 

In conclusion we report evidence for the mechanism by which microglia depletion and 

repopulation after WRBT prevents memory loss. Our data demonstrate that replacement of 
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CNS resident microglia by peripheral monocyte-derived BEMs results in a transcriptional and 

functional reset of immune cells in the brain to an inactive state, which spares the brain from 

WBRT-induced dendritic spine loss in hippocampal neurons and recognition memory deficits. 

Most importantly, replacement of microglia by BEMs protects against concussive brain injury-

induced cognitive deficits. These results suggest that replacement of depleted microglia pool by 

peripheral monocyte-derived BEMs represents a potent treatment for irradiation-induced 

memory deficits.  
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Materials and Methods 

Animals: All experiments were conducted in compliance with protocols approved by the 

Institutional Animal Care and Use Committee at the University of California, San Francisco 

(UCSF), following the National Institutes of Health Guidelines for Animal Care. 7 weeks old 

C57BL/6J male mice were purchased from the Jackson Laboratory and housed at UCSF animal 

facilities and were provided with food and water ad libitum. All mice were habituated for one 

week before any treatments or procedures. 8–10 weeks old Cx3cr1GFP/+Ccr2RFP/+ mice were 

breed by crossing the Cx3cr1GFP/GFPCcr2RFP/RFP line with wildtype C57BL/6J mice, and used as 

donors for the bone marrow chimeras.  

CSF-1Ri treatment: CSF-1Ri (PLX5622 formulated in AIN-76A standard chow at 1200 ppm, 

Research Diets, Inc) were provided by Plexxikon, Inc (Berkeley, CA). Mice were given free 

access to either CSF-1Ri chow or control diet (AIN-76A without PLX5622) for 21 days. 

Approximately 4.8 mg of PLX5622 was ingested by each mouse per day in the treated group 

(calculation based on 4 g/mouse daily consumption).  

Fractionated whole-brain radiotherapy (WBRT): 8 weeks old mice were injected with 

ketamine (90mg/kg) /Xylazine (10 mg/kg) mix. When fully immobilized mice were placed in 

irradiator with cesium-137 source at the dose rate of 2.58 Gy/min. The body was shielded with a 

lead collimator that limited the radiation beam to a width of 1 cm to cover the brain. Three 

radiation fractions (3.3 Gy) were delivered every other day over 5 days. Sham animals received 

ketamine/xylazine without irradiation.  

Bone marrow chimeras: 8 weeks old C57BL/6J mice were used as bone marrow recipients. 8 

weeks old males received two doses of 6 Gy cersium-137 irradiation at the dose rate of 2.58 

Gy/min with head protected by lead plates 6 hours apart. Bone marrow cells from 6–10 weeks 

old donors Cx3cr1+/GFPCcr2+/RFP or B6-EGFP (The Jackson Laboratory, stock No 003291) were 

isolated and resuspended in sterile saline at a concentration of 100 million cells/ml. 0.1 ml of 
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bone marrow cells were injected into recipients via retro-orbital injection immediately after the 

second head protected irradiation. Bone marrow chimeras were housed with 1.1 mg/ml 

neomycin as drinking water for 4 weeks and allowed an additional 2 weeks to recover before 

any treatments.  

Concussive TBI – Closed head injury: 12 weeks old C57BL/6J mice were randomly assigned 

to each TBI or sham surgery group. Animals were anesthetized and maintained at 2-2.5% 

isoflurane during CHI or sham surgery. Animals were secured to a stereotaxic frame with 

nontraumatic ear bars and the head of the animal was supported with foam. Contusion was 

induced using a 5-mm tip attached to an electromagnetic impactor (Leica) at the following 

coordinates: anteroposterior, −1.50 mm and mediolateral, 0 mm with respect to bregma. The 

contusion was produced with an impact depth of 1 mm from the surface of the skull with a 

velocity of 5.0 m/s sustained for 300 ms. Animals that had a fractured skull after injury were 

excluded from the study. Sham animals were secured to a stereotaxic frame with nontraumatic 

ear bars and received the midline skin incision but no impact. After CHI or sham surgery, the 

scalp was sutured and the animal was allowed to recover in an incubation chamber set to 37 °C. 

All animals recovered from the surgical procedures as exhibited by normal behavior and weight 

maintenance monitored throughout the duration of the experiments. 

Synaptosome isolation staining and injection: Fresh hippocampi from a naïve mouse was 

homogenized and spun down in 0.32M sucrose solution (dissolved in 50 mM HEPES buffer). 

Supernatant was centrifuged in 0.65M sucrose solution at 12,000 rpm for 30 minutes at 4°C. 

The synaptosome containing pellet was resuspended in 1 x ice-cold PBS, diluted to 100 µg/ml, 

and stained with PSD-95 antibody (Millipore) on ice for 30 minutes followed by a secondary 

antibody staining (Invitrogen, goat anti-mouse AF488). Stained synaptosomes were washed 

and diluted 20 times in PBS and stored at -80°C. 2 µl of pre-stained synaptosomes were 

injected into the right hippocampus of each recipient mouse at the coordinate relative to the 
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bregma: AP + 1.6 mm, ML + 1.6 mm and DV -2.0 mm. Mice were euthanized 3 days later. The 

left hemispheres (uninjected) were used for phagocytosis markers staining and the right 

hemispheres (injected) were used to assess synaptosome phagocytosis levels by flow 

cytometry or immunofluorescent staining. 

Immunofluorescent Staining: hemi-brains with synaptosome injection were fixed in 4% PFA 

overnight, cryo-protected in 30% sucrose solution in 1 x PBS and sliced in 20 µm sections. 

Sliced tissues were stained with Iba1 (Fujifilm Wako Pure Chemical Corporation, 019-19741) 

followed by a secondary antibody staining (goat anti-rabbit AF568, Invitrogen, A-11011). DAPI 

was used for nuclear staining. Images close to the injection site (Supplementary Figure 1a) 

were taken using a Zeiss Imager Z1 microscope under a 20x objective lens. Tissues from bone 

marrow chimeras were processed and stained as described above. Images were taken using a 

CSU-W1 Nikon Spinning Disk Confocal microscope under 10x air, 20x air or 100x immerse oil 

lenses. All images were analyzed using the Fiji/ImageJ software by experimenters blinded to 

sample information. 

Behavior test: Novel Object Recognition (NOR) task was used to test hippocampal dependent 

recognition memory at one, three and six months after the last dose of irradiation. All tests took 

place during the dark cycle in a room with dim red light as previously described (13, 14). Briefly, 

mice were habituated in an open arena (30 cm x 30 cm x 30 cm, L x W x H) for 10 minutes on 

day one and day two. On day three, two identical objects were put into the arena at a distance 

of 21 cm and mice were allowed to explore for 5 minutes. On day four, one object was replaced 

by a novel object and mice were allowed to explore for 5 minutes. All trials were recorded by an 

overhead camera and analyzed using Ethovision software. Data are presented as discrimination 

Index, calculated using fomular DI = (TNovel - TFamiliar)/(TNovel + TFamiliar).  

Flow cytometry: mice were perfused with cold PBS after euthanasia. Brains were immediately 

removed and dissociated using a Neural Tissue Dissociation kit (P) (Miltenyi Biotec). Brain cells 
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were resuspended in 30% Percoll solution diluted in RPMI medium, and centrifuged at 800 g for 

30 minutes at 4°C. Cell pellets were washed with FACS buffer (1 x DPBS with 0.5% BSA 

fraction V and 2% FBS), blocked with mouse CD16/32 Fc block (BD Biosciences #553141) and 

stained with fluorophore conjugated antibodies (CD11b-AF700, CD45-FITC, BD Pharmingen 

557690 and 553080, C5aR-PE, CD68-PE and CD107a-PE, Miltenyi Biotec 130-106-174, 130-

102-923 and 130-102-219), washed with FACS buffer and used for sort or analyses of bone 

marrow chimera efficiency. Data were collected on an Aria III sorter using the FACSDIVA 

software (BD Biosciences, V8.0.1), and analyzed with Flowjo software (FlowJo, LLC, V10.4.2).  

Flow synaptometry: after isolation (described above) synaptosomes were stained with PSD-95 

(Abcam ab13552) or Synapsin-1 (Millipore #1543) antibodies on ice for 30 minutes, washed and 

followed by a secondary antibody staining (Invitrogen, goat anti-mouse AF488, A-11001). 

Stained synaptosomes were used immediately for analysis of mean fluorescent intensity 

measurement. Fluorescent latex beads of 1 µm, 2 µm, 3 µm and 6 µm were used as references 

of particle sizes in the FSC-A vs SSC-A dot plot. Events between 1 µm and 3 µm were used to 

measure mean fluorescent intensities of isolated synaptosomes under the FITC channel. Data 

were collected on an Aria III sorter using the FACSDIVA software, and analyzed with Flowjo 

software. At least 100,000 events were collected from each sample for the analyses.  

RNA sequencing: mRNA was isolated from 100,000 to 400,000 sorted microglia or BEMs 

(CD45low/int/CD11b+ cells) using the Dynabeads mRNA DIRECT Purification Kit (Invitrogen 

#61011) following the manufacturer’s instructions. RNA sequencing libraries were generated 

using the Ovation RNA-seq system V2 and Ultralow Library Construction System sample prep 

kits (NuGEN). Libraries were sequenced on the HiSeq 2500 to generate single end 50bp reads 

according to the manufacturer’s instructions. Normalized per-gene read counts were used to 

compare relative gene expression levels across samples. Only genes with average read counts 

greater than 10 were included for analyses. Heatmaps were drawn using the online analysis 
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software Morpheus (Broad Institute, https://software.broadinstitute.org/morpheus), followed by 

hierarchical clustering using the One minus pearson correlation method. Gene Ontology 

analysis was performed using the Statistical overrepresentation test (GO biological process 

complete, PANTHER version 14) (51). Bar graphs to visualize fold enrichment and p values of 

enriched GO biological pathways were drawn using the GraphPad Prism software (V 7.01, 

GraphPad Software, Inc). For analysis of monocyte/microglia signature genes, dataset from 

Lavin and Winter et al was used as reference (GSE63340) (32). Genes significantly up or down 

regulated (p<0.05, fold-change > 1.5 or <0.667) in monocytes vs microglia comparisons are 

defined as monocyte or microglia signature genes, respectively. Heatmaps were drawn as 

described above, and similarity matrix were drawn using the Morpheus online tool with Pearson 

correlation. Monocyte/microglia similarity scores were calculated based on the numbers of 

genes in each treatment group from this study that expressed in the same trend as 

monocyte/microglia signature genes (genes with fold-change between 0.6667 and 1.500 or with 

FDR>0.01 were defined as unspecified). For juvenile/embryonic signature analysis, dataset 

from Matcovitch-Natan and Winter et al was used as reference (GSE79819) (34). Gene listed to 

be highly expressed in Yolk Sac and embryonic day 10.5–12.5 were defined as 

embryonic/juvenile microglia signatures, genes highly expressed in adult 

cortex/hippocampus/spinal cord were defined as adult microglia signatures. Heatmaps, 

similarity matrix and similarity scores were drawn or calculated as described above. 

qPCR: mRNAs were extracted from sorted microglia using the Dynabeads mRNA DIRECT 

Purification Kit (Invitrogen #61011), and reverse transcribed into cDNAs using reverse 

transcription kit (info) . qPCR reactions were set up in duplicate reactions using the PowerUp 

SYBR Green Master Mix kit (Applied Biosystems #A25777) using an Mx3000P qPCR System 

(Agilent, Santa Clara, CA) following the manufacturer’s instructions. Data were analyzed using 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2021. ; https://doi.org/10.1101/794354doi: bioRxiv preprint 

https://doi.org/10.1101/794354
http://creativecommons.org/licenses/by-nc/4.0/


26 

 

the standard curve method. Standard cDNAs were generated with total RNAs from mixed naïve 

and irradiated mouse brains. qPCR primers sequences are listed in Supplementary Table 4.  

Sholl analysis: Images of GFP+ (BEMs from bone marrow chimeras) or Iba1+ (AF555, all 

microglia cells, and BEMs from non-bone marrow chimeras) cells were acquired from stained 

frozen sections (20um) using a confocal microscope under 100x objectives (CSU-W1 Spinning 

Disk/High Speed Widefield, Nikon). Max Z-projections from Z-stack images (0.26um step size) 

were used for Sholl analysis(52)  in Fiji(53) software using the following settings: manually 

defined cell center at the cell body, the numbers of intersections between cellular processes and 

circles with incremental radius (2um step size, up to 60um) were recorded, plotted and 

compared across samples. 

Statistical analyses: Two-way ANOVA was used to determine radiation and CSF-1Ri 

treatment effects for NOR, qPCR, flowsynaptometry, flow cytometry, immunofluorescent 

staining counts and dendritic spine count results, with Tukey’s post hoc multiple comparisons. 

One-way ANOVA with Sidak’s post hoc multiple comparisons was used to determine effect of 

developmental stages for dataset published by Matcovitch-Natan and Winter et al. Unpaired t-

test was used to determine differentially expressed microglia/monocyte signature genes from 

dataset published by Lavin and Winter et al. Unpaired t-test was used calculate the p value of 

the comparison of BEMs contributions between the BMT and BMT + WBRT groups. Exact p 

values and numbers of animals used in each experiment were listed in each related figure 

legend. All error bars represent mean ± SEM.  
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Figures 

 

 

Figure 1: Microglia depletion and repopulation prevents long term radiation-induced 

memory deficits and loss of hippocampal PSD95. a experimental design and Novel Object 

Recognition (NOR) test result. CSF-1R inhibitor was used to deplete microglia during 3 doses of 

3.3 Gy of whole-brain radiotherapy (WBRT). A 4-day NOR protocol was used to measure 

recognition memory, which ended on day 32 post WBRT. Microglia were isolated using 

fluorescent activated cell sorting (FACS) on day 33. and dot plots showing NOR results. 

Statistical analysis was performed using two-way ANOVA with Dunnett’s multiple comparisons 

test. There is no CSF-1Ri treatment effect (F(1,38)=1.787, p=0.1893), but significant WBRT 

effect (F(1, 38)=13.23, p=0.0008) and interaction between CSF-1Ri treatment and WBRT 

(F(1,38)=6.07, p=0.0184), N = 9-12, animals with insufficient exploration time on NOR test day 

were excluded. b hierarchically clustered heatmap showing significantly altered microglial genes 

by WBRT, but not changed with CSF-1Ri treatment. c bar graphs summarizing fold enrichment 

and p values of the top 20 enriched Biological Processes by Gene Ontology analysis from up-

regulated microglial genes after WBRT (full list in Supplementary Table1). No significantly 
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enriched terms were identified by GO analysis from down-regulated genes by WBRT. d a pie 

chart summarizing all enriched GOBP terms. ns= not significant, ***p<0.0001. e scatter plots 

showing gating strategy in flowsynaptometry analyses. Fluorescent beads at various sizes were 

used as standard to gate isolated hippocampal cell membrane fractions. Particles between 1 µm 

and 3 µm were considered synaptosomes and used to determine Synapsin1 and PSD95 protein 

levels by mean fluorescent intensities (MFIs). f dot plots to compare Synapsin1 and PSD95 MFI 

levels in hippocampal cell fractions. Statistical analyses were performed using two-way ANOVA 

with Tukey’s multiple comparisons test. ns = not significant, *p<0.05, ***p<0.001. N=6. 
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Figure 2: Repopulated microglia-like cells after depletion and WBRT originate from 

peripheral monocytes and retain monocytic signatures. a experimental design of head-

protected bone marrow transplantation (BMT) followed by CSF-1Ri-mediated microglia 

depletion and WBRT. Lower panel shows fur colors before euthanasian for brain analysis. b 

representative FACS analysis gating strategy to analyze bone marrow chimera efficiency 6 

weeks after BMT, about two thirds of the CD11b+Ly6Chigh monocytes are replaced by 

GFP+RFP+ cells derived from donor bone marrow cells. c representative FACS analysis gating 

strategy and brain myeloid composition results. Upper panel shows FACS gating using CD45 

and CD11b staining; microglia and microglia-like cells are defined by positive CD11b staining 

and low or intermediate CD45 levels. Lower panel shows scatter plots of GFP/RFP fluorescent 

levels of the CD11b+CD45low/intermediate population in the brain, and a dot plot comparing 

percentages of peripheral myeloid cell derived microglia-like cells. Statistical analysis was 

performed using unpaired t-test, ***p<0.001. d hierarchically clustered heatmaps to compare 

microglia and monocyte signatures. A signature gene list was defined using a dataset published 

by Lavin and Winter et al, GSE63340. Defined list and expression details are in Supplementary 

Table 2). e Similarity matrix comparisons using defined monocyte and microglia signature genes. 

f bar graph showing similarity scores to compare relative numbers of genes (in percentage of 

the defined list) that express in the same trends as monocytes or microglia based on the Lavin 

and Winter et al dataset.  
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Figure 3: Repopulated microglia and brain-engrafted macrophages are not activated and 

phagocyte less synaptic compartments. a experimental design for in vivo synaptosome 

phagocytosis assays. Injection of pre-stained synaptosomes was timed to be the same as 

previous experiments. Three days later, on day 36 after WBRT, ipsilateral hemispheres were 

harvested and used for engulfment measurement using FACS or Immunofluorescent staining. b 

FACS analysis result showing levels of microglia that engulfed pre-stained PSD-95 signals. c 

representative images showing engulfment of pre-stained synaptosomes by microglia near 

injection site. White arrows point at microglia that have engulfed pre-stained synaptosomes. 

scale bar = 20 µm. d dot plot to show quantification result of synaptosome engulfment by 
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immunofluorescent staining. e – g dot plots showing cell surface C5aR, and intracellular CD68 

and CD107a protein levels in microglia and BEMs. Statistical analyses were performed using 

two-way ANOVA with Tukey’s multiple comparisons test. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. N = 5 – 6.  

 

Figure 4: BEMs gradually adapt to microglia-like morphology and persist in the brain. a, 

schematic of experimental design for long-term assessment of BEMs. b, representative images 

of microglia/BEMs counting, scale bar = 20 μm.  c, Sholl analysis results showing numbers of 

intersections at different distances to cell center, BEMs at 7, 14, 33, 90 and 180 days after 

WBRT were compared to naïve microglia age-matched to 90 days after WBRT., representative 

images showing differential Iba1 and GFP expressing bprofiles of microglia (Iba1+ GFP-) and 

BEMs (Iba1+ GFP+) in a BEM bearing brain at 33 days after WBRT. e, dot plot to show 
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percentage of replacement of microglia by BEMs, each dot represent an individual mouse. n = 2 

- 3. Statistical analyses were performed using unpaired t-test at each distance point (c) or time 

point (e). See Supplementary Figure 7 for detailed comparisons between microglia and BEMs at 

each time point.  

 

Figure 5: BEMs provide long-term protection against WBRT-induced dendritic spine and 

memory loss. a schematic of experimental design for long-term memory and dendritic spine 

density analyses. b and c dot plots to show NOR test results at 3 and 6 months after WBRT, 

respectively. N = 6–12. d dendritic spine counts of hippocampal granule neurons at 6 months 

after WBRT, N = 5 – 6. Statistical analyses were performed using two-way ANOVA with Tukey’s 

post hoc multiple comparisons test (b - d). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.  
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Figure 6: BEMs protects against concussive injury-induced memory deficits. a, schematic 

of experimental design for concussive injury, cognitive test and following analyses. b, dot plot to 

show the result of in vivo phagocytosis assay by FACS after injection of pre-stained 

synaptosomes, each dot represents value from an individual mouse, n = 4 -5. c, dot plot 

showing result of in vivo phagocytosis assay by IF imaging and quantification, each dot 

represents mean counts from an individual mouse, n = 3. d, representative images showing 

microglia and BEMs (arrows) phagocyting injected synaptosomes (green dots). e, Sholl analysis 

result showing numbers of intersections at different distances to the cell center, n = 5 - 6. f, dot 

plot showing NOR test result, each dot represent the performance of an individual mouse, n = 
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12. Statistical analyses were performed using two-way ANOVA with Tukey’s multiple 

comparisons test (b and c) for each distance point (e) or unpaired t-test (f). *p<0.05, **p<0.01, 

***p<0.001. 
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Supplementary Figures 

Figure S1 

 

Supplementary Figure 1: qPCR validation of radiation-induced genes 

Genes from highly enriched GOBP terms were selected to validate RNAseq results. a and b 
Toll-like receptor 3 signaling pathway: Lgals9 and TNFα. c-e Cellular response to ionizing 
radiation: Rad51, Mdm2 and Ddias. d and f Regulation of response to reactive oxygen species: 
TNFα and Sesn2. c, g and h Regulation of double-strand break repair: Rad51, Foxm1 and 
Chek1. Statistical analyses were performed using two-way ANOVA with Tukey’s multiple 
comparisons test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. N = 4–6. The qPCR 
experiments were performed in duplicates with similar results. Figures shown here are 
representative results from one experiment. 
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Figure S2 

 

Supplementary Figure 2: qPCR validation of microglia- and monocyte-specific genes. 

Selected genes that are known to highly express in microglia or monocytes were used to 

validate RNAseq results. a – d microglia signature genes Sall1, P2ry12, Tmem119 and Trem2 

have lower expression levels in monocyte derived BEMs (CSF-1Ri + WBRT) compared to naïve 

microglia (control diet sham), irradiated microglia (control diet + WBRT) and repopulated 

microglia (CSF-1Ri sham). e – f monocyte signature genes Runx3, Lpar6 and Pmepa1 have 

higher expression levels in BEMs compared to other groups. Statistical analyses were 

performed using two-way ANOVA with Tukey’s multiple comparisons test. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. N = 4 – 6. The qPCR experiments were performed in duplicates with 

similar results. Figures shown here are representative results from one experiment. 
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Figure S3 

 

Supplementary Figure 3: Monocyte-derived BEMs after WBRT have embryonic microglia 

signatures. a hierarchically clustered heatmaps to compare embryonic and adult microglia 

signatures across samples. Embryonic and adult signature genes were defined based on 
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published dataset by Matchonitch and Winter et al. (Gene list and expression data in 

Supplementary Table 3). b Similarity matrix comparisons using defined embryonic and adult 

signature genes. c bar graph showing similarity scores to compare relative numbers of genes 

(shown as percentage of the defined list) that express in the same trends as embryonic or adult 

microglia in the Matchovitch and Winter dataset.  

 

Figure S4 

 

Supplementary Figure 4: Representative images of count window from phagocytosis 

assay by IF and result of in vivo beads phagocytosis assay by FACS. A, representative 

images showing injection track of pre-stained synaptosomes and count windows. b, dot plot 

results of in vivo phagocytosis assay by FACS using fluorescent labeled beads. Statistical 
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analyses were performed using two-way ANOVA with Tukey’s multiple comparisons test. 

**p<0.01, ***p<0.001, ****p<0.0001. N = 5. 

 

Figure S5 

 

Supplementary Figure 5: Complement receptors CR3 and C3ar1 levels in microglia and 

BEMs. a, dot plot of relative MFI of complement receptor CR3 (CD11b). b, dot plot of relative 

MFI of complement receptor C3ar1. Statistical analyses were performed using two-way ANOVA 

with Tukey’s multiple comparisons test. ***p<0.001, ****p<0.0001. N = 8 – 9 (a), N = 5 (b). 
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Figure S6 

 

Supplementary Figure 6: Quantification of microglia and BEMs in brains from bone marrow 
chimeras. a representative images of coronal section of whole brains from bone marrow 
chimeras. Scale bars = 100 μm (middle) and 20 μm (right). b dot plot of quantification results of 
Iba1 positive cells, each dot represents number of cells stained positive for Iba1 from a coronal 
whole brain section of an individual mouse. c dot plot of quantification results of GFP positive 
cells, each dot represents number of GFP positive cells from a coronal whole brain section of an 
individual mouse. Statistical analyses were performed using two-way ANOVA with Tukey’s 
multiple comparisons test. *p<0.05, **p<0.01. N = 2 (0 day sham on control diet) 3 (all other 
groups). 
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Figure S7 

 

Supplementary Figure 7: Sholl analysis results of microglia vs BEMs over time. a- d, 

comparison of Sholl analyses results between microglia and BEMs at 33, 60, 90 and 180 days 

after WBRT. e, Sholl analyses results of microglia at 33, 60, 90 and 180 days after WBRT. 

Statistics were performed using unpaired t-test at each distance point. n = 5 – 6.  
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